Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99525
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫珍理zh_TW
dc.contributor.advisorChen-li Sunen
dc.contributor.author王哲咸zh_TW
dc.contributor.authorZhe-Xian Wangen
dc.date.accessioned2025-09-10T16:33:30Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-11-
dc.identifier.citation[1]A. S. Andrae and T. Edler, "On global electricity usage of communication technology: trends to 2030," Challenges, vol. 6, pp. 117-157, 2015, doi: doi.org/10.3390/challe6010117.
[2]M. K. Patterson, "The effect of data center temperature on energy efficiency," in 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, Florida, 2008, pp. 1167-1174, doi: doi.org/10.1109/ITHERM.2008.4544393.
[3]P. Huang, B. Copertaro, X. Zhang, J. Shen, I. Löfgren, M. Rönnelid, J. Fahlen, D. Andersson, and M. Svanfeldt, "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, vol. 258, p. 114109, 2020, doi: doi.org/10.1016/j.apenergy.2019.114109.
[4]劉家成, 雷世璋, 李孟綸, 林億宇, 林永川, 李文彬, and 蔡英聖, "宜蘭仁澤地熱發電規劃評估," 電工通訊季刊, no. 1, pp. 61-76, 2021, doi: 10.6328/ciee.202103_(1).0007.
[5]D. Wang, X. Ling, H. Peng, L. Liu, and L. Tao, "Efficiency and optimal performance evaluation of organic Rankine cycle for low grade waste heat power generation," Energy, vol. 50, pp. 343-352, 2013, doi: doi.org/10.1016/j.energy.2012.11.010.
[6]Y. Dai, J. Wang, and L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery," Energy Conversion and Management, vol. 50, pp. 576-582, 2009, doi: doi.org/10.1016/j.enconman.2008.10.018.
[7]Z. Miao, J. Xu, X. Yang, and J. Zou, "Operation and performance of a low temperature organic Rankine cycle," Applied Thermal Engineering, vol. 75, pp. 1065-1075, 2015, doi: doi.org/10.1016/j.applthermaleng.2014.10.065.
[8]A. I. Papadopoulos, M. Stijepovic, and P. Linke, "On the systematic design and selection of optimal working fluids for Organic Rankine Cycles," Applied Thermal Engineering, vol. 30, pp. 760-769, 2010, doi: doi.org/10.1016/j.applthermaleng.2009.12.006.
[9]S. Araya, A. P. Wemhoff, G. F. Jones, and A. S. Fleischer, "An experimental study of an Organic Rankine Cycle utilizing HCFO-1233zd (E) as a drop-in replacement for HFC-245fa for ultra-low-grade waste heat recovery," Applied Thermal Engineering, vol. 180, 2020, doi: doi.org/10.1016/j.applthermaleng.2020.115757.
[10]H. Zhai, Q. An, L. Shi, V. Lemort, and S. Quoilin, "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, vol. 64, pp. 790-805, 2016, doi: doi.org/10.1016/j.rser.2016.06.076.
[11]Z. Shengjun, W. Huaixin, and G. Tao, "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Applied Energy, vol. 88, pp. 2740-2754, 2011, doi: doi.org/10.1016/j.apenergy.2011.02.034.
[12]P. Zhao, J. Wang, L. Gao, and Y. Dai, "Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell," International Journal of Hydrogen Energy, vol. 37, pp. 3382-3391, 2012, doi: doi.org/10.1016/j.ijhydene.2011.11.081.
[13]J. Bao and L. Zhao, "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, vol. 24, pp. 325-342, 2013, doi: doi.org/10.1016/j.rser.2013.03.040.
[14]V. Lemort, S. Quoilin, C. Cuevas, and J. Lebrun, "Testing and modeling a scroll expander integrated into an Organic Rankine Cycle," Applied Thermal Engineering, vol. 29, pp. 3094-3102, 2009, doi: doi.org/10.1016/j.applthermaleng.2009.04.013.
[15]Y. M. Kim, D. G. Shin, and C. G. Kim, "Optimization of design pressure ratio of positive displacement expander for vehicle engine waste heat recovery," Energies, vol. 7, pp. 6105-6117, 2014, doi: doi.org/10.3390/en7096105.
[16]D. K. Kim, J. S. Lee, J. Kim, M. S. Kim, and M. S. Kim, "Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80° C," Applied Energy, vol. 189, pp. 55-65, 2017, doi: doi.org/10.1016/j.apenergy.2016.12.026.
[17]J.-C. Chang, T.-C. Hung, Y.-L. He, and W. Zhang, "Experimental study on low-temperature organic Rankine cycle utilizing scroll type expander," Applied Energy, vol. 155, pp. 150-159, 2015, doi: doi.org/10.1016/j.apenergy.2015.05.118.
[18]S. Araya, A. P. Wemhoff, G. F. Jones, and A. S. Fleischer, "Study of a lab-scale organic rankine cycle for the ultra-low-temperature waste heat recovery associated with data centers," Journal of Electronic Packaging, vol. 143, 2021, doi: doi.org/10.1115/1.4047843.
[19]D. Walraven, B. Laenen, and W. D’haeseleer, "Comparison of shell-and-tube with plate heat exchangers for the use in low-temperature organic Rankine cycles," Energy conversion and management, vol. 87, pp. 227-237, 2014, doi: doi.org/10.1016/j.enconman.2014.07.019.
[20]J. Dong, X. Zhang, and J. Wang, "Experimental investigation on heat transfer characteristics of plat heat exchanger applied in organic Rankine cycle (ORC)," Applied Thermal Engineering, vol. 112, pp. 1137-1152, 2017, doi: doi.org/10.1016/j.applthermaleng.2016.10.190.
[21]J. Zhang, M. R. Kærn, T. Ommen, B. Elmegaard, and F. Haglind, "Condensation heat transfer and pressure drop characteristics of R134a, R1234ze (E), R245fa and R1233zd (E) in a plate heat exchanger," International Journal of Heat and Mass Transfer, vol. 128, pp. 136-149, 2019, doi: doi.org/10.1016/j.ijheatmasstransfer.2018.08.124.
[22]R. Long, Y. Bao, X. Huang, and W. Liu, "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, vol. 73, pp. 475-483, 2014, doi: doi.org/10.1016/j.energy.2014.06.040.
[23]W. Sun, X. Yue, and Y. Wang, "Exergy efficiency analysis of ORC (Organic Rankine Cycle) and ORC-based combined cycles driven by low-temperature waste heat," Energy Conversion and Management, vol. 135, pp. 63-73, 2017, doi: doi.org/10.1016/j.enconman.2016.12.042.
[24]D. Medeiros, "DWSIM Open Source Process Simulator," URL: https://dwsim. org, 2024.
[25]F. Fatigati, M. Di Bartolomeo, and R. Cipollone, "Development and experimental assessment of a Low Speed Sliding Rotary Vane Pump for heavy duty engine cooling systems," Applied Energy, vol. 327, p. 120126, 2022, doi: doi.org/10.1016/j.apenergy.2022.120126.
[26]G. Bianchi and R. Cipollone, "Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors," Applied Energy, vol. 142, pp. 95-107, 2015, doi: doi.org/10.1016/j.apenergy.2014.12.055.
[27]Y. Yohanis, O. Popel, and S. Frid, "A simplified method of calculating heat flow through a two-phase heat exchanger," Applied Thermal Engineering, vol. 25, no. 14-15, pp. 2321-2329, 2005, doi: doi.org/10.1016/j.applthermaleng.2004.12.011.
[28]T. L. Bergman and A. Lavine, Incropera's principles of heat and mass transfer, Global edition ed. Hoboken, New Jersey: Wiley, 2017.
[29]C. Campana, L. Cioccolanti, M. Renzi, and F. Caresana, "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, vol. 187, 2019, doi: doi.org/10.1016/j.energy.2019.115929.
[30]C. K. Unamba, M. White, P. Sapin, J. Freeman, S. Lecompte, O. A. Oyewunmi, and C. N. Markides, "Experimental investigation of the operating point of a 1-kW ORC system," Energy Procedia, vol. 129, pp. 875-882, 2017, doi: doi.org/10.1016/j.egypro.2017.09.211.
[31]K. Tangsriwong, P. Lapchit, T. Kittijungjit, T. Klamrassamee, Y. Sukjai, and Y. Laoonual, "Modeling of chemical processes using commercial and open-source software: A comparison between Aspen Plus and DWSIM," in IOP Conference Series: Earth and Environmental Science, London, England, 2020, vol. 463, p. 012057, doi: doi.org/10.1088/1755-1315/463/1/012057.
[32]E. Querol, B. Gonzalez-Regueral, A. Ramos, and J. L. Perez-Benedito, "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, vol. 36, no. 2, pp. 964-974, 2011, doi: doi.org/10.1016/j.energy.2010.12.013.
