Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍俊宏zh_TW
dc.contributor.advisorJakey Blueen
dc.contributor.author楊孟翰zh_TW
dc.contributor.authorMeng-Han Yangen
dc.date.accessioned2025-09-10T16:31:41Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-26-
dc.identifier.citationBreiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/BF00058655
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining,
Chevallay, M., Liot, E., Fournier, I., Abbassi, Z., Peloso, A., Hagen, M. E., Mönig, S. P., Morel, P., Toso, C., Buchs, N., Miskovic, D., Ris, F., & Jung, M. K. (2022). Implementation and validation of a competency assessment tool for laparoscopic cholecystectomy. Surg Endosc, 36(11), 8261-8269. https://doi.org/10.1007/s00464-022-09264-0
Czempiel, T., Paschali, M., Keicher, M., Simson, W., Feussner, H., Kim, S. T., & Navab, N. (2020, 2020//). TeCNO: Surgical Phase Recognition with Multi-stage Temporal Convolutional Networks. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, Cham.
Faloutsos, C., Ranganathan, M., & Manolopoulos, Y. (1994). Fast subsequence matching in time-series databases Proceedings of the 1994 ACM SIGMOD international conference on Management of data, Minneapolis, Minnesota, USA. https://doi.org/10.1145/191839.191925
Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. icml,
Harris, A., Butterworth, J. B., Boshier, P. R., Mavroveli, S., Vadhwana, B., Peters, C. J., Eom, B. W., Yeh, C. C., Mikhail, S., Sasako, M., Kim, Y. W., & Hanna, G. B. (2024). Development of a reliable surgical quality assurance tool for gastrectomy in oncological trials. Gastric Cancer, 27(4), 876-883. https://doi.org/10.1007/s10120-024-01503-8
Hashimoto, D. A., Rosman, G., Rus, D., & Meireles, O. R. (2018). Artificial Intelligence in Surgery: Promises and Perils. Annals of Surgery, 268(1), 70-76. https://doi.org/10.1097/sla.0000000000002693
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210. https://doi.org/https://doi.org/10.1016/j.ins.2022.11.139
Jin, Y., Dou, Q., Chen, H., Yu, L., Qin, J., Fu, C. W., & Heng, P. A. (2018). SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network. IEEE Transactions on Medical Imaging, 37(5), 1114-1126. https://doi.org/10.1109/TMI.2017.2787657
Loh, W.-Y. (2011). Classification and regression trees. WIREs Data Mining and Knowledge Discovery, 1(1), 14-23. https://doi.org/https://doi.org/10.1002/widm.8
Maegawa, F. B., Stetler, J., Patel, D., Patel, S., Serrot, F. J., Lin, E., & Patel, A. D. (2025). Robotic compared with laparoscopic cholecystectomy: A National Surgical Quality Improvement Program comparative analysis. Surgery, 178. https://doi.org/10.1016/j.surg.2024.08.006
Polasek, W. (2013). [Time Series Analysis and Its Applications: With R Examples, Third Edition, Robert H. Shumway, David S. Stoffer]. International Statistical Review / Revue Internationale de Statistique, 81(2), 323-325. http://www.jstor.org/stable/43298885
Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227. https://doi.org/10.1007/BF00116037
Seber, G. A., & Lee, A. J. (2003). Linear regression analysis. John Wiley & Sons.
Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199-222. https://doi.org/10.1023/B:STCO.0000035301.49549.88
Strasberg, S. M., Hertl, M., & Soper, N. J. (1995). An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg, 180(1), 101-125.
Vassiliou, M. C., Feldman, L. S., Andrew, C. G., Bergman, S., Leffondré, K., Stanbridge, D., & Fried, G. M. (2005). A global assessment tool for evaluation of intraoperative laparoscopic skills. The American Journal of Surgery, 190(1), 107-113. https://doi.org/https://doi.org/10.1016/j.amjsurg.2005.04.004
Yang, S. Y., Kim, M. J., Kye, B.-H., Han, Y. D., Cho, M. S., Park, J. W., Jeong, S.-Y., Song, S. H., Park, J. S., Park, S. Y., Kim, J., & Min, B. S. (2024). Surgical quality assessment for the prospective study of oncologic outcomes after laparoscopic modified complete mesocolic excision for nonmetastatic right colon cancer (PIONEER study). International Journal of Surgery, 110(3), 1484-1492. https://doi.org/10.1097/js9.0000000000000956
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99515-
dc.description.abstract隨著腹腔鏡微創手術技術的廣泛應用,膽囊摘除手術(Laparoscopic Cholecystectomy, LC)已成為臨床外科醫師必須熟練的基本手術之一。然而,現行手術品質評估方式多仰賴資深醫師的主觀回顧與判斷,不僅耗時費力,更易受評估者經驗、觀察角度與主觀偏見所影響,限制了其於大規模臨床訓練與術後監控中的可行性與一致性。因此,如何建立一套具臨床意義、標準化且可自動化執行的品質評估機制,成為醫學影像分析與智慧手術發展中亟待解決的挑戰。
本研究針對上述問題,提出一套應用於腹腔鏡手術影片之動作片段自動擷取與分析框架,整合動作序列分析、平移相似度衡量、非監督式分群與機器學習等技術,以期發展具結構化與量化能力之手術品質評估系統。研究以公開資料集 Cholec80 為實證基礎,設計三大核心模組:首先,建立動作片段抽樣與階段化切割機制,將完整手術影片轉換為具有臨床語意的多段動作序列;其次,設計可容忍時間平移的相似度計算方法,搭配階層式分群法,自高品質手術中萃取具代表性的標竿動作片段;最後,透過與代表片段之距離計算,建立品質指標並導入迴歸模型(如SVR與XGBoost),進行測試影片之品質分數預測。
實驗結果顯示,所提方法在多種距離指標與品質評分間均具顯著相關性,其中加權Lag Distance對LCATCalot Sum評分具備穩定預測能力,模型可有效分辨不同品質層次之手術影片,展現出良好的實務應用潛力。本研究之貢獻不僅在於提出一套具延展性與通用性的品質評估框架,更奠定自動化手術訓練評量與智慧手術品質控制之重要基礎。未來可進一步擴充至其他手術類型或結合即時預測技術,推進手術AI評估系統的臨床落地。
zh_TW
dc.description.abstractWith the widespread adoption of minimally invasive laparoscopic techniques, laparoscopic cholecystectomy (LC) has become a fundamental surgical procedure that all general surgeons must master. However, current approaches to surgical quality assessment largely rely on retrospective evaluations by senior surgeons, which are time-consuming, labor-intensive, and susceptible to observer experience, viewing perspective, and subjective bias. These limitations hinder the scalability and consistency of quality monitoring and surgical training in large-scale clinical settings. Addressing this critical challenge, there is an urgent need to establish a clinically meaningful, standardized, and automated assessment framework for surgical performance evaluation.
This study proposes a novel framework for automated extraction and analysis of action segments in laparoscopic surgical videos. The framework integrates action sequence analysis, lag-tolerant similarity metrics, unsupervised clustering, and machine learning techniques to develop a structured and quantifiable approach to surgical quality assessment. Using the publicly available Cholec80 dataset, the framework is structured into three main modules: (1) a segment sampling and temporal slicing mechanism to convert entire surgical videos into clinically meaningful action sequences; (2) a lag-distance-based similarity metric to tolerate temporal misalignment, combined with hierarchical clustering to extract representative benchmark segments from high-quality surgeries; and (3) a quality prediction model that calculates distances between test video segments and benchmark segments, and subsequently predicts surgical quality scores via regression models such as SVR and XGBoost.
Experimental results demonstrate significant correlations between the proposed distance metrics and clinically annotated quality scores. In particular, the weighted lag distance shows robust predictive performance for LCATCalot Sum scores, enabling effective differentiation of surgical quality levels. The proposed framework not only contributes to a scalable and generalizable system for automated quality assessment but also establishes a foundational methodology for intelligent surgical training evaluation and quality control. Future extensions may include applications to other surgical procedures or real-time inference, further advancing the clinical deployment of AI-based surgical assessment systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:31:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:31:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
中文摘要 II
Abstract III
目次 V
圖次 VII
表次 IX
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機及目的 3
1.3 論文架構 5
第2章 文獻探討 6
2.1 手術品質評估研究現況 6
2.2 時間序列分析 11
2.3 分群演算法 14
2.4 機器學習迴歸模型 17
第3章 手術動作序列分析框架 22
3.1 資料前處理 26
3.2 動作片段萃取 29
3.3 未標記影片測試 38
第4章 實驗設計與結果分析 40
4.1 資料集與手術品質標準說明 40
4.2 資料前處理與參數設定 42
4.3 分群結果與代表片段視覺化分析 50
4.4 三種品質評估指標與LCATCALOT SUM相關性評估結果 57
4.5 機器學習模型預測LCATCALOT SUM效果評估 68
第5章 結論與建議 76
5.1 研究貢獻 76
5.2 未來展望 78
參考文獻 80
附錄 82
-
dc.language.isozh_TW-
dc.subject手術品質評估zh_TW
dc.subject動作序列分析zh_TW
dc.subject時間平移相似度zh_TW
dc.subject代表動作片段萃取zh_TW
dc.subjectaction segment analysisen
dc.subjectlag distanceen
dc.subjectsurgical quality assessmenten
dc.subjectrepresentative segment extractionen
dc.title應用於手術影片評估之動作片段自動擷取與分析框架zh_TW
dc.titleA Framework for Automated Temporal Action Segment Extraction and Analysis in Surgical Video Assessmenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何明志;顏宏軒zh_TW
dc.contributor.oralexamcommitteeMing-Chih Ho;HUNG-HSUAN YENen
dc.subject.keyword手術品質評估,動作序列分析,時間平移相似度,代表動作片段萃取,zh_TW
dc.subject.keywordsurgical quality assessment,action segment analysis,lag distance,representative segment extraction,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202501736-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept統計碩士學位學程-
dc.date.embargo-lift2030-07-10-
顯示於系所單位:統計碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved