請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99522完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 廖韋淇 | zh_TW |
| dc.contributor.author | Wei-Qi Liao | en |
| dc.date.accessioned | 2025-09-10T16:32:57Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | 1. Lin, Z.N., J. Chen, and H.P. Cui, Characteristics of corneal dystrophies: a review from clinical, histological and genetic perspectives. Int J Ophthalmol, 2016. 9(6): p. 904-13.
2. Ong Tone, S., et al., Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Progress in Retinal and Eye Research, 2021. 80. 3. Dutescu, R.M., C. Panfil, and N. Schrage, Osmolarity of prevalent eye drops, side effects, and therapeutic approaches. Cornea, 2015. 34(5): p. 560-6. 4. Price, M.O., et al., Descemet's stripping automated endothelial keratoplasty: three-year graft and endothelial cell survival compared with penetrating keratoplasty. Ophthalmology, 2013. 120(2): p. 246-51. 5. Aiello, F., et al., Global Prevalence of Fuchs Endothelial Corneal Dystrophy (FECD) in Adult Population: A Systematic Review and Meta-Analysis. J Ophthalmol, 2022. 2022: p. 3091695. 6. Gain, P., et al., Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol, 2016. 134(2): p. 167-73. 7. Yu, A.L., et al., Donor-related risk factors and preoperative recipient-related risk factors for graft failure. Cornea, 2014. 33(11): p. 1149-56. 8. Insights, S. Global Fuchs Endothelial Corneal Dystrophy (FECD) Market Size, Share, and Forecast 2022–2032 (Report ID: SI1711). 2023 [cited 2025 June 2]; Available from: https://www.sphericalinsights.com/reports/fuchs-endothelial-corneal-dystrophy-fecd-market. 9. Hernandez, J.J., et al., Giving Drugs a Second Chance: Overcoming Regulatory and Financial Hurdles in Repurposing Approved Drugs As Cancer Therapeutics. Front Oncol, 2017. 7: p. 273. 10. Vercammen, H., et al., "Keep on ROCKIn": Repurposed ROCK inhibitors to boost corneal endothelial regeneration. Biomed Pharmacother, 2024. 174: p. 116435. 11. Okumura, N., et al., Involvement of cyclin D and p27 in cell proliferation mediated by ROCK inhibitors Y-27632 and Y-39983 during corneal endothelium wound healing. Invest Ophthalmol Vis Sci, 2014. 55(1): p. 318-29. 12. Pipparelli, A., et al., ROCK inhibitor enhances adhesion and wound healing of human corneal endothelial cells. PLoS One, 2013. 8(4): p. e62095. 13. Macsai, M.S. and M. Shiloach, Use of Topical Rho Kinase Inhibitors in the Treatment of Fuchs Dystrophy After Descemet Stripping Only. Cornea, 2019. 38(5): p. 529-534. 14. Ludwig, P.E., M.J. Lopez, and K.E. Sevensma, Anatomy, Head and Neck, Eye Cornea, in StatPearls. 2025: Treasure Island (FL). 15. Sridhar, M.S., Anatomy of cornea and ocular surface. Indian J Ophthalmol, 2018. 66(2): p. 190-194. 16. Camburu, G., et al., The measurement of Central Corneal Thickness. Rom J Ophthalmol, 2023. 67(2): p. 168-174. 17. Eghrari, A.O., S.A. Riazuddin, and J.D. Gottsch, Overview of the Cornea: Structure, Function, and Development. Prog Mol Biol Transl Sci, 2015. 134: p. 7-23. 18. Center, T.M.E. Eye Anatomy. n.d. [cited 2025 April 18]; Available from: https://www.themedicaleyecenter.com/eye-conditions-manchester/eye-anatomy/. 19. Ahearne, M. and A.P. Lynch, Early Observation of Extracellular Matrix-Derived Hydrogels for Corneal Stroma Regeneration. Tissue Eng Part C Methods, 2015. 21(10): p. 1059-69. 20. Ruan, Y., et al., Corneal Epithelial Stem Cells-Physiology, Pathophysiology and Therapeutic Options. Cells, 2021. 10(9). 21. Vilkelyte, V., et al., Challenges and Advances in Magnetic Nanoparticle-Guided Delivery of Cultured Human Corneal Endothelial Cells—A Review. Applied Sciences, 2024. 14(13). 22. Wilson, S.E., Bowman's layer in the cornea- structure and function and regeneration. Exp Eye Res, 2020. 195: p. 108033. 23. Volatier, T., C. Cursiefen, and M. Notara, Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells, 2024. 13(2). 24. de Oliveira, R.C. and S.E. Wilson, Descemet's membrane development, structure, function and regeneration. Exp Eye Res, 2020. 197: p. 108090. 25. Van den Bogerd, B., et al., Corneal Endothelial Cells Over the Past Decade: Are We Missing the Mark(er)? Transl Vis Sci Technol, 2019. 8(6): p. 13. 26. Fletcher, D.A. and R.D. Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485-92. 27. Kumar, V. Cytoskeleton: Definition, Functions and Types. 2022. 28. Loufrani, L. and D. Henrion, Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med Biol Eng Comput, 2008. 46(5): p. 451-60. 29. Buss, F. and J. Kendrick-Jones, How are the cellular functions of myosin VI regulated within the cell? Biochem Biophys Res Commun, 2008. 369(1): p. 165-75. 30. Geisler, F. and R.E. Leube, Epithelial Intermediate Filaments: Guardians against Microbial Infection? Cells, 2016. 5(3). 31. Tsikitis, M., et al., Dynamic links between the cardiac intermediate filaments of the cytoskeleton and nucleoskeleton for proper cardiomyocyte differentiation, maturation and reprogramming. Cardiovascular Research, 2024. 120(Supplement_1). 32. Radke, M.B., et al., Small molecule-mediated refolding and activation of myosin motor function. Elife, 2014. 3: p. e01603. 33. Guan, G., et al., Effect of the Rho-Kinase/ROCK Signaling Pathway on Cytoskeleton Components. Genes (Basel), 2023. 14(2). 34. Ciani, L., et al., A divergent canonical WNT-signaling pathway regulates microtubule dynamics: dishevelled signals locally to stabilize microtubules. J Cell Biol, 2004. 164(2): p. 243-53. 35. Guertin, D.A., S. Trautmann, and D. McCollum, Cytokinesis in eukaryotes. Microbiol Mol Biol Rev, 2002. 66(2): p. 155-78. 36. Hohmann, T. and F. Dehghani, The Cytoskeleton-A Complex Interacting Meshwork. Cells, 2019. 8(4). 37. Vazquez-Hidalgo, E., et al., Chemo-Mechanical Factors That Limit Cellular Force Generation. Frontiers in Physics, 2022. 10. 38. Franz, C.M., G.E. Jones, and A.J. Ridley, Cell migration in development and disease. Dev Cell, 2002. 2(2): p. 153-8. 39. Pawluchin, A. and M. Galic, Moving through a changing world: Single cell migration in 2D vs. 3D. Front Cell Dev Biol, 2022. 10: p. 1080995. 40. De, R. and P.S. De, A brief overview on mechanosensing and stick-slip motion at the leading edge of migrating cells. Indian Journal of Physics, 2022. 96(9): p. 2629-2638. 41. Seguin, M. La motilité cellulaire. n.d.; Available from: https://slideplayer.fr/slide/514412/. 42. Tsai, F.C., et al., A polarized Ca2+, diacylglycerol and STIM1 signalling system regulates directed cell migration. Nat Cell Biol, 2014. 16(2): p. 133-44. 43. Machacek, M., et al., Coordination of Rho GTPase activities during cell protrusion. Nature, 2009. 461(7260): p. 99-103. 44. Xiong, Y., et al., Cells navigate with a local-excitation, global-inhibition-biased excitable network. Proc Natl Acad Sci U S A, 2010. 107(40): p. 17079-86. 45. Benichou, O., et al., Two-dimensional intermittent search processes: An alternative to Levy flight strategies. Phys Rev E Stat Nonlin Soft Matter Phys, 2006. 74(2 Pt 1): p. 020102. 46. Gardel, M.L., et al., Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol, 2008. 183(6): p. 999-1005. 47. Yamashiro, S. and N. Watanabe, A new link between the retrograde actin flow and focal adhesions. The Journal of Biochemistry, 2014. 156(5): p. 239-248. 48. Sugi, H., Muscle Contraction and Cell Motility: Fundamentals and Developments 2016, Singapore: Pan Stanford Publishing. 49. Haeger, A., et al., Collective cell migration: guidance principles and hierarchies. Trends Cell Biol, 2015. 25(9): p. 556-66. 50. Romano, D.J., et al., Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics. Int J Mol Sci, 2022. 23(1). 51. Mayor, R. and S. Etienne-Manneville, The front and rear of collective cell migration. Nat Rev Mol Cell Biol, 2016. 17(2): p. 97-109. 52. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49. 53. Wang, Z., Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells, 2021. 10(12). 54. Jones, M.C., J. Zha, and M.J. Humphries, Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos Trans R Soc Lond B Biol Sci, 2019. 374(1779): p. 20180227. 55. McIntosh, J.R., Mitosis. Cold Spring Harb Perspect Biol, 2016. 8(9). 56. Britannica, T.E.o.E., prophase. 2023, March 17: Encyclopaedia Britannica, Inc. 57. Soriano, O., et al., The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel), 2021. 12(6). 58. Pradhan, R., et al., Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells, 2021. 10(1). 59. Vicente-Manzanares, M., et al., Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 2009. 10(11): p. 778-90. 60. Bendris, N., B. Lemmers, and J.M. Blanchard, Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle, 2015. 14(12): p. 1786-98. 61. Besson, A., R.K. Assoian, and J.M. Roberts, Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors? Nat Rev Cancer, 2004. 4(12): p. 948-55. 62. Besson, A., et al., p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev, 2004. 18(8): p. 862-76. 63. Lee, S. and D.M. Helfman, Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem, 2004. 279(3): p. 1885-91. 64. Besson, A., S.F. Dowdy, and J.M. Roberts, CDK Inhibitors: Cell Cycle Regulators and Beyond. Developmental Cell, 2008. 14(2): p. 159-169. 65. Wennstrom, S., et al., Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3' kinase. Oncogene, 1994. 9(2): p. 651-60. 66. Ponti, A., et al., Two distinct actin networks drive the protrusion of migrating cells. Science, 2004. 305(5691): p. 1782-6. 67. Bonanno, J.A., Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog Retin Eye Res, 2003. 22(1): p. 69-94. 68. Klyce, S.D., 12. Endothelial pump and barrier function. Experimental Eye Research, 2020. 198. 69. Li, S., et al., Bicarbonate activates glycolysis and lactate production in corneal endothelial cells by increased pHi. Experimental Eye Research, 2020. 199. 70. Balyen, L., The Physiology of Cornea. JOJ Ophthalmology, 2022. 9. 71. Joyce, N.C., Proliferative capacity of the corneal endothelium. Prog Retin Eye Res, 2003. 22(3): p. 359-89. 72. Konomi, K., et al., Comparison of the proliferative capacity of human corneal endothelial cells from the central and peripheral areas. Invest Ophthalmol Vis Sci, 2005. 46(11): p. 4086-91. 73. Bourne, W.M., L.R. Nelson, and D.O. Hodge, Central corneal endothelial cell changes over a ten-year period. Invest Ophthalmol Vis Sci, 1997. 38(3): p. 779-82. 74. Hoffer, K.J., Corneal Endothelial Cell Density in Children: Normative Data From Birth to 5 Years Old. Am J Ophthalmol, 2017. 178: p. 186. 75. Ophthalmology, U.o.I.D.o. Cornea Transplantation: From Donor to Recipient. 2017. 76. Bourne, W.M., Biology of the corneal endothelium in health and disease. Eye (Lond), 2003. 17(8): p. 912-8. 77. Sarnicola, C., A.V. Farooq, and K. Colby, Fuchs Endothelial Corneal Dystrophy: Update on Pathogenesis and Future Directions. Eye & Contact Lens: Science & Clinical Practice, 2019. 45(1): p. 1-10. 78. Elhalis, H., B. Azizi, and U.V. Jurkunas, Fuchs endothelial corneal dystrophy. Ocul Surf, 2010. 8(4): p. 173-84. 79. Eghrari, A.O., Y.J. Daoud, and J.D. Gottsch, Cataract surgery in Fuchs corneal dystrophy. Curr Opin Ophthalmol, 2010. 21(1): p. 15-9. 80. Gottsch, J.D., et al., Inheritance of a novel COL8A2 mutation defines a distinct early-onset subtype of fuchs corneal dystrophy. Invest Ophthalmol Vis Sci, 2005. 46(6): p. 1934-9. 81. Krachmer, J.H., et al., Corneal endothelial dystrophy. A study of 64 families. Arch Ophthalmol, 1978. 96(11): p. 2036-9. 82. Kitagawa, K., et al., Prevalence of primary cornea guttata and morphology of corneal endothelium in aging Japanese and Singaporean subjects. Ophthalmic Res, 2002. 34(3): p. 135-8. 83. Higa, A., et al., Prevalence of and risk factors for cornea guttata in a population-based study in a southwestern island of Japan: the Kumejima study. Arch Ophthalmol, 2011. 129(3): p. 332-6. 84. Zoega, G.M., et al., Prevalence and risk factors for cornea guttata in the Reykjavik Eye Study. Ophthalmology, 2006. 113(4): p. 565-9. 85. Lam, F.C., et al., One year outcome of hemi-Descemet membrane endothelial keratoplasty. Graefes Arch Clin Exp Ophthalmol, 2015. 253(11): p. 1955-8. 86. Zygoura, V., et al., Quarter-Descemet membrane endothelial keratoplasty (Quarter-DMEK) for Fuchs endothelial corneal dystrophy: 6 months clinical outcome. Br J Ophthalmol, 2018. 102(10): p. 1425-1430. 87. Soh, Y.Q., et al., Predicative Factors for Corneal Endothelial Cell Migration. Invest Ophthalmol Vis Sci, 2016. 57(2): p. 338-48. 88. Davies, E., U. Jurkunas, and R. Pineda, 2nd, Predictive Factors for Corneal Clearance After Descemetorhexis Without Endothelial Keratoplasty. Cornea, 2018. 37(2): p. 137-140. 89. Cavet, M.E., et al., Nitric oxide (NO): an emerging target for the treatment of glaucoma. Invest Ophthalmol Vis Sci, 2014. 55(8): p. 5005-15. 90. Ishizaki, T., et al., Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol, 2000. 57(5): p. 976-83. 91. Kinoshita, S., K.A. Colby, and F.E. Kruse, A Close Look at the Clinical Efficacy of Rho-Associated Protein Kinase Inhibitor Eye Drops for Fuchs Endothelial Corneal Dystrophy. Cornea, 2021. 40(10): p. 1225-1228. 92. ATCC. ROCK Inhibitor Y27632-ACS-3030 Available from: https://www.atcc.org/products/acs-3030. 93. Schlotzer-Schrehardt, U., et al., Potential Functional Restoration of Corneal Endothelial Cells in Fuchs Endothelial Corneal Dystrophy by ROCK Inhibitor (Ripasudil). Am J Ophthalmol, 2021. 224: p. 185-199. 94. Conway, J.R.W. and G. Jacquemet, Cell matrix adhesion in cell migration. Essays Biochem, 2019. 63(5): p. 535-551. 95. Davies, E., U. Jurkunas, and R. Pineda, 2nd, Pilot Study of Corneal Clearance With the Use of a Rho-Kinase Inhibitor After Descemetorhexis Without Endothelial Keratoplasty for Fuchs Endothelial Corneal Dystrophy. Cornea, 2021. 40(7): p. 899-902. 96. Moloney, G., et al., Descemet Stripping Only Supplemented With Topical Ripasudil for Fuchs Endothelial Dystrophy 12-Month Outcomes of the Sydney Eye Hospital Study. Cornea, 2021. 40(3): p. 320-326. 97. Moloney, G., et al., Descemetorhexis Without Grafting for Fuchs Endothelial Dystrophy-Supplementation With Topical Ripasudil. Cornea, 2017. 36(6): p. 642-648. 98. Okumura, N., et al., The ROCK inhibitor eye drop accelerates corneal endothelium wound healing. Invest Ophthalmol Vis Sci, 2013. 54(4): p. 2493-502. 99. Rorth, P., Collective cell migration. Annu Rev Cell Dev Biol, 2009. 25: p. 407-29. 100. Deisboeck, T.S. and I.D. Couzin, Collective behavior in cancer cell populations. Bioessays, 2009. 31(2): p. 190-7. 101. Falanga, V., Wound healing and its impairment in the diabetic foot. Lancet, 2005. 366(9498): p. 1736-43. 102. Grada, A., et al., Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J Invest Dermatol, 2017. 137(2): p. e11-e16. 103. Riahi, R., et al., Advances in wound-healing assays for probing collective cell migration. J Lab Autom, 2012. 17(1): p. 59-65. 104. Shabestani Monfared, G., P. Ertl, and M. Rothbauer, An on-chip wound healing assay fabricated by xurography for evaluation of dermal fibroblast cell migration and wound closure. Sci Rep, 2020. 10(1): p. 16192. 105. Van Horssen, R. and T.L. ten Hagen, Crossing barriers: the new dimension of 2D cell migration assays. J Cell Physiol, 2011. 226(1): p. 288-90. 106. Pratt, B.M., et al., Mechanisms of cytoskeletal regulation. Modulation of aortic endothelial cell spectrin by the extracellular matrix. Am J Pathol, 1984. 117(3): p. 349-54. 107. Iwazaki, R., et al., The role of the cytoskeleton in migration and proliferation of a cultured human gastric cancer cell line using a new metastasis model. Cancer Lett, 1997. 119(2): p. 191-9. 108. Poujade, M., et al., Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A, 2007. 104(41): p. 15988-93. 109. Rotzer, V., et al., Desmoglein 3-Dependent Signaling Regulates Keratinocyte Migration and Wound Healing. J Invest Dermatol, 2016. 136(1): p. 301-10. 110. Johnston, S.T., et al., Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM assay data using the Fisher-Kolmogorov model. BMC Syst Biol, 2015. 9: p. 38. 111. Sargent, B., et al., A machine learning based model accurately predicts cellular response to electric fields in multiple cell types. Scientific Reports, 2022. 12(1). 112. Hohmann, U., et al., A toolbox to analyze collective cell migration, proliferation and cellular organization simultaneously. Cell Adhesion & Migration, 2023. 17(1): p. 1-11. 113. Stringer, C., et al., Cellpose: a generalist algorithm for cellular segmentation. Nat Methods, 2021. 18(1): p. 100-106. 114. Kim, K.W., Y.J. Shin, and S.C.S. Lee, Novel ROCK Inhibitors, Sovesudil and PHP-0961, Enhance Proliferation, Adhesion and Migration of Corneal Endothelial Cells. Int J Mol Sci, 2022. 23(23). 115. Totaro, A., T. Panciera, and S. Piccolo, YAP/TAZ upstream signals and downstream responses. Nat Cell Biol, 2018. 20(8): p. 888-899. 116. Heng, Y.W. and C.G. Koh, Actin cytoskeleton dynamics and the cell division cycle. Int J Biochem Cell Biol, 2010. 42(10): p. 1622-33. 117. Fabian, L., J. Troscianczuk, and A. Forer, Calyculin A, an enhancer of myosin, speeds up anaphase chromosome movement. Cell Chromosome, 2007. 6: p. 1. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99522 | - |
| dc.description.abstract | 角膜內皮營養不良(Fuchs’ Endothelial Corneal Dystrophy, FECD)為全球常見之角膜內皮疾病,其病理特徵為角膜內皮細胞喪失並引發水腫。然而,受限於角膜捐贈者的嚴重不足,傳統角膜移植治療面臨挑戰。因此,具再生潛力的藥物治療已成為近年研究焦點,其中青光眼用藥Rho-associated protein kinase(ROCK)抑制劑被發現可促進角膜內皮細胞的增殖、遷移與傷口癒合。本研究選擇ROCK抑制劑Y-27632與肌凝蛋白活化劑,處理人類角膜內皮細胞株B4G12,並建立傷口癒合模式進行觀察,探討肌凝蛋白在細胞癒合過程中的功能角色。實驗採用高解析度time-lapse顯微影像與3×3拼接影像技術,輔以開源影像分割模型萃取單細胞形態參數,並開發前後幀影像追蹤演算法以分析細胞在傷口區域的動態行為,進一步結合機器學習方法進行細胞遷移的預測。研究結果顯示,Y-27632可顯著促進體外角膜傷口癒合,此效應主要來自細胞分裂週期的加速及細胞遷移速度的提升,推測其作用機轉與肌凝蛋白活性降低及細胞張力結構重新分布有關。同時也觀察到,鄰近傷口邊緣的細胞運動模式由隨機性逐漸轉變為具方向性的遷移。ROCK抑制對肌凝蛋白的調控亦對整個細胞產生廣泛影響。此外,本研究亦建構一套以影像特徵為基礎的初步預測模型,能有效預測細胞遷移方向,可作為評估細胞修復潛能的輔助工具。整體而言,本研究證實抑制肌凝蛋白活化路徑可有效調控角膜內皮細胞的遷移與癒合,為角膜內皮再生治療策略提供重要的實驗依據與理論支持。 | zh_TW |
| dc.description.abstract | Fuchs’ Endothelial Corneal Dystrophy (FECD) is a common corneal disorder marked by endothelial cell loss and stromal edema. Due to the global shortage of donor corneas, conventional transplantation faces major limitations. As a result, pharmacological therapies with regenerative potential have gained increasing interest. Among them, Rho-associated protein kinase (ROCK) inhibitors—initially used for glaucoma—have shown the ability to enhance corneal endothelial cell proliferation, migration, and wound healing. This study applied the ROCK inhibitor Y-27632 and a myosin activator to human corneal endothelial B4G12 cells in an in vitro wound healing model to investigate myosin’s role in regeneration. High-resolution time-lapse microscopy with 3×3 stitching captured wound-edge dynamics, while an open-source segmentation model extracted single-cell morphological features. A custom tracking algorithm was developed to analyze migration behavior, and machine learning was used to predict migration trajectories. Y-27632 significantly enhanced wound healing by accelerating cell cycle progression and migration speed, likely through reduced myosin activity and redistributed intracellular tension. A shift from random to directional migration was observed near the wound edge, with ROCK inhibition broadly affecting cell behavior. A preliminary image-based model also successfully predicted migration direction, offering a potential tool to assess regenerative capacity. Overall, the findings demonstrate that inhibiting myosin activation effectively modulates corneal endothelial cell migration and wound healing, providing both experimental evidence and theoretical support for regenerative therapies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:32:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:32:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 ix 表次 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 眼角膜之解剖結構與生理功能 4 2.2 細胞骨架之結構與功能 6 2.3 細胞遷移之機制與調控因子 15 2.4 細胞週期之機制 24 2.5 RhoA–ROCK訊號軸於細胞遷移與週期調控中之角色 29 2.6 角膜內皮功能障礙性疾病之介紹 34 2.7 ROCK Inhibitor作為角膜內皮治療之潛力與應用現況 40 2.8 體外傷口癒合實驗模型 43 2.9 細胞影像分析與機器學習於細胞行為預測之應用 47 第三章 細胞傷口癒合實驗材料方法 52 3.1 實驗規劃流程 52 3.2 細胞培養與實驗所需材料 52 3.2.1. 藥品與耗材 52 3.2.2. 實驗儀器 54 3.2.3. 實驗細胞株 55 3.3 培養人類角膜內皮細胞 56 3.3.1. 細胞繼代 56 3.3.2. 凍細胞 57 3.3.3. 解凍細胞 57 3.3.4. 製備細胞培養基 58 3.4 細胞藥物處理與傷口癒合實驗 58 3.5 細胞免疫螢光染色 59 3.6 實時活細胞影像擷取與多視野拼接 60 第四章 細胞影像分析與資料處理方法 61 4.1 影像分析流程 61 4.2 電腦硬體與軟體環境 61 4.3 傷口區域量測與癒合面積之定量分析 62 4.4 細胞分裂週期之量測與分析 64 4.5 細胞進入分裂之數量於時序上的變化分析 66 4.6 細胞總數於時序上的變化分析 67 4.7 細胞形態學參數於最終時間點之分析 69 4.8 細胞沿傷口中心線法向方向上之空間分布與密度分析 71 4.9 細胞時序追蹤與時空行為動態分析 73 4.10 細胞運動行為預測建立之方法與分析 76 第五章 研究結果與討論 79 5.1 藥物處理對體外傷口癒合之影響 79 5.1.1. 結果 79 5.1.2. 討論 81 5.2 藥物處理對細胞總數增生動態之影響 82 5.2.1. 結果 82 5.2.2. 討論 83 5.3 藥物處理對細胞分裂總數動態之影響 84 5.3.1. 結果 84 5.3.2. 討論 87 5.4 藥物處理對細胞分裂週期之影響 88 5.4.1. 結果 88 5.4.2. 討論 90 5.5 藥物處理下細胞形態學指標之差異 92 5.5.1. 結果 92 5.5.2. 討論 95 5.6 藥物處理對細胞空間分區密度與整體動態之影響 98 5.6.1. 結果 98 5.6.2. 討論 101 5.7 藥物處理對時間與空間分區下細胞動態之影響 102 5.7.1. 結果 102 5.7.2. 討論 111 5.8 基於時序影像的細胞運動行為預測模型 112 5.8.1. 結果 112 5.8.2. 討論 117 5.9 本研究之限制 118 第六章 結論與未來展望 120 6.1 結論 120 6.2 未來展望 122 參考文獻 124 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 角膜內皮細胞 | zh_TW |
| dc.subject | ROCK抑制劑 | zh_TW |
| dc.subject | AI輔助影像分析 | zh_TW |
| dc.subject | 傷口癒合 | zh_TW |
| dc.subject | 細胞遷移 | zh_TW |
| dc.subject | ROCK inhibitor | en |
| dc.subject | corneal endothelial cells | en |
| dc.subject | cell migration | en |
| dc.subject | AI-assisted image analysis | en |
| dc.subject | wound healing | en |
| dc.title | 人工智慧影像分析肌凝蛋白於角膜內皮癒合之功能 | zh_TW |
| dc.title | AI-Based Image Analysis of Myosin Function in Corneal Endothelial Wound Healing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃義侑;林育君 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-You Huang;Yu-Chun Lin | en |
| dc.subject.keyword | ROCK抑制劑,角膜內皮細胞,傷口癒合,AI輔助影像分析,細胞遷移, | zh_TW |
| dc.subject.keyword | ROCK inhibitor,corneal endothelial cells,wound healing,AI-assisted image analysis,cell migration, | en |
| dc.relation.page | 131 | - |
| dc.identifier.doi | 10.6342/NTU202502010 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-23 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2030-07-21 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.9 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