[33]E. W. Lemmon, I. H. Bell, M. Huber, and M. McLinden, "NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, National Institute of Standards and Technology," Standard Reference Data Program, Gaithersburg, pp. 45-46, 2018.
[34]I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, "Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp," Industrial & Engineering Chemistry Research, vol. 53, no. 6, pp. 2498-2508, 2014, doi: doi.org/10.1021/ie4033999.
[35]R. Akasaka, Y. Zhou, and E. W. Lemmon, "A fundamental equation of state for 1, 1, 1, 3, 3-pentafluoropropane (R-245fa)," Journal of Physical and Chemical Reference Data, vol. 44, 2015, doi: doi.org/10.1063/1.4913493.
[36]M. E. Mondejar, M. O. McLinden, and E. W. Lemmon, "Thermodynamic properties of trans-1-chloro-3, 3, 3-trifluoropropene (R1233zd (E)): Vapor pressure,(p, ρ, T) behavior, and speed of sound measurements, and equation of state," Journal of Chemical & Engineering Data, vol. 60, pp. 2477-2489, 2015, doi: doi.org/10.1021/acs.jced.5b00348.
[37]M. Thol and E. W. Lemmon, "Equation of State for the Thermodynamic Properties of trans-1, 3, 3, 3-Tetrafluoropropene [R-1234ze (E)]," International Journal of Thermophysics, vol. 37, pp. 1-16, 2016, doi: doi.org/10.1007/s10765-016-2040-6.
[38]許菩引, "在一含真空管集熱器之朗肯循環系統使用非共沸流體之效能分析," M.S. Thesis, National Taiwan University, Taipei, Taiwan, 2016.
[39]H. Zhai, Y. Dai, J. Wu, R. Wang, and L. Zhang, "Experimental investigation and analysis on a concentrating solar collector using linear Fresnel lens," Energy Conversion and Management, vol. 51, no. 1, pp. 48-55, 2010, doi: doi.org/10.1016/j.enconman.2009.08.018.
[40]J.-W. Wu, W.-F. Sung, and H.-S. Chu, "Thermal conductivity of polyurethane foams," International Journal of Heat and Mass Transfer, vol. 42, no. 12, pp. 2211-2217, 1999, doi: doi.org/10.1016/S0017-9310(98)00315-9.
[41]M. Sid-Ahmed, "Forced convective heat loss from solar collectors," Solar & Wind Technology, vol. 1, no. 3, pp. 193-195, 1984, doi: doi.org/10.1016/0741-983X(84)90007-9.
[42]D. H. Beggs and J. P. Brill, "A study of two-phase flow in inclined pipes," Journal of Petroleum Technology, vol. 25, pp. 607-617, 1973, doi: doi.org/10.2118/4007-PA.
[43]J. R. Sonnad and C. T. Goudar, "Turbulent flow friction factor calculation using a mathematically exact alternative to the Colebrook–White equation," Journal of Hydraulic Engineering, vol. 132, no. 8, pp. 863-867, 2006, doi: doi.org/10.1061/(ASCE)0733-9429(2006)132:8(863).
[44]S. Eyerer, C. Wieland, A. Vandersickel, and H. Spliethoff, "Experimental study of an ORC (Organic Rankine Cycle) and analysis of R1233zd-E as a drop-in replacement for R245fa for low temperature heat utilization," Energy, vol. 103, pp. 660-671, 2016, doi: doi.org/10.1016/j.energy.2016.03.034.
[45]A. Mota-Babiloni, J. Navarro-Esbrí, F. Molés, Á. B. Cervera, B. Peris, and G. Verdú, "A review of refrigerant R1234ze (E) recent investigations," Applied Thermal Engineering, vol. 95, pp. 211-222, 2016, doi: doi.org/10.1016/j.applthermaleng.2015.09.055.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99525-
dc.description.abstract本研究中旨在評估有機朗肯循環 (Organic Rankine Cycle, ORC) 在資料中心中進行廢熱回收的可行性,並透過DWSIM進行ORC的參數分析及優化。使用HFC-245fa、HFO-1233zd(E) 及HFO-1234ze(E) 作為工作流體,以熱源溫度、泵送壓力及質量流率作為關鍵參數,設定5°C及15°C兩種冷卻水條件,探討熱源溫度、泵送壓力與質量流率變化對膨脹機輸出功率、泵功耗、ORC效率與熱交換器性能的影響。
研究結果顯示,使用三種不同的工作流體時,隨熱源溫度增加,膨脹機輸出功率、泵功耗、熱效率及不可逆性均上升,而第二定律效率則隨熱源溫度增加先上升後下降。不可逆性的值由大到小為冷凝器、蒸發器、膨脹機及泵,但是在使用HFO-1234ze(E) 時蒸發器具有最高的不可逆性,但是其不可逆性為所有工作流體中最低。隨著熱源溫度提高,蒸發器的趨近溫度也增加,但冷凝器的趨近溫度先增加至極大值後就不再變化。對於蒸發器及冷凝器而言,蒸發器的夾點溫差發生在熱交換過程中,而冷凝器的夾點溫差則發生於熱交換器出入口之間。隨著泵送壓力的增加,膨脹機輸出功率、熱效率及第二定律效率均上升,但在高泵送壓力下增幅變小,泵送壓力對膨脹機輸出功率的影響越小。隨著質量流率的提升,膨脹機輸出功率與泵功耗均增加,且在高質量流率時其增幅變大,而熱效率則不受質量流率變化的影響,蒸發器之趨近溫度隨質量流率增加而減少,於高質量流率時其降幅變小。使用HFO-1234ze(E) 時擁有最高的輸出功率、泵功耗、熱效率及第二定律效率,顯示HFO-1234ze(E) 是三種工作流體中的最佳選擇,能作為低全球暖化潛勢流體應用於ORC中。
zh_TW
dc.description.abstractThis study investigates the feasibility of utilizing an Organic Rankine Cycle (ORC) system for waste heat recovery in data centers. DWSIM is applied to simulate the operation of the ORC in real-world data center conditions, and the influence of using three different working fluids, HFC-245fa, HFO-1233zd(E), and HFO-1234ze(E), is evaluated. In addition, key parameters such as the temperature of the heat source, pumping pressure, and mass flow rate of the working fluid, are varied to discuss their impacts on the output power of the expander, the power consumption of the pump, thermal efficiency, second-law efficiency, and the performance of heat exchangers.
The results show that increasing the temperature of the heat source leads to higher output power of the expander and higher thermal efficiency, but also higher power consumption of the pump and greater irreversibility. The second-law efficiency reaches its maximum when the heat-source temperature is 50°C. The highest irreversibility is usually found in heat exchangers such as the evaporator or the condenser, whereas the pump has the lowest irreversibility. When HFO-1234ze(E) is used, the overall irreversibility is the lowest among the three fluids. The approach temperature of the evaporator increases as the heat source becomes warmer. For the condenser, the approach temperature also increases with the heat-source temperature up to 10°C then remains constant as the heat-source temperature continues to elevate. The pinch-point temperature occurs inside the evaporator, which limits the maximum saturation pressure of the ORC working fluid during the process of heat absorption. On the other hand, increasing the pumping pressure augments the output power of the expander, thermal efficiency, and second-law efficiency. Increasing the mass flow rate enhances both the output power of the expander and the power consumption of the pump, so that the thermal efficiency remains relatively constant. The approach temperature of the evaporator increases with increasing mass flow rate, but the influence diminishes at high mass flow rates.
HFO-1234ze(E) shows the highest output power of the expander, thermal efficiency, and second-law efficiency among the three fluids, despite its higher power consumption of the pump. These results indicate that HFO-1234ze(E) is the most promising low-GWP working fluid for waste heat recovery in data centers using the ORC.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:33:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:33:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目次 vi
符號索引 x
圖次 xv
表次 xviii
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 有機朗肯循環工作流體之選擇 3
1.2.2 有機朗肯循環膨脹機之選擇 4
1.2.3 有機朗肯循環膨脹機之熱交換器選擇 5
1.3 研究目的 6
第二章 模擬架構與模擬參數 7
2.1 有機朗肯循環 7
2.1.1 泵 7
2.1.2 模擬資料中心之熱源系統 8
2.1.3 膨脹機與液氣分離器 11
2.1.4 模擬資料中心之冷卻系統 13
2.2 有機朗肯循環熱力學參數 15
2.2.1 熱效率 15
2.2.2 可用能 16
2.2.3 不可逆性 16
2.3 有機朗肯循環應用於資料中心之影響 18
2.4 有機朗肯循環之系統工程模擬 19
2.4.1 系統工程模擬之熱力學模型及資料庫 19
2.4.2 系統工程模擬之氣液平衡方法 22
2.4.3 系統工程模擬之運轉條件優化 23
2.4.4 系統工程模擬之管流熱傳分析 24
2.4.5 系統工程模擬之管流壓降分析 26
2.5 模擬程序及分析方法 29
2.5.1 模擬系統建立 29
2.5.2 熱力學參數優化 31
第三章 模擬結果與討論 32
3.1 膨脹機輸出功率及泵功耗隨熱源溫度之變化 32
3.1.1 HFC-245fa 冷媒系統 32
3.1.2 HFO-1233zd(E) 冷媒系統 33
3.1.3 HFO-1234ze(E) 冷媒系統 34
3.2 膨脹機輸出功率及泵功耗隨泵送壓力之變化 36
3.2.1 HFC-245fa 冷媒系統 36
3.2.2 HFO-1233zd(E) 冷媒系統 38
3.2.3 HFO-1234ze(E) 冷媒系統 38
3.3 膨脹機輸出功率及泵功耗隨質量流率之變化 41
3.3.1 HFC-245fa 冷媒系統 41
3.3.2 HFO-1233zd(E) 冷媒系統 43
3.3.3 HFO-1234ze(E) 冷媒系統 44
3.4 熱效率及第二定律效率隨熱源溫度之變化 44
3.4.1 HFC-245fa 冷媒系統 45
3.4.2 HFO-1233zd(E) 冷媒系統 46
3.4.3 HFO-1234ze(E) 冷媒系統 46
3.5 熱效率及第二定律效率隨泵送壓力之變化 47
3.5.1 HFC-245fa 冷媒系統 48
3.5.2 HFO-1233zd(E) 冷媒系統 49
3.5.3 HFO-1234ze(E) 冷媒系統 50
3.6 熱效率及第二定律效率隨質量流率之變化 51
3.6.1 HFC-245fa 冷媒系統 52
3.6.2 HFO-1233zd(E) 冷媒系統 53
3.6.3 HFO-1234ze(E) 冷媒系統 54
3.7 主要元件之不可逆性隨熱源溫度之變化 55
3.7.1 HFC-245fa 冷媒系統 56
3.7.2 HFO-1233zd(E) 冷媒系統 57
3.7.3 HFO-1234ze(E) 冷媒系統 58
3.8 蒸發器及冷凝器之趨近溫度隨熱源溫度之變化 59
3.8.1 HFC-245fa 冷媒系統 60
3.8.2 HFO-1233zd(E) 冷媒系統 61
3.8.3 HFO-1234ze(E) 冷媒系統 62
3.9 蒸發器之趨近溫度隨質量流率之變化 63
3.9.1 HFC-245fa 冷媒系統 64
3.9.2 HFO-1233zd(E) 冷媒系統 64
3.9.3 HFO-1234ze(E) 冷媒系統 65
3.10 蒸發器及冷凝器之夾點溫差隨熱源溫度之變化 65
3.10.1 HFC-245fa 冷媒系統 66
3.10.2 HFO-1233zd(E) 冷媒系統 67
3.10.3 HFO-1234ze(E) 冷媒系統 68
第四章 結論與建議 70
4.1 結論 70
4.2 建議 72
參考文獻 73
附錄 81
-
dc.language.isozh_TW-
dc.subject資料中心zh_TW
dc.subject有機朗肯循環zh_TW
dc.subject低全球暖化潛勢流體zh_TW
dc.subject廢熱回收zh_TW
dc.subjectDWSIMzh_TW
dc.subjectDWSIMen
dc.subjectwaste heat recoveryen
dc.subjectlow-GWP refrigeranten
dc.subjectdata centeren
dc.subjectOrganic Rankine Cycleen
dc.title低全球暖化潛勢流體應用於有機朗肯循環進行資料中心超低溫廢熱回收之可行性評估zh_TW
dc.titleAssessment of Organic Rankine Cycle with low-GWP fluids for ultra-low-temperature waste heat recovery in data centersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李卓昱;許麗zh_TW
dc.contributor.oralexamcommitteeCho-Yu Lee;Li Xuen
dc.subject.keyword有機朗肯循環,資料中心,DWSIM,廢熱回收,低全球暖化潛勢流體,zh_TW
dc.subject.keywordOrganic Rankine Cycle,data center,DWSIM,waste heat recovery,low-GWP refrigerant,en
dc.relation.page107-
dc.identifier.doi10.6342/NTU202501477-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-01-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved