Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99492
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王家琪zh_TW
dc.contributor.advisorChia-Chi Wangen
dc.contributor.author鄭孟涵zh_TW
dc.contributor.authorMeng-Han Chengen
dc.date.accessioned2025-09-10T16:27:18Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation1. Abul K. Abbas ET, Dimitre R. Simeonov, Alexander Marson, and Jeffrey A. Bluestone. Revisiting IL-2 Biology and therapeutic prospects. Sci Immunol. 2018.
2. Alam R, Stafford S, Forsythe P, Harrison R, Faubion D, Lett-Brown MA, et al. RANTES is a chemotactic and activating factor for human eosinophils. The Journal of Immunology. 1993;150(8):3442-8.
3. Aleksic M, Rajagopal R, de-Avila R, Spriggs S, Gilmour N. The skin sensitization adverse outcome pathway: exploring the role of mechanistic understanding for higher tier risk assessment. Crit Rev Toxicol. 2024;54(2):69-91.
4. Amanda S. Woodward Davis HNR, Matthew J. Dufort, Hannah A. DeBerg, Martha A. Delaney, Florian Mair, Jami R. Erickson, Chloe K. Slichter, Julia D. Berkson, Alexis M. Klock , Matthias Mack, Yu Lwo, Alexander Ko, Rhonda M. Brand, Ian McGowan* ,Peter S. Linsley, Douglas R. Dixon, Martin Prlic. The human tissue-resident CCR5+ T cell compartment maintains protective and functional properties during inflammation. Sci Transl Med. 2019.
5. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730-41.
6. Antonio Lanzavecchia FS. Regulation of T Cell Immunity by Dendritic Cells. Cell. 2001.
7. Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health. 2020;225:113469.
8. Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, et al. Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro. 2006;20(5):767-73.
9. Blaikie L, Morrow T, Wilson AP, Hext P, Hartop PJ, Rattray NJ, et al. A two-centre study for the evaluation and validation of an animal model for the assessment of the potential of small molecular weight chemicals to cause respiratory allergy. Toxicology. 1995.
10. Bonecchi R, Polentarutti N, Luini W, Borsatti A, Bernasconi S, Locati M, et al. Up-Regulation of CCR1 and CCR3 and Induction of Chemotaxis to CC Chemokines by IFN-γ in Human Neutrophils. The Journal of Immunology. 1999;162(1):474-9.
11. Busse WW, Kraft M, Rabe KF, Deniz Y, Rowe PJ, Ruddy M, et al. Understanding the key issues in the treatment of uncontrolled persistent asthma with type 2 inflammation. Eur Respir J. 2021;58(2).
12. By Paige Lacy SM-A, Ben Bablitz, Stacey C. Hagen, Juan R. Velazquez, S.F. Paul Man, and Redwan Moqbel. Rapid Mobilization of Intracellularly Stored RANTES in Response to Interferon-γ in Human Eosinophils. Blood. 1999.
13. Cédric Blanpain RB, Christine A Power , Michael Edgerton , Catherine Buchanan , Matthias Mack , Graham Simmons , Paul R Clapham , Marc Parmentier , Amanda E I Proudfoot. A chimeric MIP-1α/RANTES protein demonstrates the use of different regions of the RANTES protein to bind and activate its receptors. J Leukoc Biol. 2001.
14. Cevenini L, Calabretta MM, Calabria D, Roda A, Michelini E. Luciferase Genes as Reporter Reactions: How to Use Them in Molecular Biology? Adv Biochem Eng Biotechnol. 2016;154:3-17.
15. Chabot V, Reverdiau P, Iochmann S, Rico A, Senecal D, Goupille C, et al. CCL5-enhanced human immature dendritic cell migration through the basement membrane in vitro depends on matrix metalloproteinase-9. J Leukoc Biol. 2006;79(4):767-78.
16. Chary A, Hennen J, Klein SG, Serchi T, Gutleb AC, Blomeke B. Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol. 2018;92(2):803-22.
17. Chary A, Serchi T, Moschini E, Hennen J, Cambier S, Ezendam J, et al. An in vitro coculture system for the detection of sensitization following aerosol exposure. ALTEX. 2019;36(3):403-18.
18. Christoph Walker MKK, MD, Peter Braun, MD, and Kurt Blaser, PhD. Activated T cells and eosinophilia in bronchoalveolar lavages from subjects with asthma correlated with disease severity. J Allergy Clin Immunol. 1991.
19. D S Robinson AMB, A Hartnell, A B Kay, S R Durham. Activated memory T helper cells in bronchoalveolar lavage fluid from patients with atopic asthma relation to asthma symptoms, lung function, and bronchial responsiveness. Thorax. 1993.
20. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570.
21. Dearman RJ, Kimber I. Divergent immune responses to respiratory and contact chemical allergens: antibody elicited by phthalic anhydride and oxazolone. Clin Exp Allergy. 1992;22(2):241-50.
22. Diaz L, Zambrano E, Flores ME, Contreras M, Crispin JC, Aleman G, et al. Ethical Considerations in Animal Research: The Principle of 3R's. Rev Invest Clin. 2020;73(4):199-209.
23. Emmanuel J. Bartholomé IVA, Els Koyen, Robert Kiss, Fabienne Willems, Michel Goldman, and Ghislain Opdenakker. Human Monocyte-Derived Dendritic Cells Produce Bioactive Gelatinase B Inhibition by IFN-β. J Interferon Cytokine Res. 2004.
24. Emter R, Ellis G, Natsch A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol Appl Pharmacol. 2010;245(3):281-90.
25. Enoch SJ, Seed MJ, Roberts DW, Cronin MT, Stocks SJ, Agius RM. Development of mechanism-based structural alerts for respiratory sensitization hazard identification. Chem Res Toxicol. 2012;25(11):2490-8.
26. Federica Sallusto CRM, and Antonio Lanzavecchia. The Role of Chemokine Receptors in Primary, Effector, and Memory Immune Responses. Annu Rev Immunol. 2000.
27. Gauthier M, Kale SL, Oriss TB, Gorry M, Ramonell RP, Dalton K, et al. CCL5 is a potential bridge between type 1 and type 2 inflammation in asthma. J Allergy Clin Immunol. 2023;152(1):94-106 e12.
28. Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP. Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci. 2004;81(2):332-43.
29. Gold MJ, Antignano F, Halim TY, Hirota JA, Blanchet MR, Zaph C, et al. Group 2 innate lymphoid cells facilitate sensitization to local, but not systemic, TH2-inducing allergen exposures. J Allergy Clin Immunol. 2014;133(4):1142-8.
30. Gouwy M, Struyf S, Leutenez L, Portner N, Sozzani S, Van Damme J. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology. 2014;219(3):218-29.
31. Gunther G Pendl CR, Meike Steinert, Renate Thanos, Ruth Eytner, Eric Borges, Martin K Wild, John B Lowe, Robert C Fuhlbrigge, Thomas S Kupper, Dietmar Vestweber, Stephan Grabbe. Immature mouse dendritic cells enter inflamed tissue, a process that requires E- and P-selectin, but not P-selectin glycoprotein ligand 1. Blood. 2002.
32. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-kappaB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53.
33. Hargitai R, Parrakova L, Szatmari T, Monfort-Lanzas P, Galbiati V, Audouze K, et al. Chemical respiratory sensitization-Current status of mechanistic understanding, knowledge gaps and possible identification methods of sensitizers. Front Toxicol. 2024;6:1331803.
34. Hewitt RJ, Lloyd CM. Regulation of immune responses by the airway epithelial cell landscape. Nat Rev Immunol. 2021;21(6):347-62.
35. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127-48.
36. Hizawa N, Yamaguchi E, Konno S, Tanino Y, Jinushi E, Nishimura M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am J Respir Crit Care Med. 2002;166(5):686-90.
37. Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8(3):218-30.
38. Hou F, Xing C, Li B, Cheng J, Chen W. Performance of a novel in vitro assay for skin sensitization based on activation of T lymphocytes. ALTEX. 2020;37(3):451-68.
39. Ian Kimber RJD. What makes a chemical a respiratory sensitizer. Curr Opin Allergy Clin Immunol. 2005.
40. Jimenez F, Quinones MP, Martinez HG, Estrada CA, Clark K, Garavito E, et al. CCR2 plays a critical role in dendritic cell maturation: possible role of CCL2 and NF-kappa B. J Immunol. 2010;184(10):5571-81.
41. Ke X, Chen Z, Wang X, Kang H, Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity. 2023;56(1):2189133.
42. Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631-49.
43. Kimber I, Dearman RJ, Basketter DA, Boverhof DR. Chemical respiratory allergy: reverse engineering an adverse outcome pathway. Toxicology. 2014;318:32-9.
44. Kimura Y, Fujimura C, Ito Y, Takahashi T, Nakajima Y, Ohmiya Y, et al. Optimization of the IL-8 Luc assay as an in vitro test for skin sensitization. Toxicol In Vitro. 2015;29(7):1816-30.
45. Klier CM, Nelson EL, Cohen CD, Horuk R, Schlondorff D, Nelson PJ. Chemokine-Induced secretion of gelatinase B in primary human monocytes. Biol Chem. 2001;382(9):1405-10.
46. Konan KV, Taylor MW. Importance of the two interferon-stimulated response element (ISRE) sequences in the regulation of the human indoleamine 2,3-dioxygenase gene. J Biol Chem. 1996;271(32):19140-5.
47. Kristie M. Sullivan SJE, Janine Ezendam, Katherina Sewald, Erwin L. Roggen, and Stella Cochrane. An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Chemicals Building Evidence to Support the Utility of In Vitro and In Silico Methods in a Regulatory Context. Applied In Vitro Toxicology. 2017.
48. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med. 2002;8(8):885-9.
49. Kuruvilla ME, Vanijcharoenkarn K, Shih JA, Lee FE. Epidemiology and risk factors for asthma. Respir Med. 2019;149:16-22.
50. L M Teran MM, J Bartels, E L Valencia, T Nakajima, K Hirai, J M Schröder. Th1- and Th2-type cytokines regulate the expression and production of eotaxin and RANTES by human lung fibroblasts. Am J Respir Cell Mol Biol. 1999.
51. Leblond CP, Inoue S. Structure, composition, and assembly of basement membrane. Am J Anat. 1989;185(4):367-90.
52. Leon B. Understanding the development of Th2 cell-driven allergic airway disease in early life. Front Allergy. 2022;3:1080153.
53. Leonard EJ, Skeel A, Yoshimura T, Noer K, Kutvirt S, Van Epps D. Leukocyte specificity and binding of human neutrophil attractant/activation protein-1. The Journal of Immunology. 1990;144(4):1323-30.
54. Li N, Mirzakhani H, Kiefer A, Koelle J, Vuorinen T, Rauh M, et al. Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) drives the resolution of allergic asthma. iScience. 2021;24(10):103163.
55. Lin B, Watson K. Luciferase reporter assay for NF-kB activation automated by an open-source liquid handling platform. SLAS Technol. 2024;29(4):100155.
56. Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules. 2023;13(2).
57. Lukacs NW. ROLE OF CHEMOKINES IN THE PATHOGENESIS OF ASTHMA. Nat Rev Immunol 2001.
58. M C Dieu-Nosjean AV, S Lebecque, C Caux. Regulation of dendritic cell trafficking a process that involves the participation of selective chemokines. J Leukoc Biol. 1999.
59. M Xia DL, S L Hauser, S P Sreedharan, P J Nelson, A M Krensky, E J Goetzl. Stimulus specificity of matrix metalloproteinase dependence of human T cell migration through a model basement membrane. The Journal of Immunology. 1996.
60. M. Cristina Gonzalez PD, F. R. Galleguillos , Patricia Ancic , O. Cromwell , and A. B. Kay. Allergen-induced recruitment of bronchoalveolar helper (OKT4) and suppressor (OKT8) cells in asthma. Relative increases in OKT8 cells in single early responders compared with those in late-phase responders. Am Rev Respir Dis. 1986.
61. Marone G, Granata F, Pucino V, Pecoraro A, Heffler E, Loffredo S, et al. The Intriguing Role of Interleukin 13 in the Pathophysiology of Asthma. Front Pharmacol. 2019;10:1387.
62. Marques RE, Guabiraba R, Russo RC, Teixeira MM. Targeting CCL5 in inflammation. Expert Opin Ther Targets. 2013;17(12):1439-60.
63. Mathilde Kouwenhoven a VÖa, Annelie Tjernlund b, Mikhail Pashenkov a, Mohammed Homman c, Rayomand Press a, Hans Link. Monocyte-derived dendritic cells express and secrete matrix-degrading metalloproteinases and their inhibitors and are imbalanced in multiple sclerosis. J Neuroimmunol. 2002.
64. Maxwell G, MacKay C, Cubberley R, Davies M, Gellatly N, Glavin S, et al. Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro. 2014;28(1):8-12.
65. Melchjorsen J, Sorensen LN, Paludan SR. Expression and function of chemokines during viral infections: from molecular mechanisms to in vivo function. J Leukoc Biol. 2003;74(3):331-43.
66. Mohamed Osman MT, Marco Londei, Sonia Quaratino. Expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases define the migratory characteristics of human monocyte-derived dendritic cells. Immunology. 2002.
67. Nagahata T, Tsujino Y, Takayama E, Hikasa H, Satoh A. Evaluation of skin sensitization based on interleukin-2 promoter activation in Jurkat cells. Biomed Rep. 2022;16(1):3.
68. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491-4.
69. Niimi K, Asano K, Shiraishi Y, Nakajima T, Wakaki M, Kagyo J, et al. TLR3-mediated synthesis and release of eotaxin-1/CCL11 from human bronchial smooth muscle cells stimulated with double-stranded RNA. J Immunol. 2007;178(1):489-95.
70. O Nüsse 1 ML, O Cromwell, A B Kay, B D Gomperts. Intracellular application of guanosine-5’-O-(3-thiotriphosphate) induces exocytotic granule fusion in guinea pig eosinophils. J Exp Med. 1990.
71. OECD Environment H, Testing SPSo, Assessment. The adverse outcome pathway for skin sensitisation initiated by covalent binding to proteins Part 1: Scientific evidence. 2012;168:1-59.
72. P. K. JEFFERY AJW, FIONA C. NELSON, J. V. COLLINS, and A. B. KAY. Bronchial Biopsies in Asthma. Am Rev Respir Dis. 1989.
73. Patlewicz G, Ball N, Booth ED, Hulzebos E, Zvinavashe E, Hennes C. Use of category approaches, read-across and (Q)SAR: general considerations. Regul Toxicol Pharmacol. 2013;67(1):1-12.
74. Piroird C, Ovigne JM, Rousset F, Martinozzi-Teissier S, Gomes C, Cotovio J, et al. The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization. Toxicol In Vitro. 2015;29(5):901-16.
75. Powell N, Humbert M, Durham SR, Assoufi B, Kay AB, Corrigan CJ. Increased expression of mRNA encoding RANTES and MCP-3 in the bronchial mucosa in atopic asthma. Eur Respir J. 1996;9(12):2454-60.
76. R J Dearman IK. Differential stimulation of immune function by respiratory and contact chemical allergens. Immunology. 1991.
77. Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J, et al. High IFN-gamma and low SLPI mark severe asthma in mice and humans. J Clin Invest. 2015;125(8):3037-50.
78. Robert L. Coffman BWPS, Susan Hudak, John Jackson, and Donna Rennick. Antibody to Interleukin-5 Inhibits Helminth-InducedEosinophilia in Mice. Science. 1989.
79. S Akira HI, T Sugita, O Tanabe, S Kinoshita, Y Nishio, T Nakajima, T Hirano, T Kishimoto. A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 1990.
80. Sad TRMaS. The expanding universe of T-cell subsets Th1, Th2 and more. Immunol Today. 1996.
81. Sadekar N, Boisleve F, Dekant W, Fryer AD, Gerberick GF, Griem P, et al. Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Crit Rev Toxicol. 2021;51(10):792-804.
82. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology. 1998;28(9):2760-9.
83. Schall TJ, Jongstra J, Dyer BJ, Jorgensen J, Clayberger C, Davis MM, et al. A human T cell-specific molecule is a member of a new gene family. The Journal of Immunology. 1988;141(3):1018-25.
84. Singha B, Gatla HR, Manna S, Chang TP, Sanacora S, Poltoratsky V, et al. Proteasome inhibition increases recruitment of IkappaB kinase beta (IKKbeta), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J Biol Chem. 2014;289(5):2687-700.
85. Spencer LA, Szela CT, Perez SA, Kirchhoffer CL, Neves JS, Radke AL, et al. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol. 2009;85(1):117-23.
86. Tapak M, Sadeghi S, Ghazanfari T, Mosaffa N. Chemical exposure and alveolar macrophages responses: 'the role of pulmonary defense mechanism in inhalation injuries'. BMJ Open Respir Res. 2023;10(1).
87. Tekkanat KK, Maassab H, Miller A, Berlin AA, Kunkel SL, Lukacs NW. RANTES (CCL5) production during primary respiratory syncytial virus infection exacerbates airway disease. European Journal of Immunology. 2002;32(11):3276-84.
88. Teran LM, Noso N, Carroll M, Davies DE, Holgate S, Schröder JM. Eosinophil recruitment following allergen challenge is associated with the release of the chemokine RANTES into asthmatic airways. The Journal of Immunology. 1996;157(4):1806-12.
89. Thomas J. Schall KB, Karen J. Toy & David V. Goeddel Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990.
90. Toebak MJ, Pohlmann PR, Sampat-Sardjoepersad SC, von Blomberg BM, Bruynzeel DP, Scheper RJ, et al. CXCL8 secretion by dendritic cells predicts contact allergens from irritants. Toxicol In Vitro. 2006;20(1):117-24.
91. Vermaelen KY, Cataldo D, Tournoy K, Maes T, Dhulst A, Louis R, et al. Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol. 2003;171(2):1016-22.
92. Yoon JS, Kim HH, Lee Y, Lee JS. Cytokine induction by respiratory syncytial virus and adenovirus in bronchial epithelial cells. Pediatr Pulmonol. 2007;42(3):277-82.
93. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-kappaB signaling in inflammation and cancer. MedComm. 2021;2(4):618-53.
94. Zhong-Zong Pan LP, Anuradha Ray, andPrabir Ray. Inducible lung-specific expression of RANTES preferential recruitment of neutrophils. Am J Physiol Lung Cell Mol Physiol. 2000.
95. Zuoming Sun CWA, Wilfried Ellmeier, Edward M. Schaeffer, Mary Jean Sunshine, Leena Gandhi, Justin Annes, Daniela Petrzilka, Abraham Kupfer, Pamela L. Schwartzberg & Dan R. Littman. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature. 2000.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99492-
dc.description.abstract現代人在日常生活中暴露於各類化學物質的機會日益增加。其中,許多為低分子量的呼吸致敏物,可經由吸入途徑進入人體,誘發免疫反應,進而引起呼吸道致敏的現象。目前,化學物質所引起之呼吸致敏的診斷主要仰賴臨床個案報告,而相關的動物模式與細胞實驗研究仍相對有限。因此,極需更深入的探討與建立評估之方法。呼吸致敏物的鑑別與風險評估,為化學品毒理學中一項關鍵的安全性評估指標。如何在保障人類健康的同時,減少實驗動物使用,已成為全球毒理學領域極需面對的重要課題。因此,發展替代方法與預測模型,成為化學品安全評估制度的核心策略。有鑑於皮膚致敏與呼吸致敏有相似的免疫活化機制,因此,參考已成熟的皮膚致敏危害結局路徑架構,可能有助於研究呼吸致敏危害結局路徑的發展。在氣喘患者中,趨化因子CCL5於呼吸道上皮細胞中高度表達,顯示其可能在呼吸道發炎病理中扮演關鍵角色。CCL5可透過與趨化因子受器結合,誘導免疫細胞的活化與遷移,並引導其聚集至發炎部位,進一步放大免疫反應。在本研究中,我們透過設計以趨化因子CCL5為標的的螢光素酶質體,並將其轉染至人類非小細胞肺癌細胞株A549細胞株中,建立穩定表現的螢光素酶報導基因試驗系統。此系統旨在探討CCL5是否可作為一個靈敏且具代表性的分子終點,用於識別呼吸致敏物,提供一項可行且具科學基礎的評估工具,強化化學品毒理風險評估的精準度。
本研究評估了12種化學品,其包含7種呼吸致敏物: 氯鉑酸銨、頭孢美唑、戊二醛、海卓拉肼鹽酸鹽、六亞甲基二異氰酸酯、哌嗪、螺旋黴素;以及5種非呼吸致敏物: 甘油、異丙醇、乳酸、1,2-丙二醇、水楊酸。將12種化學品分別刺激A549、A549-NF-κB以及A549-NF-κB-NF-IL6-ISRE三種細胞株,並檢測細胞株在化學品刺激後的CCL5蛋白以及CCL5 mRNA的程度。藉由比較A549- NF-κB以及A549-NF-κB-NF-IL6-ISRE細胞模型對不同化學物質的反應特性,探討這兩種細胞株在呼吸道致敏物識別上的適用性與敏感性。
我們發現呼吸致敏劑顯著上調CCL5的蛋白和基因表達量,說明呼吸致敏劑可能參與引發呼吸高反應性等免疫相關病理反應。此外,A549-NF-κB-NF-IL6-ISRE細胞模型展現出良好的靈敏度,可評估化學品的致敏潛力,說明A549-NF-κB-NF-IL6-ISRE細胞模型作為替代試驗平台的應用潛力。
zh_TW
dc.description.abstractPeople are increasingly exposed to various chemical substances of low molecular weight respiratory sensitizers in their daily lives, which can enter the human body through inhalation, induce immune responses, and cause respiratory sensitization. Currently, the diagnosis of respiratory sensitization caused by chemicals mainly relies on clinical case reports, while related animal models and cell experimental studies are still relatively limited, therefore, more in-depth exploration and development of evaluation methods is needed. Identification and risk assessment of respiratory sensitizers is a key safety assessment indicator in chemical toxicology. How to reduce the use of experimental animals while protecting human health has become an important issue that the global toxicology field needs to face. Therefore, the development of alternative methods and predictive models have become the core strategies for the chemical safety assessment system. Because of the, skin sensitization and respiratory sensitization have similar immune activation mechanisms, therefore, we need to the recognized skin sensitization Adverse Outcome Pathway (AOP) framework to develop the respiratory sensitization adverse outcome pathway. In asthmatic patients, C-C Motif Chemokine Ligand 5 (CCL5) is highly expressed in airway epithelial cells, suggesting that it may play a key role in airway inflammatory pathology. CCL5 can bind to chemokine receptors to induce the activation and migration of immune cells, and guide them to recruit at the site of inflammation, further amplifying the immune response. In this study, we designed a luciferase plasmid targeting the chemokine CCL5 and transfected it into the human non-small cell lung cancer cell line A549 to establish a stable expression luciferase reporter gene assay system. This system aims to explore whether CCL5 can be used as a sensitive and representative molecular endpoint to identify respiratory sensitizers, providing a feasible and scientifically based assessment tool to enhance the accuracy of chemical toxicological risk assessment.
This study evaluated twelve chemicals, including seven respiratory sensitizers: ammonium chloroplatinate (ACP), cefmetazole (CMZ ), glutaraldehyde (GA), hydralazine hydrochloride (HHC), hexamethylene diisocyanate (HMDI), piperazine (PPZ), and spiramycin (SPM); and five non-respiratory sensitizers: glycerol (GLY), isopropanol (ISO), lactic acid (LA), 1,2-propylene glycol (PG), and salicylic acid (SA). twelve chemicals were used to stimulate three cell lines, A549, A549-NF-κB, and A549-NF-κB-NF-IL6-ISRE, respectively, and the CCL5 protein level and CCL5 mRNA level of the cell lines after chemical stimulation were detected. By comparing the response characteristics of A549-NF-κB and A549-NF-κB-NF-IL6-ISRE cell models to different chemicals, the applicability and sensitivity of these two cell lines in the recognition of respiratory allergens were explored.
We found that respiratory sensitizers significantly upregulated the protein and gene expression of CCL5, indicating that respiratory sensitizers may be involved in inducing immune-related pathological reactions such as respiratory hyperresponsiveness. In addition, the A549-NF-κB-NF-IL6-ISRE cell model showed good sensitivity and could evaluate the sensitizing potential of chemicals, indicating the potential application of the A549-NF-κB-NF-IL6-ISRE cell model as an alternative test platform.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:27:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:27:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
目次 vii
圖次 x
表次 xii
中英文對照表 xiii
第一章 介紹 1
1. 低分子化學品對呼吸致敏誘發作用及其盛行率分析 1
2. 呼吸刺激和呼吸致敏的定義 2
3. 呼吸致敏的免疫機制與途徑探討 4
4. 探討皮膚致敏危害結局路徑以及關鍵事件 5
5. 以皮膚致敏危害結局路徑為基礎建構呼吸致敏危害結局路徑 7
6. 呼吸致敏主要由輔助型T細胞2免疫反應介導 11
7. CCL5的生物學角色與呼吸致敏中的重要性 13
7.1 CCL5在呼吸道發炎反應中的功能與影響 13
7.2 CCL5 調控樹突細胞功能之機制探討 14
7.3 CCL5在趨化嗜酸性細胞與促進其活化的角色 15
7.4 CCL5氣喘中作為輔助型T細胞1 /輔助型T細胞2免疫反應橋樑之角色 16
8. 基於3R原則之替代實驗方法與報導基因系統的發展與應用 18
9. 細胞激素螢光素酶報導基因試驗於化學品致敏與免疫毒性潛力評估之應用 19
10. 化學品挑選的原則與方法 20
第二章 研究動機 23
第三章 材料與方法 25
1. 化學品清單 25
2. 細胞培養與細胞繼代 26
3. 細胞存活率試驗- MTT assay 27
4. 酵素結合免疫吸附分析法 27
5. 細胞RNA萃取 29
6. 反轉錄酶PCR 30
7. 引子設計以及定量即時聚合酶連鎖反應 31
8. 挑選CCL5相關轉錄因子插入片段 32
9. E. coli培養 33
9.1 LB Plate和LB Borth配製 33
9.2 轉形 33
10. E. coli質體萃取 34
11. Qubit assay檢測質體濃度 34
12. 轉染質體DNA到A549細胞 35
13. 轉殖細胞抗生素篩選 35
14. 轉殖細胞分選與培養 36
15. 細胞存活率試驗- Cell Counting Kit-8 (CCK-8) 36
16. 冷光素酶報導基因試驗 37
17. 敏感性以及特異性計算方法 37
18. 統計分析 38
第四章 結果 39
1. 暴露化學品對人類非小細胞肺癌細胞株A549的存活率以及CCL5蛋白質和mRNA表達量之影響 39
2. 設計A549-NF-κB和NF-κB –NF-IL6-ISRE報導基因穩定細胞系模型 53
3. 評估化學品對A549-NF-κB穩定細胞株之細胞毒性與CCL5螢光素酶活性的影響 55
4. 時間點以及刺激物對A549-NF-κB-NF-IL6-ISRE穩定細胞誘導CCL5螢光素酶活性的影響分析 61
5. 評估化學品對A549-NF-κB-NF-IL6-ISRE穩定細胞株之細胞毒性與CCL5螢光素酶活性的影響 64
6. 以冷光原始數值分析異丙醇、1,2-丙二醇、水楊酸誘導的CCL5螢光素酶活性 70
7. 整合ELISA、qPCR、A549-NF-κB穩定細胞株以及A549-NF-κB-NF-IL6-ISRE穩定細胞株CCL5螢光素酶活性之結果 72
8. A549-NF-κB穩定細胞株以及A549-NF-κB-NF-IL6-ISRE穩定細胞株之敏感性和特異性分析 74
第五章 討論 75
第六章 參考文獻 80
-
dc.language.isozh_TW-
dc.subject危害結局路徑zh_TW
dc.subjectA549-NF-κB-NF-IL6-ISRE細胞株zh_TW
dc.subject趨化因子CCL5zh_TW
dc.subject螢光素酶報導基因試驗系統zh_TW
dc.subject呼吸致敏物zh_TW
dc.subject呼吸致敏zh_TW
dc.subjectRespiratory sensitizationen
dc.subjectAdverse Outcome Pathway (AOP)en
dc.subjectA549-NF-κB-NF-IL6-ISRE cell lineen
dc.subjectChemokine CCL5en
dc.subjectLuciferase reporter gene assay systemen
dc.subjectRespiratory sensitizers (RS)en
dc.title建構 CCL5 報導細胞平台以作為評估呼吸致敏物的非動物替代方法zh_TW
dc.titleConstruction of CCL5 reporter cell platform as non-animal alternative methods to assess respiratory sensitizersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許國堂;羅月霞;林英琦zh_TW
dc.contributor.oralexamcommitteeGwo-Tarng Sheu;Yueh-Hsia Luo;Ying-Chi Linen
dc.subject.keyword危害結局路徑,A549-NF-κB-NF-IL6-ISRE細胞株,趨化因子CCL5,螢光素酶報導基因試驗系統,呼吸致敏物,呼吸致敏,zh_TW
dc.subject.keywordAdverse Outcome Pathway (AOP),A549-NF-κB-NF-IL6-ISRE cell line,Chemokine CCL5,Luciferase reporter gene assay system,Respiratory sensitizers (RS),Respiratory sensitization,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202502275-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-25-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2030-07-22-
Appears in Collections:獸醫學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
6.92 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved