Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor柯淳涵zh_TW
dc.contributor.advisorChun-Han Koen
dc.contributor.author張友祐zh_TW
dc.contributor.authorYu-Yu Changen
dc.date.accessioned2025-09-10T16:32:35Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citationAvelino, C., Sara, I., & Alexandra, V. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chem. Rev., 107, 2411–2502.
Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and Industrial Aspects of Glucose Isomerase. MICROBIOLOGICAL REVIEWS, 60, 280-300.
Delidovich, I. (2021). Recent progress in base-catalyzed isomerization of D-glucose into D-fructose. Current Opinion in Green and Sustainable Chemistry, 27. https://doi.org/10.1016/j.cogsc.2020.100414
Delidovich, I. (2023). Toward Understanding Base-Catalyzed Isomerization of Saccharides. ACS Catalysis, 13(4), 2250-2267. https://doi.org/10.1021/acscatal.2c04786
Ghosh, P., & Singh, A. (1993). Physicochemical and Biological Treatments for Enzymatic/Microbial Conversion of Lignocellulosic Biomass. In (pp. 295-333). https://doi.org/10.1016/s0065-2164(08)70598-7
IEA. (2022). Task 42 Biorefining in a circular economy (Technology collaboration programme, Issue.
Jia, S., Liu, K., Xu, Z., Yan, P., Xu, W., Liu, X., & Zhang, Z. C. (2014). Reaction media dominated product selectivity in the isomerization of glucose by chromium trichloride: From aqueous to non-aqueous systems. Catalysis Today, 234, 83-90. https://doi.org/10.1016/j.cattod.2014.02.038
Jin, L. Q., Xu, Q., Liu, Z. Q., Jia, D. X., Liao, C. J., Chen, D. S., & Zheng, Y. G. (2017). Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup. Appl Biochem Biotechnol, 183(1), 293-306. https://doi.org/10.1007/s12010-017-2445-0
Konig, J., Grasser, R., Pikor, H., & Vogel, K. (2002). Determination of xylanase, beta-glucanase, and cellulase activity. Anal Bioanal Chem, 374(1), 80-87. https://doi.org/10.1007/s00216-002-1379-7
Kumar, R., Singh, S., & Singh, O. V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol, 35(5), 377-391. https://doi.org/10.1007/s10295-008-0327-8
Li, H., Yang, S., Saravanamurugan, S., & Riisager, A. (2017). Glucose Isomerization by Enzymes and Chemo-catalysts: Status and Current Advances. ACS Catalysis, 7(4), 3010-3029. https://doi.org/10.1021/acscatal.6b03625
Liu, C., Carraher, J. M., Swedberg, J. L., Herndon, C. R., Fleitman, C. N., & Tessonnier, J.-P. (2014). Selective Base-Catalyzed Isomerization of Glucose to Fructose. ACS Catalysis, 4(12), 4295-4298. https://doi.org/10.1021/cs501197w
Marianou, A. A., Michailof, C. M., Pineda, A., Iliopoulou, E. F., Triantafyllidis, K. S., & Lappas, A. A. (2016). Glucose to Fructose Isomerization in Aqueous Media over Homogeneous and Heterogeneous Catalysts. ChemCatChem, 8(6), 1100-1110. https://doi.org/10.1002/cctc.201501203
Moliner, M., Román-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. https://doi.org/10.1073/pnas.1002358107
Onishi, Y., Adachi, S., Tani, F., & Kobayashi, T. (2022). Insight into formation of various rare sugars in compressed hot phosphate buffer. The Journal of Supercritical Fluids, 186. https://doi.org/10.1016/j.supflu.2022.105621
Pienkoß, F., Ochoa-Hernández, C., Theyssen, N., & Leitner, W. (2018). Kaolin: A Natural Low-Cost Material as Catalyst for Isomerization of Glucose to Fructose. ACS Sustainable Chemistry & Engineering, 6(7), 8782-8789. https://doi.org/10.1021/acssuschemeng.8b01151
Qi, T., He, M. F., Zhu, L. F., Lyu, Y. J., Yang, H. Q., & He, C. W. (2019). Cooperative Catalytic Performance of Lewis and Bronsted Acids from AlCl3 Salt in Aqueous Solution toward Glucose-to-Fructose Isomerization. Journal of Physical Chemistry C, 123(8), 4879-4891. https://doi.org/10.1021/acs.jpcc.8b11773
Qin, Y., Guo, J., & Zhao, M. (2021). Metal–Organic Framework-Based Solid Acid Materials for Biomass Upgrade. Transactions of Tianjin University, 27(6), 434-449. https://doi.org/10.1007/s12209-021-00298-4
Rahaman, M. S., Tulaphol, S., Hossain, A., Jasinski, J. B., Lalvani, S. B., Crocker, M., Maihom, T., & Sathitsuksanoh, N. (2022). Aluminum‐Containing Metal‐Organic Frameworks as Selective and Reusable Catalysts for Glucose Isomerization to Fructose. ChemCatChem, 14(16). https://doi.org/10.1002/cctc.202200129
Saulnier-Bellemare, T., & Patience, G. S. (2024). Homogeneous and Heterogeneous Catalysis of Glucose to Lactic Acid and Lactates: A Review. ACS omega, 9(22), 23121-23137. https://doi.org/10.1021/acsomega.3c10015
Tang, J., Guo, X., Zhu, L., & Hu, C. (2015). Mechanistic Study of Glucose-to-Fructose Isomerization in Water Catalyzed by [Al(OH)2(aq)]+. ACS Catalysis, 5(9), 5097-5103. https://doi.org/10.1021/acscatal.5b01237
Ubando, A. T., Felix, C. B., & Chen, W.-H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource technology, 299, 122585.
Velvizhi, G., Jacqueline, P. J., Shetti, N. P., K, L., Mohanakrishna, G., & Aminabhavi, T. M. (2023). Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J Environ Manage, 345, 118527. https://doi.org/10.1016/j.jenvman.2023.118527
Wang, T., Glasper, J. A., & Shanks, B. H. (2015). Kinetics of glucose dehydration catalyzed by homogeneous Lewis acidic metal salts in water. Applied Catalysis A: General, 498, 214-221. https://doi.org/10.1016/j.apcata.2015.03.037
Wu, Z., Yu, Y., & Wu, H. (2023). Hydrothermal Reactions of Biomass-Derived Platform Molecules: Mechanistic Insights into 5-Hydroxymethylfurfural (5-HMF) Formation during Glucose and Fructose Decomposition. Energy & Fuels, 37(3), 2115-2126. https://doi.org/10.1021/acs.energyfuels.2c03462
Xiao Zhang, B. C., Qixuan Lin, Xiaohui Wang, Rui Li, Junli Ren. (2020). Triethylamine-catalyzed Isomerization of Glucose to Fructose under Low Temperature Conditions in Aqueous Phase. Paper and Biomaterials, 5(4), 27-35. https://doi.org/10.12103/j.issn.2096-2355.2020.04.004
Yang, H., Tong, D., Dong, Y., Ren, L., Fang, K., Zhou, C., & Yu, W. (2020). Kaolinite: A natural and stable catalyst for depolymerization of cellulose to reducing sugars in water. Applied Clay Science, 188. https://doi.org/10.1016/j.clay.2020.105512
Yang, Q., Sherbahn, M., & Runge, T. (2016). Basic Amino Acids as Green Catalysts for Isomerization of Glucose to Fructose in Water. ACS Sustainable Chemistry & Engineering, 4(6), 3526-3534. https://doi.org/10.1021/acssuschemeng.6b00587
Yao, Y., Chen, S., & Zhang, M. (2022). Sustainable Approaches to Selective Conversion of Cellulose Into 5-Hydroxymethylfurfural Promoted by Heterogeneous Acid Catalysts: A Review. Front Chem, 10, 880603. https://doi.org/10.3389/fchem.2022.880603
Yu, D., Wu, H., Zhang, A., Tian, L., Liu, L., Wang, C., & Fang, X. (2011). Microwave irradiation-assisted isomerization of glucose to fructose by immobilized glucose isomerase. Process Biochemistry, 46(2), 599-603. https://doi.org/10.1016/j.procbio.2010.09.026
Yu, I. K. M., & Tsang, D. C. W. (2017). Conversion of biomass to hydroxymethylfurfural: A review of catalytic systems and underlying mechanisms. Bioresour Technol, 238, 716-732. https://doi.org/10.1016/j.biortech.2017.04.026
Yu, S., Kim, E., Park, S., Song, I. K., & Jung, J. C. (2012). Isomerization of glucose into fructose over Mg–Al hydrotalcite catalysts. Catalysis Communications, 29, 63-67. https://doi.org/10.1016/j.catcom.2012.09.015
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99520-
dc.description.abstract隨著全球對化石能源依賴的加劇及其資源日益枯竭,發展替代性再生能源已成為當前國際間的重要課題。台灣每年生成大量富含木質纖維素的農林剩餘資材,可進一步異構化為果糖,並成為5-HMF等關鍵生質化合物的重要中間產物。為提升異構化效率與整合反應系統,研究中以AlCl₃為主要催化劑,以120°C下進行3小時異構化反應,可獲得較好的26.09%果糖收率。並且葡萄糖於鹼性環境(pH 10-11)下,有利於異構化反應進行。為提升催化劑可重複使用性,進一步合成Mg-Al水滑石催化劑。其中Mg-Al-3經一次回收後仍可保有約87%新鮮催化劑的果糖收率,而二次回收使用時,可保留68%的果糖收率,顯示其具備低毒、可回收與可重複使用等綠色催化潛力。最後,將纖維素酶水解與AlCl₃催化異構化整合於一鍋反應中,在0.5% 酸進行蒸氣爆碎的柳杉木漿中,果糖收率可到達40.30%。此一整合式操作策略除可簡化製程、減少操作步驟外,亦符合綠色化學與資源循環利用理念,展現其於未來生質物高值化與永續製程開發上的應用潛力。zh_TW
dc.description.abstractWith the increasing global reliance on fossil fuels and the progressive depletion of these resources, the development of alternative renewable energy sources has emerged as a critical international issue. Taiwan annually generates large quantities of lignocellulose-rich agricultural and forestry residues, which can be isomerized into fructose and further converted into key bio-based platform chemicals such as 5-hydroxymethylfurfural (5-HMF). To enhance isomerization efficiency and integrate the reaction system, AlCl₃ was employed as the primary catalyst in this study, achieving a favorable fructose yield of 26.09% after a 3-hour reaction at 120°C. The isomerization of glucose was further promoted under alkaline conditions (pH 10.0-11.0). To improve catalyst reusability, Mg-Al hydrotalcite catalysts were synthesized. Among them, Mg-Al-3 retained approximately 87% of its initial fructose yield after one cycle of reuse, and 68% after a second reuse, demonstrating its potential as a low- oxicity, recyclable, and reusable green catalyst. Finally, the integration of enzymatic hydrolysis and AlCl₃-catalyzed isomerization into a one-pot process using 0.5% acid steam-exploded Japanese cedar pulp yielded a fructose yield of up to 40.30%. This integrated strategy not only simplifies the process and reduces operational steps but also aligns with the principles of green chemistry and circular resource utilization, highlighting its potential for future applications in biomass valorization and sustainable process development.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:32:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:32:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
Content V
List of Figures VIII
List of Table X
List of Abbreviation XII
Chapter 1. Introduction 1
Chapter 2. Literature reviews 4
2.1. Biomass energy and cellulase hydrolysis 4
2.2. Glucose to fructose reaction 9
2.2.1. Brønsted acid definition and reaction pathway 9
2.2.2. Lewis acid definition and reaction pathway 10
2.2.3. Difference of reaction mechanisms between Brønsted and Lewis acid 13
2.3. Catalyst for glucose isomerization 14
2.3.1. Homogeneous catalysts 14
2.3.2. Heterogeneous catalysts 19
2.3.3. Enzyme catalysts 24
2.4. Effect of reaction parameters on glucose isomerization 28
2.4.1. Effect of pH value on glucose isomerization 28
2.4.2. Effect of solvents on glucose isomerization 30
2.4.3. Effect of temperature and time on glucose isomerization 32
2.5. By-products of reaction 33
Chapter 3. Materials and Methods 36
3.1. Research framework 36
3.2. Experimental materials and equipment 36
3.2.1. Experimental materials 36
3.2.2. Laboratory equipment 38
3.3. Experimental procedure 39
3.3.1. Enzyme hydrolysis 39
3.3.2. Isomerization of glucose to fructose by homogeneous catalysts 39
3.3.3. Synthesis of heterogeneous catalysis 43
3.3.4. Isomerization of glucose to fructose by heterogeneous catalysts 44
3.3.5. One-pot reaction 45
3.4. Product analysis and quantification 46
3.4.1. Ultraviolet-visible spectroscopy 46
3.4.2. High performance liquid chromatography (HPLC-RI) 47
Chapter 4. Results and Discussion 48
4.1. Chemical composition of biomass and cellulase hydrolysis 48
4.2. Isomerization of glucose 52
4.2.1. Catalytic performance of different Lewis acids 52
4.2.2. Catalytic performance of different catalyst concentrations 54
4.2.3. Catalytic performance of different reaction times and temperatures 58
4.2.4. Catalytic performance of different reaction solvents 60
4.2.5. Catalytic performance of different pH conditions 62
4.2.6. Catalytic performance of different catalyst formulations 69
4.2.7. Catalytic performance of solid additives 71
4.3. By-products 74
4.4. Mg-Al hydrotalcite 76
4.4.1. Isomerization of glucose 76
4.4.2. Separation of catalyst and reuse 81
4.5. Isomerization of cellulase hydrolysate in a one-pot reaction 84
4.5.1. AlCl3 addition after hydrolysis 84
4.5.2. AlCl3 addition during hydrolysis 86
Chapter 5. Conclusions 88
Chapter 6. Reference 91
Appendix 94
-
dc.language.isoen-
dc.subject纖維素水解zh_TW
dc.subject葡萄糖異構化zh_TW
dc.subject路易斯酸zh_TW
dc.subject氯化鋁zh_TW
dc.subjectMg-Al水滑石zh_TW
dc.subject均相催化劑zh_TW
dc.subject異相催化劑zh_TW
dc.subject一鍋反應zh_TW
dc.subjectLewis acid catalysisen
dc.subjectone-pot reactionen
dc.subjectaluminum chlorideen
dc.subjectMg-Al hydrotalciteen
dc.subjectcellulose hydrolysisen
dc.subjectglucose isomerizationen
dc.subjectheterogeneous catalysten
dc.subjecthomogeneous catalysten
dc.title路易斯酸異構化生質物葡萄糖zh_TW
dc.titleLewis acid-catalyzed isomerization of glucose from biomassen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐秀福;潘伯申;鄭建中zh_TW
dc.contributor.oralexamcommitteeHsiu-Fu Hsu;Po-Shen Pan;Chien-Chung Chengen
dc.subject.keyword纖維素水解,葡萄糖異構化,路易斯酸,氯化鋁,Mg-Al水滑石,均相催化劑,異相催化劑,一鍋反應,zh_TW
dc.subject.keywordcellulose hydrolysis,glucose isomerization,Lewis acid catalysis,aluminum chloride,Mg-Al hydrotalcite,homogeneous catalyst,heterogeneous catalyst,one-pot reaction,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202501951-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2030-07-23-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved