請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99517完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍俊宏 | zh_TW |
| dc.contributor.advisor | Jakey Blue | en |
| dc.contributor.author | 蔡再賢 | zh_TW |
| dc.contributor.author | Kantanat Chaisukjaroenkul | en |
| dc.date.accessioned | 2025-09-10T16:32:02Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | Adepoju, A. A. (2017). MYT decomposition and its invariant attribute. Research Journal of Mathematical and Statistical Sciences, 5(2), 14-22.
Agog, N. S., Dikko, H. G., & Asiribo, O. E. (2014). Decomposing Hotelling’s T2 statistic using four variables. International Journal of Innovative Research in Science, Engineering and Technology, 3(4), 11449-11454. Akeem, A. A., Yahaya, A., & Asiribo, O. (2015). Hotelling’s T2 decomposition: Approach for five process characteristics in a multivariate statistical process control. Am. J. Theor. Appl. Stat, 4(6), 432-437. Bagnall, A., Lines, J., Bostrom, A., Large, J., & Keogh, E. (2017). The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data mining and knowledge discovery, 31, 606-660. Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and feature extraction. Information Sciences, 239, 142-153. Dheepadharshani, S., Anandh, S., Bhavinaya, K. B., & Lavanya, R. (2019, April). Multivariate time-series classification for automated fault detection in satellite power systems. In 2019 International Conference on Communication and Signal Processing (ICCSP) (pp. 0814-0817). IEEE. Divakar, C., Harsha, R., Radha, K., Rao, D. V., Madhavi, N., & Bharadwaj, T. (2024, January). Explainable AI for CNN-LSTM network in PCG-based valvular heart disease diagnosis. In 2024 14th international conference on cloud computing, data science & engineering (confluence) (pp. 92-97). IEEE. Esmael, B., Arnaout, A., Fruhwirth, R. K., & Thonhauser, G. (2012). Multivariate time series classification by combining trend-based and value-based approximations. In Computational Science and Its Applications–ICCSA 2012: 12th International Conference, Salvador de Bahia, Brazil, June 18-21, 2012, Proceedings, Part IV 12 (pp. 392-403). Springer Berlin Heidelberg. Erion, G., Janizek, J. D., Sturmfels, P., Lundberg, S. M., & Lee, S. I. (2021). Improving performance of deep learning models with axiomatic attribution priors and expected gradients. Nature machine intelligence, 3(7), 620-631. Escudero-Arnanz, Ó., Soguero-Ruiz, C., Álvarez-Rodríguez, J., & Marques, A. G. (2024). Explainable artificial intelligence techniques for irregular temporal classification of multidrug resistance acquisition in intensive care unit patients. arXiv preprint arXiv:2407.17165. Espadinha-Cruz, P., Godina, R., & Rodrigues, E. M. G. (2021). A Review of Data Mining Applications in Semiconductor Manufacturing. Processes, 9(2), 305. Fan, S. K. S., Hsu, C. Y., Tsai, D. M., He, F., & Cheng, C. C. (2020). Data-driven approach for fault detection and diagnostic in semiconductor manufacturing. IEEE Transactions on Automation Science and Engineering, 17(4), 1925-1936. Fauvel, K., Lin, T., Masson, V., Fromont, É., & Termier, A. (2021). Xcm: An explainable convolutional neural network for multivariate time series classification. Mathematics, 9(23), 3137. Fotso, V. S. S., Nguifo, E. M., & Vaslin, P. (2019). Grasp heuristic for time series compression with piecewise aggregate approximation. RAIRO-Operations Research, 53(1), 243-259. Górecki, T., & Łuczak, M. (2015). Multivariate time series classification with parametric derivative dynamic time warping. Expert Systems with Applications, 42(5), 2305-2312. Hirsa, A., Klinkert, F., Malhotra, S., & Holmes, R. (2023). Robust rolling pca: Managing time series and multiple dimensions. Available at SSRN 4400158. Hole, S. R., Bhavekar, G. S., Prajapati, A. K., Kolluru, V., Karpe, S. R., & Vrindavanam, J. (2025, February). Hybrid PCA-Based Machine Learning Models for Predictive Analytics in Urban Health Monitoring Systems. In 2025 IEEE 1st International Conference on Smart and Sustainable Developments in Electrical Engineering (SSDEE) (pp. 1-8). IEEE. Hsieh, T. Y., Wang, S., Sun, Y., & Honavar, V. (2021, March). Explainable multivariate time series classification: a deep neural network which learns to attend to important variables as well as time intervals. In Proceedings of the 14th ACM international conference on web search and data mining (pp. 607-615). Huang, X. F., Sun, Y., Wang, G. W., Wang, S. Z., Zheng, X., Wang, Q. Y., ... & Wang, M. Y. (2017). Measurement of the transfer function for a spoke cavity of C-ADS Injector I. Chinese Physics C, 41(4), 047001. Jiao, L., Gao, W., Bie, R., Umek, A., & Kos, A. (2024). Golf Guided Grad-CAM: attention visualization within golf swings via guided gradient-based class activation mapping. Multimedia Tools and Applications, 83(13), 38481-38503. Jutte, A., Ahmed, F., Linssen, J., & van Keulen, M. (2025). C-SHAP for time series: An approach to high-level temporal explanations. arXiv preprint arXiv:2504.11159. Kang, S. H., & Cho, J. W. (2022). Shooting sound analysis using convolutional neural networks and long short-term memory. The Journal of the Acoustical Society of Korea, 41(3), 312-318. Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019). Multivariate LSTM-FCNs for time series classification. Neural networks, 116, 237-245. Kate, R. J. (2016). Using dynamic time warping distances as features for improved time series classification. Data mining and knowledge discovery, 30, 283-312. Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra, S. (2001). Dimensionality reduction for fast similarity search in large time series databases. Knowledge and information Systems, 3, 263-286. Kim, E., Cho, S., Lee, B., & Cho, M. (2019). Fault detection and diagnosis using self-attentive convolutional neural networks for variable-length sensor data in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 32(3), 302-309. Langbein, S. H., Koenen, N., & Wright, M. N. (2025). Gradient-based Explanations for Deep Learning Survival Models. arXiv preprint arXiv:2502.04970. Lee, K. B., Cheon, S., & Kim, C. O. (2017). A convolutional neural network for fault classification and diagnosis in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 30(2), 135-142. Li, B., Zhao, H., Zhou, Y., Liu, Y., & Du, Y. (2025, March). An LSTM Wind Power Prediction Model Based on PCA Dimensionality Reduction and Wavelet Decomposition. In 2025 5th International Conference on Advances in Electrical, Electronics and Computing Technology (EECT) (pp. 1-7). IEEE. Lin, J., Keogh, E., Wei, L., & Lonardi, S. (2007). Experiencing SAX: a novel symbolic representation of time series. Data Mining and knowledge discovery, 15, 107-144. Mason, R. L., Tracy, N. D., & Young, J. C. (1995). Decomposition of T 2 for multivariate control chart interpretation. Journal of quality technology, 27(2), 99-108. Novakovic, J., & Rankov, S. (2011). Classification performance using principal component analysis and different value of the ratio R. International Journal of Computers Communications & Control, 6(2), 317-327. Olszewski, R.T. (2001). Wafer Database. Carnegie Mellon University. https://www.cs.cmu.edu/~bobsk Qazi, E. U. H., Almorjan, A., & Zia, T. (2022). A one-dimensional convolutional neural network (1D-CNN) based deep learning system for network intrusion detection. Applied Sciences, 12(16), 7986. Rahman, M. M., Farahani, M. A., & Wuest, T. (2023). Multivariate time-series classification of critical events from industrial drying hopper operations: A deep learning approach. Journal of manufacturing and materials processing, 7(5), 164. Rai, S. N., Trainor, P. J., Khosravi, F., Kloecker, G., & Panchapakesan, B. (2016). Classification of biosensor time series using dynamic time warping: applications in screening cancer cells with characteristic biomarkers. Open access medical statistics, 21-29. Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., & Díaz-Rodríguez, N. (2021). Explainable artificial intelligence (XAI) on timeseries data: A survey. arXiv preprint arXiv:2104.00950. Rudenko, О., Bezsonov, O., Szajna, A., & Piskunov, S. (2023). CNN based predictive maintenance of generalized rotational equipment. Development, 1(5), 20-21. Schäfer, P., & Leser, U. (2017). Multivariate time series classification with WEASEL+ MUSE. arXiv preprint arXiv:1711.11343. Seto, S., Zhang, W., & Zhou, Y. (2015, December). Multivariate time series classification using dynamic time warping template selection for human activity recognition. In 2015 IEEE symposium series on computational intelligence (pp. 1399-1406). IEEE. Sharma, Y., Coronato, N., & Brown, D. E. (2022, July). Encoding cardiopulmonary exercise testing time series as images for classification using convolutional neural network. In 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1611-1614). IEEE. Sun, P., Wang, J., & Dong, Z. (2023). CNN–LSTM Neural Network for Identification of Pre-Cooked Pasta Products in Different Physical States Using Infrared Spectroscopy. Sensors, 23(10), 4815. Sundararajan, M., Taly, A., & Yan, Q. (2017, July). Axiomatic attribution for deep networks. In International conference on machine learning (pp. 3319-3328). PMLR. Thieullen, A., Ouladsine, M., & Pinaton, J. (2013, May). Application of PCA for efficient multivariate FDC of semiconductor manufacturing equipment. In ASMC 2013 SEMI Advanced Semiconductor Manufacturing Conference (pp. 332-337). IEEE. Tong, L. I., Wang, C. H., & Huang, C. L. (2005). Monitoring defects in IC fabrication using a Hotelling T/sup 2/control chart. IEEE transactions on semiconductor manufacturing, 18(1), 140-147. Trardi, Y., Ananou, B., Tchatchoua, P., & Ouladsine, M. (2022, July). Ensemble Machine Learning Algorithms for Anomaly Detection in Multivariate Time-Series. In 2022 International Conference on Control, Automation and Diagnosis (ICCAD) (pp. 1-6). IEEE. Turbé, H., Bjelogrlic, M., Lovis, C., & Mengaldo, G. (2023). Evaluation of post-hoc interpretability methods in time-series classification. Nature Machine Intelligence, 5(3), 250-260. Wang, H., Liang, Q., Hancock, J. T., & Khoshgoftaar, T. M. (2024). Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. Journal of Big Data, 11(1), 44. Wang, J., & Tang, S. (2020). Time series classification based on arima and adaboost. In MATEC Web of Conferences (Vol. 309, p. 03024). EDP Sciences. Wang, L., Wang, M., & Yue, T. (2019). A fuzzy deterministic policy gradient algorithm for pursuit-evasion differential games. Neurocomputing, 362, 106-117. Wang, W. K., Chen, I., Hershkovich, L., Yang, J., Shetty, A., Singh, G., ... & Dunn, J. (2022). A systematic review of time series classification techniques used in biomedical applications. Sensors, 22(20), 8016. Yang, C. L., Chen, Z. X., & Yang, C. Y. (2019). Sensor classification using convolutional neural network by encoding multivariate time series as two-dimensional colored images. Sensors, 20(1), 168. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99517 | - |
| dc.description.abstract | 在大數據時代,先進技術與數據分析的整合正在重塑各行各業對複雜系統的監控與分析方式。多變量時間序列(Multivariate Time Series, MTS)數據由多個相互關聯的感測器訊號隨時間所記錄而成,已成為檢測模式、識別異常及進行預測決策的關鍵資訊來源。然而,MTS數據因其高維度、特徵間的相依性,以及需保留時間結構而帶來極大分析挑戰。傳統的特徵工程方法往往透過簡化處理而忽略時間相關模式,導致可解釋性降低,並限制了將模型預測結果追溯至具體時間點的能力。因此,若欲有效且具可解釋性地建模MTS數據,方法需能同時捕捉時間結構與特徵間的關係。
本研究提出一套專為製造診斷設計的多變量時間序列分類框架,協助理解MTS感測器數據的複雜特性。我們提出CPCA演算法,融合了基於視窗的主成分分析(PCA),並透過特徵向量校正來確保特徵的一致性與穩定性。結合1D-CNN與LSTM等深度學習模型進行故障檢測與分類(Fault Detection and Classification, FDC),分類準確率超過99.50%。其中,分段平均近似(Piecewise Aggregate Approximation, PAA)作為前處理方法,較動態時間扭曲(Dynamic Time Warping, DTW)能更有效提升模型效能。為提升模型可解釋性,我們採用GradSHAP方法分析,發現第七視窗是區分正常與異常製程狀態的最具預測力區段。研究結果顯示,CPCA在提升模型準確率與特徵穩定性方面表現卓越,並能提供關鍵診斷特徵的重要洞察。同時,研究亦透過Hotelling’s T²分解技術,在最具影響力之視窗中執行根因分析,以進一步了解異常來源。 本研究展示了所提出之CPCA框架在實現高分類性能的同時,也確保時間與特徵層面的可解釋性。透過結合深度學習、校正後的降維技術與可解釋性分析方法,本框架提供一套穩健且具高度通用性的MTS分類解決方案,適用於各種仰賴時間資訊之多變量數據分析應用場景。 | zh_TW |
| dc.description.abstract | In the era of big data, the integration of advanced technologies and data analytics is reshaping how complex systems are monitored and analyzed across various domains. Multivariate time series (MTS) data comprising multiple correlated sensor signals recorded over time has emerged as a critical source of information for detecting patterns, identifying anomalies, and enabling predictive decision-making. However, MTS data presents significant analytical challenges due to its high dimensionality, interdependencies and the need to preserve temporal relations. Traditional feature engineering approaches often simplify the data by removing time-based patterns which limits interpretability and constrains the ability to trace back predictions to specific time point. Therefore, effective and interpretable modeling of MTS data requires methods that capture both temporal structure and spatial relationships.
In this study, we propose an multivariate time series (MTS) classification framework specifically for manufacturing diagnostics that help to comprehend the complexities of multivariate time series sensor data. We present Calibrated PCA algorithm, which integrates window-based PCA to extract and ensure stability and consistency based on eigenvector calibration. Using deep learning models, such as 1D-CNN, and LSTM also for the fault detection and classification (FDC), the classification accuracy is over 99.50%. One of preprocessing techniques PAA, improves model performance more than DTW. GradSHAP is also used to provide interpretability of the model, finding that Window 7 is the most predictive segment to differentiate between normal and abnormal states of the manufacturing process. The results demonstrate the effectiveness of CPCA in improving both model performance and feature stability, while also providing critical insights into key diagnostic features. Hotelling’s T² decomposition is applied to perform root cause analysis for significant features within the most influential windows. This research demonstrates the effectiveness of the proposed CPCA framework in achieving high classification performance while ensuring temporal and feature-level interpretability. By integrating deep learning, calibrated principal component analysis and explainability methods, the framework offers a robust and generalizable approach to MTS classification, applicable across various domains where temporal relation is important for multivariate data. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:32:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:32:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
中文摘要 iii Abstract iv Table of Contents vi List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 4 1.3 Research Framework 6 Chapter 2 Literature Review 8 2.1 Multivariate Time Series Classification 8 2.2 Multivariate Time Series Transformation 11 2.3 Principal Component Analysis and Application 13 2.4 Deep Learning Approaches for Multivariate Time Series 15 2.5 Explainable Artificial Intelligence 18 2.6 Synthesis of Literature and Research Positioning 22 Chapter 3 Methodology Breakdown 24 3.1 Data Pre-Processing 28 3.2 Feature Extraction and Calibration 31 3.3 Model Configuration and Evaluation 34 3.4 Explainable Framework 40 Chapter 4 Case study and Discussion 46 4.1 Dataset Description 46 4.2 Data Pre-Processing 50 4.3 Feature Extraction and Calibration 52 4.4 Model Performance Evaluation 58 4.5 Result Analysis 61 4.6 Explainable Framework 65 Chapter 5 Conclusion and Future Work 81 5.1 Research Contribution 81 5.2 Future Work 83 Reference 85 | - |
| dc.language.iso | en | - |
| dc.subject | Hotelling’s T² 分解 | zh_TW |
| dc.subject | 製造診斷 | zh_TW |
| dc.subject | 多變量時間序列(Multivariate Time Series | zh_TW |
| dc.subject | MTS) | zh_TW |
| dc.subject | 主成分分析(Principal Component Analysis | zh_TW |
| dc.subject | PCA) | zh_TW |
| dc.subject | 可解釋人工智慧(eXplainable AI | zh_TW |
| dc.subject | XAI) | zh_TW |
| dc.subject | Multivariate Time Series (MTS) | en |
| dc.subject | Manufacturing Diagnostics | en |
| dc.subject | Hotelling’s T² decomposition | en |
| dc.subject | eXplainable AI (XAI) | en |
| dc.subject | Principal Component Analysis (PCA) | en |
| dc.title | 發展具特徵向量校準與可解釋性之視窗式主成份分析框架以有效分類多變量時間序列 | zh_TW |
| dc.title | Window-based PCA with Eigenvector Calibration and Explainability for Multivariate Time Series Classification | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許嘉裕;楊惟婷 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Yu Hsu;Wei-Ting Yang | en |
| dc.subject.keyword | 製造診斷,多變量時間序列(Multivariate Time Series, MTS),主成分分析(Principal Component Analysis, PCA),可解釋人工智慧(eXplainable AI, XAI),Hotelling’s T² 分解, | zh_TW |
| dc.subject.keyword | Manufacturing Diagnostics,Multivariate Time Series (MTS),Principal Component Analysis (PCA),eXplainable AI (XAI),Hotelling’s T² decomposition, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202502225 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-26 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-21 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-21 | 6.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
