Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99503
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author劉德華zh_TW
dc.contributor.authorTe-Hua Liuen
dc.date.accessioned2025-09-10T16:29:28Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation[1] S. Aboujja, D. Chu, and D. Bean. 1550nm triple junction laser diode for long range LiDAR. In M. S. Zediker and E. P. Zucker, editors, High-Power Diode Laser Technology XX, volume 11983, page 119830P. International Society for Optics and Photonics, SPIE, 2022.
[2] S. Aboujja, D. Chu, and D. Bean. Multi-junction long-wavelength laser diode in long range lidar for high speed autonomous vehicles. In Laser Radar Technology and Applications XXVII, volume 12110 of Proceedings of SPIE, pages 23–34. SPIE, June 2022.
[3] A. R. Adams. Strained-layer quantum-well lasers. IEEE Journal of Selected Topics in Quantum Electronics, 17(5):1364–1373, 2011.
[4] Aeva Inc. Aeries ii: The world's first 4d lidar with camera-level resolution. https://www.aeva.com/aeries-ii/, 2025. Accessed: 2025-04-23.
[5] Aeva Inc. Aeva atlas ultra: Slimmest long-range high-resolution automotive-grade 4d lidar. https://www.aeva.com/atlas-ultra/, 2025. Accessed: 2025-04-23.
[6] G. Agrawal. Intensity dependence of the linewidth enhancement factor and its implications for semiconductor lasers. IEEE Photonics Technology Letters, 1(8):212–214, 1989.
[7] M. Asada, A. Kameyama, and Y. Suematsu. Gain and intervalence band absorption in quantum-well lasers. IEEE Journal of Quantum Electronics, 20(7):745–753, 1984.
[8] M. Asada and Y. Suematsu. Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers. IEEE Journal of Quantum Electronics, 21(5):434–442, 1985.
[9] Z. Bai, Z. Zhao, X. Chen, Y. Qi, J. Ding, B. Yan, Y. Wang, Z. Lu, and R. P. Mildren. A lorentzian narrow-linewidth demodulation scheme based on a short fiber delayed self-heterodyne technique. Applied Physics Express, 15(10):106502, sep 2022.
[10] Z. Bai, Z. Zhao, M. Tian, D. Jin, Y. Pang, S. Li, X. Yan, Y. Wang, and Z. Lu. A comprehensive review on the development and applications of narrow-linewidth lasers. Microwave and Optical Technology Letters, 64(12):2244–2255, 2022.
[11] C. S. Bamji, P. O’Connor, T. Elkhatib, S. Mehta, B. Thompson, L. A. Prather, D. Snow, O. C. Akkaya, A. Daniel, A. D. Payne, T. Perry, M. Fenton, and V.-H. Chan. A 0.13 μm cmos system-on-chip for a 512 × 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 mhz and 2 gs/s adc. IEEEJournal of Solid-State Circuits, 50(1):303–319, 2015.
[12] J. Barry and J. Kahn. Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying. Journal of Lightwave Technology, 10(12):1939–1951, 1992.
[13] S. Bennetts, G. D. McDonald, K. S. Hardman, J. E. Debs, C. C. N. Kuhn, J. D. Close, and N. P. Robins. External cavity diode lasers with 5khz linewidth and 200nm tuning range at 1.55μm and methods for linewidth measurement. Opt. Express, 22(9):10642–10654, May 2014.
[14] BlueHalo. Bluehalo awarded $11m air force research laboratory contract for opticallaser communications flight terminals and ground station. Press release by BlueHalo, June 2022. Accessed: 2025-04-25.
[15] E. R. Brown, K. A. McIntosh, F. W. Smith, M. J. Manfra, and C. L. Dennis. Measurements of optical‐heterodyne conversion in low‐temperature‐grown gaas. Applied Physics Letters, 62(11):1206–1208, Mar. 1993.
[16] E. R. Brown, F. W. Smith, and K. A. McIntosh. Coherent millimeter‐wave generation by heterodyne conversion in low‐temperature‐grown gaas photoconductors. Journal of Applied Physics, 73(3):1480–1484, Feb. 1993.
[17] J. Buus. Single frequency semiconductor lasers. SPIE Press, 12 1991.
[18] G. Carpintero, K. Balakier, Z. Yang, R. C. Guzmán, A. Corradi, A. Jimenez, G. Kervella, M. J. Fice, M. Lamponi, M. Chitoui, F. van Dijk, C. C. Renaud, A. Wonfor, E. A. J. M. Bente, R. V. Penty, I. H. White, and A. J. Seeds. Microwave photonic integrated circuits for millimeter-wave wireless communications. Journalof Lightwave Technology, 32(20):3495–3501, 2014.
[19] H. C. Casey, M. B. Panish, and T. A. Roth. Heterostructure lasers. Journal of The Electrochemical Society, 126(5):215Ca, may 1979.
[20] V. Cazaubiel, G. Planche, V. Chorvalli, L. L. Hors, B. Roy, E. Giraud, L. Vaillon, F. Carre, and E. Decourbey. LOLA: a 40.000 km optical link between an aircraft and a geostationary satellite. In E. Armandillo, J. Costeraste, and N. Karafolas, editors, International Conference on Space Optics —ICSO 2006, volume 10567, page 1056726. International Society for Optics and Photonics, SPIE, 2017.
[21] C. Chaccour, M. N. Soorki, W. Saad, M. Bennis, P. Popovski, and M. Debbah. Seven defining features of terahertz (thz) wireless systems: A fellowship of communication and sensing. IEEE Communications Surveys & Tutorials, 24(2):967–993, 2022.
[22] M. Chen, Z. Meng, J. Wang, and W. Chen. Ultra-narrow linewidth measurement based on voigt profile fitting. Opt. Express, 23(5):6803–6808, Mar 2015.
[23] S. W. Corzine, R. H. Yan, and L. A. Coldren. Theoretical gain in strained in- gaas/algaas quantum wells including valence‐band mixing effects. Applied Physics Letters, 57(26):2835–2837, 12 1990.
[24] Crosslight Software Inc. PICS3D. https://crosslight.com/products/ pics3d/. Accessed: 2025-03-30.
[25] Q. Deng, J. Xu, L. Guo, S. Liang, L. Hou, and H. Zhu. A dual-grating ingaasp/ inp dfb laser integrated with an soa for thz generation. IEEE Photonics Technology Letters, 28(21):2307–2310, 2016.
[26] G. D. Domenico, S. Schilt, and P. Thomann. Simple approach to the relation be- tween laser frequency noise and laser line shape. Appl. Opt., 49(25):4801–4807, Sep 2010.
[27] K. Dridi, A. Benhsaien, J. Zhang, and T. J. Hall. Narrow linewidth 1550 nm corrugated ridge waveguide dfb lasers. IEEE Photonics Technology Letters, 26(12):1192–1195, 2014.
[28] N. K. Dutta and R. J. Nelson. The case for auger recombination in in1−xgaxasyp1−y. Journal of Applied Physics, 53(1):74–92, 01 1982.
[29] Efficient Power Conversion Corporation (EPC). ePC9126 – 110 v half-bridge evaluation board. https://epc-co.com/epc/products/evaluation-boards/ epc9126, 2025. Accessed: 2025-06-29.
[30] A. M. Elbir, W. Shi, A. K. Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas. Near-field terahertz communications: Model-based and model-free channel esti- mation. IEEE Access, 11:36409–36420, 2023.
[31] D. S. Elliott, R. Roy, and S. J. Smith. Extracavity laser band-shape and bandwidth modification. Phys. Rev. A, 26:12–18, Jul 1982.
[32] Z. Fang, H. Cai, G. Chen, and R. Qu. Single frequency semiconductor lasers. Springer, 2017.
[33] M. Faugeron, M. Tran, O. Parillaud, M. Chtioui, Y. Robert, E. Vinet, A. Enard, J. Jacquet, and F. Van Dijk. High-power tunable dilute mode dfb laser with low rin and narrow linewidth. IEEE Photonics Technology Letters, 25(1):7–10, 2013.
[34] G. Fletcher, T. Hicks, and B. Laurent. The silex optical interorbit link experiment. Electronics & communication engineering journal, 3(6):273–279, 1991.
[35] Y. Fujiwara, M. Mokuno, T. Jono, T. Yamawaki, K. Arai, M. Toyoshima, H. Kuni- mori, Z. Sodnik, A. Bird, and B. Demelenne. Optical inter-orbit communications engineering test satellite (oicets). Acta Astronautica, 61(1):163–175, 2007.
[36] F. Gfeller and U. Bapst. Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67(11):1474–1486, 1979.
[37] Z. Ghassemlooy and W. O. Popoola. Terrestrial free-space optical communica- tions. Mobile and Wireless Communications Network layer and circuit level design, 17:355–391, 2010.
[38] M. Gregory, F. Heine, H. Kämpfner, R. Meyer, R. Fields, and C. Lunde. TESAT laser communication terminal performance results on 5.6Gbit coherent inter satel- lite and satellite to ground links. In E. Armandillo, B. Cugny, and N. Karafolas, editors, International Conference on Space Optics —ICSO 2010, volume 10565, page 105651F. International Society for Optics and Photonics, SPIE, 2017.
[39] I. W.-E. W. Group. Ieee standard for ethernet - amendment 10: Media access control parameters, physical layers, and management parameters for 200 gb/s and 400 gb/s operation. IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016,802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Cor1-2017), pages 1–372, 2017.
[40] H. Guerboukha, R. Shrestha, J. Neronha, O. Ryan, M. Hornbuckle, Z. Fang, and D. M. Mittleman. Efficient leaky-wave antennas at terahertz frequencies generating highly directional beams. Applied Physics Letters, 117(26):261103, Dec. 2020.
[41] Q. Guo, Y. Su, and T. Hu. LiDAR Principles, Processing and Applications in Forest Ecology. Academic Press, Cambridge, MA, USA, 2023.
[42] Y. Guo, X. Li, M. Jin, L. Lu, J. Xie, J. Chen, and L. Zhou. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photonics, 7(6):066101, 06 2022.
[43] J. O. Gwaro, C. Brenner, L. S. Theurer, M. Maiwald, B. Sumpf, and M. R. Hof- mann. Continuous wave thz system based on an electrically tunable monolithic dual wavelength y-branch dbr diode laser. Journal of Infrared, Millimeter, and Terahertz Waves, 41:568–575, 2020.
[44] J. H. C. Casey and M. B. Panish. Book reviews. J. Opt. Soc. Am., 69(5):799–801, May 1979.
[45] Y. Han, Q. Tian, S. Yang, J. Luan, R. Zhang, P. He, D. Liu, and M. Zhang. Direct modulation bandwidth enhancement of uncooled dfb laser operating over a wide temperature range based on groove-in-trench waveguide structure. Opt. Express, 30(9):15757–15765, Apr 2022.
[46] K. Haring, J. Viheriälä, M.-R. Viljanen, J. Paajaste, R. Koskinen, S. Suoma- lainen, A. Laakso, K. Leinonen, T. Niemi, and M. Guina. Laterally-coupled dis- tributed feedback ingasb/gasb diode lasers fabricated by nanoimprint lithography. Electronics Letters, 46:1146–1147, 2010.
[47] Y. He, S. Hu, S. Liang, and Y. Li. High-precision narrow laser linewidth mea- surement based on coherent envelope demodulation. Optical Fiber Technology, 50:200–205, 2019.
[48] D. Heatley, D. Wisely, I. Neild, and P. Cochrane. Optical wireless: the story so far. IEEE Communications Magazine, 36(12):72–74, 1998.
[49] J. Hecht. Beam: The race to make the laser. Opt. Photon. News, 16(7):24–29, Jul 2005.
[50] C. Henry. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 18(2):259–264, 1982.
[51] T. Honjo, T. Inoue, and K. Inoue. Influence of light source linewidth in differential-phase-shift quantum key distribution systems. Optics Communications, 284(24):5856–5859, 2011.
[52] L. Hou, M. Haji, I. Eddie, H. Zhu, and J. H. Marsh. Laterally coupled dual-grating distributed feedback lasers for generating mode-beat terahertz signals. Opt. Lett., 40(2):182–185, Jan 2015.
[53] L. Hou, B. Yuan, Y. Fan, X. Sun, Y. Sun, S. Zhu, S. J. Sweeney, and J. H. Marsh. Monolithic dual wavelength dfb lasers based on sidewall gratings for thz/mmw signal generation. IEEE Journal of Selected Topics in Quantum Electronics, pages 1–14, 2024.
[54] J.-S. Huang. Temperature and current dependences of reliability degradation of buried heterostructure semiconductor lasers. IEEE Transactions on Device and Materials Reliability, 5(1):150–154, 2005.
[55] D. Inoue, K. Aoyama, T. Matsui, S. Iizaka, S. Toyoshima, S. Yanagida, K. Hoshino, N. Fujiwara, D. Shoji, and H. Kamisugi. High-power and narrow linewidth soa- integrated dfb laser for 400-mw class external laser sources. In Optical Fiber Communication Conference (OFC) 2025, page W1G.7. Optica Publishing Group, 2025.
[56] K. Inoue, E. Waks, and Y. Yamamoto. Differential-phase-shift quantum key distri- bution using coherent light. Phys. Rev. A, 68:022317, Aug 2003.
[57] E. Ip and J. M. Kahn. Carrier synchronization for 3-and 4-bit-per-symbol optical transmission. J. Lightwave Technol., 23(12):4110, Dec 2005.
[58] M. A. Itzler, M. Entwistle, S. Wilton, I. Kudryashov, J. Kotelnikov, X. Jiang, B. Pic- cione, M. Owens, and S. Rangwala. Geiger-mode lidar: From airborne platforms to driverless cars. In Imaging and Applied Optics 2017 (3D, AIO, COSI, IS, MATH, pcAOP), OSA Technical Digest, San Francisco, CA, USA, June 2017. Optical So- ciety of America.
[59] M. Jeganathan, K. E. Wilson, and J. R. Lesh. Preliminary analysis of fluctuations in the received uplink-beacon-power data obtained from the gold experiments. The Telecommunications and Data Acquisition Report 42–124, Jet Propulsion Labo- ratory, California Institute of Technology, La Cañada Flintridge, CA, USA, Feb. 1996.
[60] J. E. Johnson, K. Bacher, R. Schaevitz, and V. Raghunathan. Performance and reliability of advanced cw lasers for silicon photonics applications. In 2022 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–27, 2022.
[61] A. Jurado-Navas, J. M. Garrido-Balsells, J. F. Paris, M. Castillo-Vázquez, and A. Puerta-Notario. Impact of pointing errors on the performance of generalized atmospheric optical channels. Opt. Express, 20(11):12550–12562, May 2012.
[62] J. M. Kahn. Modulation and detection techniques for optical communication sys- tems. In Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, page CThC1. Optica Publishing Group, 2006.
[63] M. Kaine-Krolak and M. E. Novak. An introduction to infrared technology: Ap- plications in the home, classroom, workplace, and beyond. Technical report, Trace R&D Center, University of Wisconsin, Madison, WI, USA, 1995. Accessed: 2025- 05-03.
[64] C. Kaiser, P. Smith, and M. Shafi. An improved optical heterodyne dpsk receiver to combat laser phase noise. Journal of Lightwave Technology, 13(3):525–533, 1995.
[65] H. Kaushal and G. Kaddoum. Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys & Tutorials, 19(1):57–96, 2017.
[66] K. Kikuchi, M. Kakui, C. Zah, and T. Lee. Differential gain and linewidth enhance- ment factor of 1.5- mu m multiple-quantum-well active layers with and without biaxially compressive strain. IEEE Photonics Technology Letters, 3(4):314–317, 1991.
[67] N. Kim, S.-P. Han, H.-C. Ryu, H. Ko, J.-W. Park, D. Lee, M. Y. Jeon, and K. H. Park. Distributed feedback laser diode integrated with distributed bragg reflector for continuous-wave terahertz generation. Opt. Express, 20(16):17496–17502, Jul 2012.
[68] N. Kim, J. Shin, E. Sim, C. W. Lee, D.-S. Yee, M. Y. Jeon, Y. Jang, and K. H. Park. Monolithic dual-mode distributed feedback semiconductor laser for tunable continuous-wave terahertz generation. Opt. Express, 17(16):13851–13859, Aug 2009.
[69] J. King. PAM4-SMF electrical & optical test results. https://www.ieee802. org/3/bs/public/adhoc/smf/16_05_03/king_02_0516_smf.pdf, May 2016. Accessed: 2025-06-12.
[70] W. Kobayashi, T. Ito, T. Yamanaka, T. Fujisawa, Y. Shibata, T. Kurosaki, M. Ko- htoku, T. Tadokoro, and H. Sanjoh. 50-gb/s direct modulation of a 1.3-μm ingaalas- based dfb laser with a ridge waveguide structure. IEEE Journal of Selected Topics in Quantum Electronics, 19(4):1500908–1500908, 2013.
[71] H. Kogelnik. Coupled-Wave Devices, pages 281–299. Springer US, Boston, MA, 1979.
[72] H. Kogelnik, C. Shank, and J. Bjorkholm. Hybrid scattering in periodic waveg- uides. Applied Physics Letters, 22(4):135–137, 02 1973.
[73] H. Kogelnik and C. V. Shank. Stimulated emission in a periodic structure. Applied Physics Letters, 18(4):152–154, 02 1971.
[74] H. Kogelnik and C. V. Shank. Coupled-wave theory of distributed feedback lasers. Journal of applied physics, 43(5):2327–2335, 1972.
[75] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa. Gain- nas: A novel material for long-wavelength-range laser diodes with excellent high- temperature performance. Japanese Journal of Applied Physics, 35(2S):1273, feb 1996.
[76] P. T. Landsberg. The band-band auger effect in semiconductors. Solid-State Electronics, 30(11): 1107–1115, 1987.
[77] C. Lauer and M.-C. Amann. Calculation of the linewidth broadening in vertical- cavity surface-emitting lasers due to temperature fluctuations. Applied Physics Letters, 86(19):191108, 05 2005.
[78] B. Laurent, G. Planche, and C. Michel. Inter-satellite optical communications: from SILEX to next generation systems. In J. Costeraste and E. Armandillo, edi- tors, International Conference on Space Optics —ICSO 2004, volume 10568, page 105682K. International Society for Optics and Photonics, SPIE, 2018.
[79] Y. Li and J. Ibanez-Guzman. Lidar for autonomous driving: The principles, chal- lenges, and trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4):50–61, 2020.
[80] C. Lin and G. Y. Li. Adaptive beamforming with resource allocation for distance-aware multi-user indoor terahertz communications. IEEE Transactions on Communications, 63(8):2985–2995, 2015.
[81] C. Lin and G. Y. L. Li. Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12):124–131, 2016.
[82] T.-H. Liu, C. Lo, H.-T. Cheng, Y.-C. Yang, and C.-H. Wu. Analysis of the spectral dependent microwave characteristics of 1.3 μm dfb laser at different temperatures. In 2021 30th Wireless and Optical Communications Conference (WOCC), pages 54–57, 2021.
[83] Q. Lu, Y. Zhang, C. Liu, G. Li, J. Xia, Q. Lu, and W. Guo. High-performance pcw-dfb laser diodes using offset quantum well epitaxial structures. Opt. Express, 32(6):9562–9572, Mar 2024.
[84] J. Mak, A. van Rees, Y. Fan, E. J. Klein, D. Geskus, P. J. M. van der Slot, and K.-J. Boller. Linewidth narrowing via low-loss dielectric waveguide feedback circuits in hybrid integrated frequency comb lasers. Opt. Express, 27(9):13307–13318, Apr 2019.
[85] Y. Mao, Y. Cheng, Y. Li, and T. Chang. High power uncooled cw-dfb lasers with high reliability. In 2023 Optical Fiber Communications Conference and Exhibition (OFC), pages 1–3, 2023.
[86] Mapix Technologies Ltd. Velodyne 3d lidar sensors. https://www.mapix.com/ lidar-scanner-sensors/velodyne/, 2025. Accessed: 2025-04-23.
[87] L. Mercer. 1/f frequency noise effects on self-heterodyne linewidth measurements. Journal of Lightwave Technology, 9(4):485–493, 1991.
[88] S. Miller. The effect of side modes with linewidth and intensity fluctuations in semiconductor lasers. IEEE Journal of Quantum Electronics, 24(5):750–757, 1988.
[89] J. Minch, S. Park, T. Keating, and S. Chuang. Theory and experiment of in/sub 1-x/ ga/sub x/as/sub y/p/sub 1-y/ and in/sub 1-x-y/ga/sub x/al/sub y/as long-wavelength strained quantum-well lasers. IEEE Journal of Quantum Electronics, 35(5):771– 782, 1999.
[90] G. Morthier and P. Vankwikelberge. Handbook of distributed feedback laser diodes. Artech House, 2013.
[91] R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich. Imaging distance measurements using tof lidar. Journal of Optics, 29(3):188–193, 1998.
[92] K. Nakahara, K. Suga, K. Okamoto, S. Hayakawa, M. Arasawa, T. Nishida, R. Washino, T. Kitatani, M. Mitaki, H. Sakamoto, Y. Sakuma, and S. Tanaka. 112- gb/s pam-4 uncooled (25°c to 85°c) directly modulation of 1.3-μm ingaalas-mqw dfb bh lasers with record high bandwidth. In 45th European Conference on Optical Communication (ECOC 2019), pages 1–3, 2019.
[93] K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Kikawa, F. Hamano, S. Fu- jisaki, T. Taniguchi, E. Nomoto, M. Sawada, and T. Yuasa. 12.5-gb/s direct modulation up to 115°c in 1.3-μm ingaalas-mqw rwg dfb lasers with notch-free grating structure. Journal of Lightwave Technology, 22(1):159–165, 2004.
[94] K. Nakahara, Y. Wakayama, K. Hiruma, T. Kitatani, K. Shinoda, T. Fukamachi, Y. Sakuma, and S. Tanaka. 28-gb/ s directly modulated ingaalas acpm dfb lasers with high mask margin of 22% at 55°c. In Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, page OTh4H.3. Op- tica Publishing Group, 2013.
[95] K. Nakahara, Y. Wakayama, T. Kitatani, T. Fukamachi, Y. Sakuma, and S. Tanaka. 1.3 μm ingaalas asymmetric corrugation-pitch-modulated dfb lasers with high mask margin at 28 gbit/s. Electronics Letters, 50(13):947–948, 2014.
[96] K. Nakahara, Y. Wakayama, T. Kitatani, T. Taniguchi, T. Fukamachi, Y. Sakuma, and S. Tanaka. Direct modulation at 56 and 50 gb/s of 1.3-µm ingaalas ridge- shaped-bh dfb lasers. IEEE Photonics Technology Letters, 27(5):534–536, 2015.
[97] National Renewable Energy Laboratory. ASTM G-173-03 Reference Air Mass 1.5 Spectra. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html, 2003. Accessed: 2025-04-24.
[98] C. F. Neese, I. R. Medvedev, G. M. Plummer, A. J. Frank, C. D. Ball, and F. C. De Lucia. Compact submillimeter/terahertz gas sensor with efficient gas collection, preconcentration, and ppt sensitivity. IEEE Sensors Journal, 12(8):2565–2574, 2012.
[99] C.-Z. Ning, L. Dou, and P. Yang. Bandgap engineering in semiconductor al- loy nanomaterials with widely tunable compositions. Nature Reviews Materials, 2(12):1–14, 2017.
[100] S. Norimatsu and K. Iwashita. Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time. Journal of Lightwave Technology, 10(3):341–349, 1992.
[101] Optical Internetworking Forum (OIF). Electrical‐to‐Electrical SFP (ELSFP) Im- plementation Agreement. https://www.oiforum.com/wp-content/uploads/ OIF-ELSFP-01.0.pdf, 2021. Accessed: 2025-06-04.
[102] G. G. Ortiz, S. Lee, S. P. Monacos, M. W. Wright, and A. Biswas. Design and de- velopment of a robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5- Gbps demonstration. In G. S. Mecherle, editor, Free-Space Laser Communication Technologies XV, volume 4975, pages 103–114. International Society for Optics and Photonics, SPIE, 2003.
[103] K. Otsubo, M. Matsuda, K. Takada, S. Okumura, M. Ekawa, H. Tanaka, S. Ide, K. Mori, and T. Yamamoto. 1.3-μm algainas multiple-quantum-well semi- insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE Journal of Selected Topics in Quantum Electronics, 15(3):687– 693, 2009.
[104] E. P. O'Reilly and M. Silver. Temperature sensitivity and high temperature operation of long wavelength semiconductor lasers. Applied Physics Letters, 63(24):3318–3320, 12 1993.
[105] X. Pan, B. Tromborg, and H. Olesen. Linewidth rebroadening in dfb lasers due to weak side modes. IEEE Photonics Technology Letters, 3(2):112–114, 1991.
[106] X. Pang, O. Ozolins, R. Lin, L. Zhang, A. Udalcovs, L. Xue, R. Schatz, U. Wester- gren, S. Xiao, W. Hu, G. Jacobsen, S. Popov, and J. Chen. 200 gbps/lane im/dd technologies for short reach optical interconnects. J. Lightwave Technol., 38(2):492– 503, Jan 2020.
[107] S. Paul, P. Staudinger, J. Nürnberg, W. Pallmann, T. Klein, J. McHugh, L. Mut- ter, J. Müller, J. Boucart, and N. Lichtenstein. High-brightness semiconductor laser diodes for LIDAR application. In M. S. Zediker, E. P. Zucker, and J. Campbell, ed- itors, High-Power Diode Laser Technology XXIII, volume 13345, page 133450L. International Society for Optics and Photonics, SPIE, 2025.
[108] K. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE Journal of Quantum Electronics, 15(7):566–570, 1979.
[109] K. Pribil and J. Flemmig. Solid state laser communications in space (SOLACOS) high data rate satellite communication system verification program. In T. M. De- wandre, J. J. S. in-den Baeumen, and E. Sein, editors, Space Optics 1994: Space Instrumentation and Spacecraft Optics, volume 2210, pages 39–48. International Society for Optics and Photonics, SPIE, 1994.
[110] S. Priebe and T. Kurner. Stochastic modeling of thz indoor radio channels. IEEE Transactions on Wireless Communications, 12(9):4445–4455, 2013.
[111] R. Ramirez-Iniguez and R. Green. Indoor optical wireless communications. In IEE Colloquium on Optical Wireless Communications (Ref. No. 1999/128), pages 14/1–14/7, 1999.
[112] Revista Cloud Computing. Cloud Index White Paper. https://www. revistacloudcomputing.com/wp-content/uploads/2011/12/Cloud_ Index_White_Paper.pdf, 2011. Accessed: 2025-06-05.
[113] R. Roriz, J. Cabral, and T. Gomes. Automotive lidar technology: A survey. IEEE Transactions on Intelligent Transportation Systems, 23(7):6282–6297, 2022.
[114] S. Royo and M. Ballesta-García. An overview of lidar imaging systems for au- tonomous vehicles. Applied Sciences, 9(19):4093, 2019.
[115] H. Sarieddeen, M.-S. Alouini, and T. Y. Al-Naffouri. An overview of signal processing techniques for terahertz communications. Proceedings of the IEEE, 109(10):1628–1665, 2021.
[116] H. Sarieddeen, N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini. Next generation terahertz communications: A rendezvous of sensing, imaging, and localization. IEEE Communications Magazine, 58(5):69–75, 2020.
[117] N. Sasada, T. Nakajima, Y. Sekino, A. Nakanishi, M. Mukaikubo, M. Ebisu, M. Mi- taki, S. Hayakawa, and K. Naoe. Wide-temperature-range (25 – 80°c) 53-gbaud pam4 (106-gb/s) operation of 1.3-μm directly modulated dfb lasers for 10-km trans- mission. Journal of Lightwave Technology, 37(7):1686–1689, 2019.
[118] S. Savory and A. Hadjifotiou. Laser linewidth requirements for optical dqpsk sys- tems. IEEE Photonics Technology Letters, 16(3):930–932, 2004.
[119] A. L. Schawlow and C. H. Townes. Infrared and optical masers. Phys. Rev., 112:1940–1949, Dec 1958.
[120] K. Schulmeister, M. Jean, D. Lund, and B. E. Stuck. Comparison of corneal injury thresholds with laser safety limits. In Proceedings of the International Laser Safety Conference, pages 102–110, Orlando, FL, USA, Mar. 2019. AIP Publishing.
[121] S. Shao, J. Li, Y. Wu, S. Yang, H. Chen, and M. Chen. Modulation bandwidth enhanced self-injection locking laser with an external high-q microring reflector. Opt. Lett., 46(13):3251–3254, Jul 2021.
[122] V. Sharma and N. Kumar. Improved analysis of 2.5gbps-inter-satellite link (isl) in inter-satellite optical-wireless communication (isowc) system. Optics Communications, 286:99–102, 2013.
[123] D. Shi, S. Feng, Y. Qiao, and P. Wen. The research on temperature distribution of gan-based blue laser diode. Solid-State Electronics, 109:25–28, 2015.
[124] T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto. 50-gbps direct modulation using 1.3-μm algainas mqw distribute-reflector lasers. In European Conference and Exhibition on Optical Communication, page P2.11. Optica Publishing Group, 2012.
[125] T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto. AlGaInAs semi-insulating buried-heterostructure distributed reflector lasers for low-driving-current high-speed direct modulation. In A. A. Belyanin and P. M. Smowton, editors, Novel In-Plane Semiconductor Lasers XI, volume 8277, page 82770B. International Society for Optics and Photonics, SPIE, 2012.
[126] H. Song, R. Zhang, D. Lu, Z. Wang, H. Wang, and L. Zhao. High-power (500 mw) narrow-linewidth (21 khz) low-rin (-168 db/hz) distributed feedback laser. Opt. Express, 33(3):5287–5295, Feb 2025.
[127] H.-J. Song and T. Nagatsuma. Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1(1):256–263, 2011.
[128] G. M. Stéphan, T. T. Tam, S. Blin, P. Besnard, and M. Têtu. Laser line shape and spectral density of frequency noise. Phys. Rev. A, 71:043809, Apr 2005.
[129] A. M. Street, P. N. Stavrinou, D. C. O'Brien, and D. J. Edward. Indoor optical wireless systems—a review. Opt. Quant. Electron., 29(3):349–378, 1997.
[130] W. Streifer, R. Burnham, and D. Scifres. Effect of external reflectors on longitu- dinal modes of distributed feedback lasers. IEEE Journal of Quantum Electronics, 11(4):154–161, 1975.
[131] B. Sumpf, J. Kabitzke, J. Fricke, P. Ressel, A. Müller, M. Maiwald, and G. Tränkle. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785 nm. Opt. Lett., 41(16):3694–3697, Aug 2016.
[132] Synopsys, Inc. Pam4 400g ethernet technical bulletin. https://www.synopsys.com/zh-cn/designware-ip/technical-bulletin/pam4-400g-ethernet.html, 2025. Accessed: 2025-06-12.
[133] T. Tadokoro, W. Kobayashi, T. Fujisawa, T. Yamanaka, and F. Kano. 43 gb/s 1.3-μm dfb laser for 40 km transmission. Journal of Lightwave Technology, 30(15):2520–2524, 2012.
[134] T. Tadokoro, T. Yamanaka, F. Kano, H. Oohashi, Y. Kondo, and K. Kishi. Oper- ation of a 25-gbps direct modulation ridge waveguide mqw-dfb laser up to 85°c. In Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, page OThT3. Optica Publishing Group, 2009.
[135] M. Tan, J. Xu, S. Liu, J. Feng, H. Zhang, C. Yao, S. Chen, H. Guo, G. Han, Z. Wen, B. Chen, Y. He, X. Zheng, D. Ming, Y. Tu, Q. Fu, N. Qi, D. Li, L. Geng, S. Wen, F. Yang, H. He, F. Liu, H. Xue, Y. Wang, C. Qiu, G. Mi, Y. Li, T. Chang, M. Lai, L. Zhang, Q. Hao, and M. Qin. Co-packaged optics (cpo): status, challenges, and solutions. Frontiers of Optoelectronics, 16(1):1–24, 2023.
[136] Q. Tang, Y. Liu, L. Zhang, X. La, S. Liang, L. Zhao, and W. Wang. 25 gb/s directly modulated widely tunable 1.3 μm dual wavelength dfb laser for thz communication. IEEE Photonics Technology Letters, 32(7):410–413, 2020.
[137] M. Tani, O. Morikawa, S. Matsuura, and M. Hangyo. Generation of terahertz radi- ation by photomixing with dual- and multiple-mode lasers. Semiconductor Science and Technology, 20(7):S151, Jun. 2005.
[138] J. Telkkälä, J. Viheriälä, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu, and M. Guina. Narrow linewidth laterally-coupled 1.55 µm dfb lasers fabricated us- ing nanoimprint lithography. Electronics Letters, 47:400–401, 2011.
[139] P. Thijs, L. Tiemeijer, J. Binsma, and T. Van Dongen. Strained-layer ingaas(p) quantum well semiconductor lasers and semiconductor laser amplifiers. Philips Journal of Research, 49(3):187–224, 1995. Special Issue on Semiconductor Lasers.
[140] P. Thijs and T. Van Dongen. High quantum efficiency, high power, modula- tion doped gainas strained-layer quantum well laser diodes emitting at 1.5 µm. Electronics Letters, 25(25):1735–1737, 1989.
[141] M. Toyoshima. Trends in satellite communications and the role of optical free- spacecommunications. J. Opt. Netw., 4(6):300–311, Jun 2005.
[142] M. A. Tran, D. Huang, and J. E. Bowers. Tutorial on narrow linewidth tunable semiconductor lasers using si/ iii-v heterogeneous integration. APL Photonics, 4(11):111101, 11 2019.
[143] W. T. Tsang, F. S. Choa, M. C. Wu, Y. K. Chen, A. M. Sergent, and J. Sciortino, P. F. Very low threshold single quantum well graded‐index separate confinement heterostructure ingaas/ingaasp lasers grown by chemical beam epitaxy. Applied Physics Letters, 58(23):2610–2612, 06 1991.
[144] K. Uomi. Modulation-doped multi-quantum well (md-mqw) lasers. i. theory. Japanese Journal of Applied Physics, 29(1R):81, jan 1990.
[145] K. Uomi, E. Aoki, T. Tsuchiya, and M. Suzuki. High-speed properties of 1.55 um InGaAs-InGaAsP MQW L/4 shifted DFB lasers. In D. S. Renner, editor, Laser Diode Technology and Applications IV, volume 1634, pages 110 – 118. Interna- tional Society for Optics and Photonics, SPIE, 1992.
[146] K. Uomi, T. Mishima, and N. Chinone. Modulation-doped multi-quantum well (md-mqw) lasers. ii. experiment. Japanese Journal of Applied Physics, 29(1R):88, jan 1990.
[147] M. Usami and S. Akiba. Suppression of longitudinal spatial hole-burning effect in lambda /4-shifted dfb lasers by nonuniform current distribution. IEEE Journal of Quantum Electronics, 25(6):1245–1253, 1989.
[148] M. Vallo and P. Mukish. Global insights into the co-packaged technology platforms enabling transceivers with capacities of 1.6 Tbps and higher. In A. K. Srivastava, M. Glick, and Y. Akasaka, editors, Metro and Data Center Optical Networks and Short-Reach Links V, volume 12027, page 120270R. International Society for Op- tics and Photonics, SPIE, 2022.
[149] F. van Dijk, A. Accard, A. Enard, O. Drisse, D. Make, and F. Lelarge. Monolithic dual wavelength dfb lasers for narrow linewidth heterodyne beat-note generation. 2011 International Topical Meeting on Microwave Photonics jointly held with the 2011 Asia-Pacific Microwave Photonics Conference, pages 73–76, 2011.
[150] H. Virtanen, T. Uusitalo, and M. Dumitrescu. Simulation studies of dfb laser longi- tudinal structures for narrow linewidth emission. Optical and Quantum Electronics, 49(4):160, 2017.
[151] U. Wandinger. Introduction to lidar. In C. Weitkamp, editor, LiDAR: Range-Resolved Optical Remote Sensing of the Atmosphere, volume 102 of Springer Series in Optical Sciences, pages 1–18. Springer, New York, NY, 2005.
[152] R. Whyte, L. Streeter, M. J. Cree, and A. A. Dorrington. Application of lidar tech- niques to time-of-flight range imaging. Appl. Opt., 54(33):9654–9664, Nov 2015.
[153] M. Wu, Y. Lo, and S. Wang. Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser. Applied Physics Letters, 52(14):1119–1121, 04 1988.
[154] M. Xiang, Y. Zhang, G. Li, C. Liu, Q. Chen, Q. Lu, L. Huang, M. Lu, J. DoneGan, and W. Guo. Wide-waveguide high-power low-rin single-mode distributed feed- back laser diodes for optical communication. Opt. Express, 30(17):30187–30197, Aug 2022.
[155] E. Yablonovitch and E. Kane. Reduction of lasing threshold current density by the lowering of valence band effective mass. Journal of Lightwave Technology, 4(5):504–506, 1986.
[156] H. Yagi, K. Koyama, Y. Onishi, H. Yoshinaga, H. Ichikawa, N. Kaida, T. No- maguchi, K. Hiratsuka, and K. Uesaka. 26 gbit/s direct modulation of algainas/ inp lasers with ridge-waveguide structure buried by benzocyclobutene polymer. In 2009 IEEE International Conference on Indium Phosphide and Related Materials, pages 371–374, 2009.
[157] S. Yamaoka, N.-P. Diamantopoulos, H. Nishi, R. Nakao, T. Fujii, K. Takeda, T. Hi- raki, T. Tsurugaya, S. Kanazawa, H. Tanobe, et al. Directly modulated membrane lasers with 108 ghz bandwidth on a high-thermal-conductivity silicon carbide sub- strate. Nature Photonics, 15(1):28–35, 2021.
[158] M. Yamashita, C. Otani, K. Kawase, T. Matsumoto, K. Nikawa, S. Kim, H. Mu- rakami, and M. Tonouchi. Backside observation of large-scale integrated cir- cuits with multilayered interconnections using laser terahertz emission microscope. Applied Physics Letters, 94(19):191104, May 2009.
[159] M. Yamashita, C. Otani, S. Kim, H. Murakami, M. Tonouchi, T. Matsumoto, Y. Mi- doh, K. Miura, K. Nakamae, and K. Nikawa. Laser thz emission microscope as a novel tool for lsi failure analysis. Microelectronics Reliability, 49(9):1116–1126, 2009. 20th European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis.
[160] Yole Développement. Lidar faces headwinds in evolving markets. https://lidarmag.com/2020/09/05/ market-report-lidar-faces-headwinds-in-evolving-markets/, Sept. 2020. Accessed: 2025-04-23.
[161] Yole Développement. Co‐ Packaged Optics 2022 Product Brochure. https://medias.yolegroup.com/uploads/2022/02/ YINTR22297-Co-Packaged-Optics-2022-Product-Brochure.pdf, 2022. Accessed: 2025-06-04.
[162] J. Yong, J. Rorison, and I. White. 1.3-μm quantum-well ingaasp, algainas, and ingaasn laser material gain: a theoretical study. IEEE Journal of Quantum Electronics, 38(12):1553–1564, 2002.
[163] H. T. Yura and W. G. McKinley. Optical scintillation statistics for ir ground-to-space laser communication systems. Appl. Opt., 22(21):3353–3358, Nov 1983.
[164] C. Zhang, S. Liang, H. Zhu, and W. Wang. Widely tunable dual-mode distributed feedback laser fabricated by selective area growth technology integrated with ti heaters. Opt. Lett., 38(16):3050–3053, Aug 2013.
[165] Y. Zhang, T. M. Benson, and C. Christopoulos. Design of an ultrahigh-power multisection tunable laser with a semiconductor optical amplifier. In D. Lenstra, M. Pessa, and I. H. White, editors, Semiconductor Lasers and Laser Dynamics II, volume 6184, page 618404. International Society for Optics and Photonics, SPIE, 2006.
[166] Y. Zhang, B. Yuan, J. Shi, W. Qi, L. Li, L. Wang, J. Zheng, S. Guan, T. Fang, and X. Chen. A stable dual-wavelength dfb semiconductor laser with equivalent chirped sampled grating. IEEE Journal of Quantum Electronics, 58(1):1–7, 2022.
[167] Z. Zheng, Q. Luo, X. Wang, X. Ma, W. Zhang, W. Fang, X. Chen, S. Huang, Y. Zhou, and W. Gao. Comparison of different linewidth measuring methods for narrow linewidth laser. Sensors, 23(1), 2023.
[168] X. Zhu, X. La, J. Guo, Z. Li, L. Zhao, W. Wang, and S. Liang. A novel high speed directly modulated dual wavelength 1.3 μm dfb laser for thz communications. IEEE Journal of Selected Topics in Quantum Electronics, 29(5: Terahertz Photonics):1– 6, 2023.
[169] J. Zoz and U. Barabas. Linewidth enhancement in laser diodes caused by temper- ature fluctuations. IEE Proceedings - Optoelectronics, 141:191–194, 1994.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99503-
dc.description.abstract本論文旨在探討與實現多種先進分佈式回饋 (DFB) 雷射晶片架構,針對光通訊領域如量子加密通訊、低軌道衛星光通訊、矽光子、共封裝光學,以及光感測應用如LiDAR、太赫茲感測,提出高效能、高穩定性及緊湊尺寸的雷射解決方案。
第一章提出研究動機,介紹半導體雷射的基礎理論、DFB雷射的操作原理以及自建的半導體雷射模擬平台,用以奠定後續研究的理論基礎。
第二章成功開發出600 µm短腔1.55 µm窄線寬DFB雷射,透過strain-induced InGaAsP主動區與多階段SCH波導設計,有效壓制雷射相位噪音。實驗顯示此雷射閾值電流最低達8.7 mA,PCE高達28.5\%,輸出功率超過60 mW。在50–175 mA間可連續調諧331 GHz頻率,SMSR穩定於50 dB以上,透過長短延遲DSHI驗證本質線寬低於20 kHz,適用於量子加密通訊與低軌道衛星光通訊平台。
第三章延伸1.55 µm DFB雷射元件的應用場景,首先驗證DFB雷射奈秒脈衝操作於Eye-Safe LiDAR系統,成功達成峰值功率6.3 W、脈衝寬度20.4 ns、單脈衝能量128 nJ的高穩定輸出。DFB雷射具備優異波長穩定性,適合低成本ToF-LiDAR等戶外測距之應用。再者,針對LEO光通訊需求,雷射輸出功率達125.76 mW、最大3 dB頻寬為6.12 GHz,並能低噪音傳輸12 Gb/s NRZ訊號。此外,透過兩段Bragg光柵設計的單晶片DW-DFB雷射產生穩定0.277–0.283 THz拍頻,具備高光功率、PDM< 1 dB、SMSR超過36 dB,本質線寬分別達117.33 kHz與70.59 kHz,展現太赫茲無線通訊與感測潛力。

第四章針對AI數據中心應用設計1.31 µm短腔高功率DFB雷射,以支援CPO系統之ELSFP規格。實驗顯示於25°C時最大功率達125 mW、PCE高於36%、相對強度噪音低至-159 dB/Hz,操作溫度至105°C仍能維持20 mW以上之功率,展示其適合用於高速交換器光源模組。
第五章開發高速直接調製能力的1.31 µm DFB雷射,採AlGaInAs材料系統與優化磊晶結構,提升微分增益以及響應頻率。成功展示未冷卻條件下穩定傳輸50 Gb/s NRZ和70 Gb/s PAM-4,RIN低於-147.14 dB/Hz,並透過TDECQ數值驗證其符合IEEE 802.3bs對200G乙太網路之要求。
本論文透過半導體元件模擬、磊晶設計、元件製作與特性驗證,展示不同波長與功能之DFB雷射潛力,奠定未來緊湊尺寸、高效率、高頻寬、低雜訊、低功耗光電整合平台的技術基礎。
zh_TW
dc.description.abstractThis dissertation explores advanced distributed feedback (DFB) laser chip architectures, presenting efficient, highly stable, and compact solutions for optical communications, including quantum encryption, LEO satellite links, silicon photonic, and co-packaged optics, as well as sensing applications such as LiDAR and terahertz sensing.
Chapter 1 presents the research motivation and introduces the basic theories of semiconductor lasers, the operating principles of DFB lasers, and the self-constructed semiconductor laser simulation platform, which is used to lay the theoretical foundation for the subsequent research.
Chapter 2 introduces a 600-µm short-cavity 1.55-µm DFB laser with an exceptionally low intrinsic linewidth below 20 kHz, high efficiency (PCE of 28.5%), and output power exceeding 60 mW, ideal for quantum encryption and satellite communications.
Chapter 3 demonstrates the 1.55-µm laser’s versatility in LiDAR, achieving stable nanosecond pulses (peak power 6.3 W, pulse width 20.4 ns), and in terahertz applications with a monolithic dual-wavelength DFB laser generating stable THz beat frequencies (0.277–0.283 THz), high SMSR (> 36 dB), and linewidths as low as 70.59 kHz.
Chapter 4 presents a 1.31-µm short-cavity, high-power DFB laser for AI data-center applications, achieving >125 mW output power, high efficiency (>36% PCE), and maintaining performance at elevated temperatures (105°C).
Chapter 5 focuses on a directly modulated 1.31-µm DFB laser with optimized AlGaInAs epitaxy, enabling stable, uncooled data transmission up to 70 Gb/s PAM-4, compliant with IEEE 802.3bs standards for 200G Ethernet.
Through detailed device simulations, epitaxial design, fabrication, and characterization, this thesis establishes a solid technical foundation for future compact-size, high-efficiency, high-bandwidth, low-noise, and energy-efficient integrated photonic platforms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:29:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:29:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements iii
摘要v
Abstract vii
Contents ix
List of Figures xvii
List of Tables xxxiii
Denotation xxxv
Chapter 1 Intorduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives and Original Contributions . . . . . . . . . . . . 2
1.3 Thesis Organization and Chapter Overview . . . . . . . . . . . . . . 4
1.4 Fundamentals of Semiconductor Lasers . . . . . . . . . . . . . . . . 6
1.4.1 Semiconductor Laser Physics Overview . . . . . . . . . . . . . . . 6
1.4.2 Semiconductor Material Systems and Band Engineering . . . . . . . 12
1.4.3 Active Region in Laser Diode . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Strain-Engineering for Quantum Well . . . . . . . . . . . . . . . . 16
1.4.4.1 Strain on Laser Performance Enhancement . . . . . . . 18
1.4.4.2 Differential Gain and Linewidth Enhancement Factor . 19
1.4.4.3 Temperature-dependence Characterization and Non-radiative Recombination . . . . . . . . . . . . . . . . . . . . . . 21
1.4.5 Carrier Dynamics and Photon Behavior . . . . . . . . . . . . . . . 22
1.5 Fundamentals of Distributed Feedback Lasers . . . . . . . . . . . . . 25
1.5.1 Basic Principles of Distributed Feedback Lasers . . . . . . . . . . . 25
1.5.2 Coupled-Mode Theory and Mode Formation . . . . . . . . . . . . . 28
1.5.2.1 Basic Concept of Coupled-Mode Theory and Index-Coupled DFB Laser . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5.2.2 Coupled-Mode Equations and Some Parameter Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5.2.3 Eigenmodes and Mode Splitting in Uniform Grating DFB Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5.2.4 Impact of λ/4 Phase Shift DFB Laser on Mode Stability and Selectivity . . . . . . . . . . . . . . . . . . . . . . 33
1.5.3 Brief Introduction of Coupling Coefficient . . . . . . . . . . . . . . 34
1.5.4 Optical Spectrum of DFB Laser . . . . . . . . . . . . . . . . . . . 36
1.5.4.1 Causes and Spectral Properties of Amplified Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . 36
1.5.4.2 Side Mode Suppression Ratio and Modal Competition . 38
1.5.5 Spatial Effects due to Carrier and Field Distributions . . . . . . . . 39
1.6 Self-established Simulation Tool . . . . . . . . . . . . . . . . . . . . 41
Chapter 2 Development of 1.55-μm Narrow Linewidth DFB Lasers with Short Cavity 45
2.1 Introduction and Applications of NL-DFB Laser . . . . . . . . . . . 45
2.1.1 Definition and Advantages of Narrow-Linewidth Lasers . . . . . . . 45
2.1.2 Potential Applications for NL-Semiconductor Lasers . . . . . . . . 47
2.1.2.1 Quantum Cryptography Communication . . . . . . . . 48
2.1.2.2 Low Earth Orbit Satellite Optical Communication . . . 49
2.2 Background of Semiconductor Laser Linewidth . . . . . . . . . . . . 51
2.2.1 Schawlow-Townes-Henry Linewidth . . . . . . . . . . . . . . . . . 51
2.2.2 Linewidth Broadening Mechanisms . . . . . . . . . . . . . . . . . 54
2.2.2.1 Petermann Factor (Spontaneous Emission Enhancement) 54
2.2.2.2 Spatial Hole Burning . . . . . . . . . . . . . . . . . . 56
2.2.2.3 Temperature Fluctuations . . . . . . . . . . . . . . . . 56
2.2.2.4 Side-Mode Noise . . . . . . . . . . . . . . . . . . . . 57
2.2.2.5 Technical Noise . . . . . . . . . . . . . . . . . . . . . 57
2.2.3 Re-Broadening of the Linewidth . . . . . . . . . . . . . . . . . . . 57
2.3 Epitaxial Structure Design and Simulation of NL-DFB Laser . . . . . 59
2.3.1 Key Considerations in Epitaxial Structure Design . . . . . . . . . . 61
2.3.2 Simulation Analysis and Discussion of Results . . . . . . . . . . . 62
2.4 Development of Linewidth Measurement and Extraction Tools . . . . 74
2.4.1 Lineshape of Semiconductor Lasers . . . . . . . . . . . . . . . . . 74
2.4.2 Principle of Optical Beating Signal . . . . . . . . . . . . . . . . . . 76
2.4.3 Experimental Setup and Equipment Configuration . . . . . . . . . . 78
2.4.4 Voigt Profile Fitting and Numerical Extraction Method for the Long-DSHI Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.4.5 CEDM Method and Numerical Implementation for the Short-DSHI Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.5 Fabrication Flow of the 1.55-μm NL-DFB Laser . . . . . . . . . . . 84
2.6 Characterizations of the 1.55-μm NL-DFB Laser . . . . . . . . . . . 86
2.6.1 L–I–V and Power Conversion Efficiency . . . . . . . . . . . . . . . 86
2.6.2 Wavelength Stability and SMSR from Spectral Characteristics . . . 87
2.6.3 Thermal Resistance and Junction Temperature Analysis . . . . . . . 89
2.6.4 Linewidth Characterization and Analysis . . . . . . . . . . . . . . . 91
2.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Chapter 3 Application Extensions of 1.55-μm DFB Lasers: LiDAR, LEO Optical Links, and THz Radiation 97
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Pulsed Operation of 1.55-μm DFB Laser for Eye-Safe LiDAR Systems 98
3.2.1 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.2.2 What is LiDAR? . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.2.2.1 Pulsed Time-of-Flight (ToF) . . . . . . . . . . . . . . . 102
3.2.2.2 Amplitude Modulated Continuous Wave (AMCW) LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.2.3 Frequency Modulated Continuous Wave (FMCW) LiDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2.3 Why is 1.55-μm the Preferred Wavelength for Modern LiDAR Systems?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2.4 Elucidate the Parameters of the Pulsed Operation . . . . . . . . . . 109
3.2.5 DFB Laser Design, Fabrication, and Packaging for Pulsed Operation 111
3.2.6 Experimental Characterization . . . . . . . . . . . . . . . . . . . . 114
3.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3 High-Power and Low-RIN Operation 1.55-μm DFB for LEO Optical Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3.3.1.1 Optical Wireless Communication (OWC): Classification and Overview . . . . . . . . . . . . . . . . . . . . 123
3.3.1.2 Advantages of FSO Communication Over RF Communication. . . . . . . . . . . . . . . . . . . . . . . . . 125
3.3.1.3 Choice of the Wavelength . . . . . . . . . . . . . . . . 127
3.3.2 Design Considerations and Device Fabrication of the 1.55-μm DFB Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3.2.1 Design of the High-Performance 1.55-μm DFB Laser . 129
3.3.2.2 Fabrication of the High-Performance 1.55-μm DFB Laser132
3.3.3 Characterization of Static and Dynamic Properties of the 1.55-μm DFB Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.4 Monolithic Dual-Wavelength DFB Lasers with High-Power and Narrow-Linewidth features for THz generation . . . . . . . . . . . . . . . . . 144
3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.4.1.1 What is Terahertz (THz) Technology? . . . . . . . . . 145
3.4.1.2 Applications of THz Technology: Wireless Communication and Sensing . . . . . . . . . . . . . . . . . . . . 147
3.4.2 Overview of THz Generation Techniques . . . . . . . . . . . . . . 150
3.4.2.1 Photomixing Using Optical Beats on Photoconductive Antennas . . . . . . . . . . . . . . . . . . . . . . . . . 151
3.4.2.2 Dual-Wavelength Laser for THz Beat Generation . . . 152
3.4.2.3 Challenges in Typical Monolithic Dual-Wavelength Laser154
3.4.3 Design and Fabrication of the Monolithic DW-DFB Laser . . . . . . 155
3.4.3.1 Design of the Monolithic DW-DFB Laser . . . . . . . 155
3.4.3.2 Fabrication of the Monolithic DW-DFB Laser . . . . . 159
3.4.4 Characterizations of the Monolithic DW-DFB Laser . . . . . . . . . 161
3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Chapter 4 Development of 1.31-μm Uncooled High-Power DFB Lasers with Short Cavity for Co-Packaged Optics 171
4.1 Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . 171
4.1.1 The Necessity of Co-Packaged Optics Technology in the AI Era . . 171
4.1.2 Evolution of Optical Transceiver Packaging Technologies . . . . . . 173
4.2 Design Considerations for CPO-Compatible High Power DFB Laser . 175
4.2.1 CPO System Configuration with the ELSFP . . . . . . . . . . . . . 175
4.2.2 Why the ELSFP Configuration Becomes the Mainstream . . . . . . 176
4.2.3 Power Budget Requirements and Classification for ELSFP Lasers . 178
4.3 Epitaxial Structure Design and Optimization of High-Power DFB Laser179
4.3.1 Loss mechanisms in CW laser diodes . . . . . . . . . . . . . . . . . 179
4.3.2 Simulation Analysis and Discussion of Results . . . . . . . . . . . 182
4.4 Fabrication of High-Power DFB Laser . . . . . . . . . . . . . . . . . 189
4.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . 192
4.5.1 Static Characterizations . . . . . . . . . . . . . . . . . . . . . . . . 192
4.5.2 Optical Spectra and SMSR . . . . . . . . . . . . . . . . . . . . . . 194
4.5.3 Junction Temperature and Thermal Resistance Analysis . . . . . . . 195
4.5.4 Analysis of Relative Intensity Noise . . . . . . . . . . . . . . . . . 196
4.5.5 Analysis Laser Linewidth and Frequency Noise . . . . . . . . . . . 198
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Chapter 5 High-Speed Directly Modulated 1.31-μm DFB Laser for 200G/400G Ethernet 201
5.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 202
5.1.1 Intra/Inter-Data Center Optical Interconnect Demands . . . . . . . . 202
5.1.2 Role of Uncooled DMLs in IM/DD Systems . . . . . . . . . . . . . 204
5.1.3 Design Requirements for 1.31-μm DFB Lasers in Ethernet Standards 205
5.2 Theoretical Analysis of Modulation Response . . . . . . . . . . . . . 207
5.2.1 Resonance-Limited Bandwidth Model . . . . . . . . . . . . . . . . 207
5.2.2 Influence of Laser Structural Parameters . . . . . . . . . . . . . . . 209
5.3 Material System Considerations for Uncooled DMLs . . . . . . . . . 211
5.3.1 Comparison: InGaAsP vs. AlGaInAs MQW Systems . . . . . . . . 211
5.3.2 Enhancement Strategies in MQW Design . . . . . . . . . . . . . . 214
5.4 Design and Fabrication of High-Speed Direct Modulation DFB Laser 218
5.4.1 Design of High-Speed Direct Modulation DFB Laser . . . . . . . . 218
5.4.2 Fabrication of High-Speed Direct Modulation DFB Laser . . . . . . 223
5.5 Performance Characterization and Analysis . . . . . . . . . . . . . . 227
5.5.1 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 227
5.5.2 Optical Spectrum and SMSR Stability . . . . . . . . . . . . . . . . 228
5.5.3 Relative Intensity Noise . . . . . . . . . . . . . . . . . . . . . . . . 230
5.5.4 Small-Signal Modulation Bandwidth . . . . . . . . . . . . . . . . . 232
5.5.5 Large-Signal Transmission . . . . . . . . . . . . . . . . . . . . . . 234
5.5.5.1 Brief Introduction of NRZ and PAM-4 Eye Diagrams . 234
5.5.5.2 NRZ Eye Diagrams at 26.56 and 50.0 Gb/s . . . . . . . 237
5.5.5.3 PAM-4 Eye Diagrams and TDECQ . . . . . . . . . . . 238
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Chapter 6 Conclusions and Future Work 243
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 243
6.2 Directions of Future Research . . . . . . . . . . . . . . . . . . . . . 245
References 253
Appendix A — List of Publications 279
A.1 This thesis is adapted from the following appended journal papers and conference proceedings with the thesis author as the lead author . . . 279
A.2 Related journal or conference publications contributions by the author”not” included in the thesis . . . . . . . . . . . . . . . . . . . . . . . 281
-
dc.language.isoen-
dc.subject光達zh_TW
dc.subject兆赫茲zh_TW
dc.subject共封裝光學 (CPO)zh_TW
dc.subject矽光子 (SiPh)zh_TW
dc.subject半導體雷射製造zh_TW
dc.subject分佈式回饋雷射 (DFB Laser)zh_TW
dc.subject光通訊zh_TW
dc.subject非冷卻操作zh_TW
dc.subject高效率zh_TW
dc.subject窄線寬zh_TW
dc.subject量子蜜鑰分佈zh_TW
dc.subject直接調變雷射 (DML)zh_TW
dc.subjectSemiconductor Laser Fabricationen
dc.subjectDistributed Feedback (DFB) Laseren
dc.subjectDirectly Modulated Laser (DML)en
dc.subjectNarrow Linewidthen
dc.subjectHigh Efficiencyen
dc.subjectUncooled Operationen
dc.subjectOptical Communicationsen
dc.subjectQuantum Key Distribution (QKD)en
dc.subjectLiDARen
dc.subjectTerahertz (THz)en
dc.subjectCo-Packaged Optics (CPO)en
dc.subjectSilicon Photonics (SiPh)en
dc.title先進分佈式回饋雷射晶片之開發應用於光通訊及光感測系統zh_TW
dc.titleDevelopment of Advanced Distributed Feedback Laser Chips for Optical Communication and Sensing Systemsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee吳育任;黃建璋;李三良;巫朝陽;郭浩中zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Jian-Jang Huang;San-Liang Lee;Jau-Yang Wu;Hao-Chung Kuoen
dc.subject.keyword分佈式回饋雷射 (DFB Laser),直接調變雷射 (DML),窄線寬,高效率,非冷卻操作,光通訊,量子蜜鑰分佈,光達,兆赫茲,共封裝光學 (CPO),矽光子 (SiPh),半導體雷射製造,zh_TW
dc.subject.keywordDistributed Feedback (DFB) Laser,Directly Modulated Laser (DML),Narrow Linewidth,High Efficiency,Uncooled Operation,Optical Communications,Quantum Key Distribution (QKD),LiDAR,Terahertz (THz),Co-Packaged Optics (CPO),Silicon Photonics (SiPh),Semiconductor Laser Fabrication,en
dc.relation.page285-
dc.identifier.doi10.6342/NTU202501114-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-26-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-lift2030-07-21-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved