請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何亞倫 | zh_TW |
| dc.contributor.advisor | Jeroen Groeneveld | en |
| dc.contributor.author | 黃語妡 | zh_TW |
| dc.contributor.author | Yu-Hsin Huang | en |
| dc.date.accessioned | 2025-09-10T16:26:36Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Arnold, N. P., & Tziperman, E. (2016). Reductions in midlatitude upwelling-favorable winds implied by weaker large-scale Pliocene SST gradients. Paleoceanography, 31(1), 27-39. https://doi.org/10.1002/2015pa002806
Band, S., Huang, Y.-H., Biswas, A., Jow, K.-Y., Ren, H. A., Shen, C.-C., & Groeneveld, J. (manuscript in prep.). Orbital-Scale Controls on Eastern Equatorial Pacific Oxygen Minimum Zone Variability During the Early Pleistocene. Barker, S., Greaves, M., & Elderfield, H. (2003). A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst., 4, Article 8407. https://doi.org/10.1029/2003gc000559 Bartoli, G., Sarnthein, M., Weinelt, M., Erlenkeuser, H., Garbe-Schönberg, D., & Lea, D. W. (2005). Final closure of Panama and the onset of northern hemisphere glaciation. Earth and Planetary Science Letters, 237(1-2), 33-44. https://doi.org/10.1016/j.epsl.2005.06.020 Blum, P., Mix, A. C., Tiedemann, R., & Party, S. S. (2005a). Natural gamma radiation of ODP Hole 202-1241C [dataset] PANGAEA. https://doi.org/10.1594/PANGAEA.261252 Blum, P., Mix, A. C., Tiedemann, R., & Party, S. S. (2005b). Gamma-ray attenuation measurements of bulk density using whole-core multi-sensing track on ODP Hole 202-1241C [dataset] PANGAEA. https://doi.org/10.1594/PANGAEA.260523 Blum, P., Mix, A. C., Tiedemann, R., & Party, S. S. (2005c). Gamma-ray attenuation measurements of bulk density using whole-core multi-sensing track on ODP Hole 202-1241A [dataset] PANGAEA. https://doi.org/10.1594/PANGAEA.260521 Blum, P., Mix, A. C., Tiedemann, R., & Party, S. S. (2005d). Natural gamma radiation of ODP Hole 202-1241A [dataset] PANGAEA. https://doi.org/10.1594/PANGAEA.261250 Bolster, K. M., Heller, M. I., Mulholland, M. R., & Moffett, J. W. (2022). Iron and manganese accumulation within the Eastern Tropical North Pacific oxygen deficient zone. Geochimica et Cosmochimica Acta, 334, 259-272. https://doi.org/10.1016/j.gca.2022.07.013 Bolton, C. T., Gibbs, S. J., & Wilson, P. A. (2010). Evolution of nutricline dynamics in the equatorial Pacific during the late Pliocene. Paleoceanography, 25, Article Pa1207. https://doi.org/10.1029/2009pa001821 Breitburg, D., Levin, L. A., Oschlies, A., Gregoire, M., Chavez, F. P., Conley, D. J., Garcon, V., Gilbert, D., Gutierrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., . . . Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359(6371). https://doi.org/10.1126/science.aam7240 Burke, J. E., Renema, W., Henehan, M. J., Elder, L. E., Davis, C. V., Maas, A. E., Foster, G. L., Schiebel, R., & Hull, P. M. (2018). Factors influencing test porosity in planktonic foraminifera. Biogeosciences, 15(21), 6607-6619. https://doi.org/10.5194/bg-15-6607-2018 Burls, N. J., Fedorov, A. V., Sigman, D. M., Jaccard, S. L., Tiedemann, R., & Haug, G. H. (2017). Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Science Advances, 3(9), Article e1700156. https://doi.org/10.1126/sciadv.1700156 Chang, Y. P., Wang, W. L., Yokoyama, Y., Matsuzaki, H., Kawahata, H., & Chen, M. T. (2008). Millennial-scale planktic foraminifer faunal variability in the East China Sea during the past 40000 years (IMAGES MD012404 from the Okinawa Trough). Terrestrial Atmospheric and Oceanic Sciences, 19(4), 389-401. https://doi.org/10.3319/TAO.2008.19.4.389(IMAGES) Christensen, B. A., Renema, W., Henderiks, J., De Vleeschouwer, D., Groeneveld, J., Castañeda, I. S., Reuning, L., Bogus, K., Auer, G., Ishiwa, T., McHugh, C. M., Gallagher, S. J., & Fulthorpe, C. S. (2017). Indonesian Throughflow drove Australian climate from humid Pliocene to arid Pleistocene. Geophysical Research Letters, 44(13), 6914-6925. https://doi.org/10.1002/2017gl072977 Davies, T. A., Kidd, R. B., & Ramsay, A. T. S. (1995). A time-slice approach to the history of Cenozoic sedimentation in the Indian Ocean. Sedimentary Geology, 96(1-2), 157-179. https://doi.org/10.1016/0037-0738(94)00131-d Davila, X., Olsen, A., Lauvset, S. K., McDonagh, E. L., Brakstad, A., & Gebbie, G. (2023). On the Origins of Open Ocean Oxygen Minimum Zones. Journal of Geophysical Research-Oceans, 128(8), Article e2023JC019677. https://doi.org/10.1029/2023jc019677 Davis, C. V., Wishner, K., Renema, W., & Hull, P. M. (2021). Vertical distribution of planktic foraminifera through an oxygen minimum zone: how assemblages and test morphology reflect oxygen concentrations. Biogeosciences, 18(3), 977-992. https://doi.org/10.5194/bg-18-977-2021 Davis, C. V., Doherty, S., Fehrenbacher, J., & Wishner, K. (2023a). Trace element composition of modern planktic foraminifera from an oxygen minimum zone: Potential proxies for an enigmatic environment. Frontiers in Marine Science, 10, Article 1145756. https://doi.org/10.3389/fmars.2023.1145756 Davis, C. V., Sibert, E. C., Jacobs, P. H., Burls, N., & Hull, P. M. (2023b). Intermediate water circulation drives distribution of Pliocene Oxygen Minimum Zones. Nature Communications, 14(1), 40. https://doi.org/10.1038/s41467-022-35083-x de la Vega, E., Chalk, T. B., Wilson, P. A., Bysani, R. P., & Foster, G. L. (2020). Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 glaciation. Scientific Reports, 10(1), Article 11002. https://doi.org/10.1038/s41598-020-67154-8 De Schepper, S., Groeneveld, J., Naafs, B. D. A., Van Renterghem, C., Hennissen, J., Head, M. J., Louwye, S., & Fabian, K. (2013). Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene. Plos One, 8(12), Article e81508. https://doi.org/10.1371/journal.pone.0081508 De Vleeschouwer, D., Dunlea, A. G., Auer, G., Anderson, C. H., Brumsack, H., de Loach, A., Gurnis, M., Huh, Y., Ishiwa, T., Jang, K., Kominz, M. A., März, C., Schnetger, B., Murray, R. W., & Pälike, H. (2017). Quantifying K, U, and Th contents of marine sediments using shipboard natural gamma radiation spectra measured on DV JOIDES Resolution. Geochem. Geophys. Geosyst., 18(3), 1053-1064. https://doi.org/10.1002/2016gc006715 Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H. O., & Huey, R. B. (2015). Climate change tightens a metabolic constraint on marine habitats. Science, 348(6239), 1132-1135. https://doi.org/10.1126/science.aaa1605 Doherty, S. C., Davis, C. V., & Fehrenbacher, J. S. (2025). Planktic foraminifera record the succession of anaerobic metabolisms in particle microenvironments across a pelagic oxygen gradient. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2025.03.008 Dowsett, H. J., Foley, K. M., Stoll, D. K., Chandler, M. A., Sohl, L. E., Bentsen, M., Otto-Bliesner, B. L., Bragg, F. J., Chan, W. L., Contoux, C., Dolan, A. M., Haywood, A. M., Jonas, J. A., Jost, A., Kamae, Y., Lohmann, G., Lunt, D. J., Nisancioglu, K. H., Abe-Ouchi, A., . . . Zhang, Z. S. (2013). Sea Surface Temperature of the mid-Piacenzian Ocean: A Data-Model Comparison. Scientific Reports, 3, Article 2013. https://doi.org/10.1038/srep02013 Etourneau, J., Martinez, P., Blanz, T., & Schneider, R. (2009). Pliocene-Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology, 37(10), 871-874. https://doi.org/10.1130/g25733a.1 Fiedler, P. C., & Talley, L. D. (2006). Hydrography of the eastern tropical Pacific: A review. Progress in Oceanography, 69(2-4), 143-180. https://doi.org/10.1016/j.pocean.2006.03.008 Fuenzalida, R., Schneider, W., Garcés-Vargas, J., Bravo, L., & Lange, C. (2009). Vertical and horizontal extension of the oxygen minimum zone in the eastern South Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(16), 1027-1038. https://doi.org/10.1016/j.dsr2.2008.11.001 Glock, N., Schönfeld, J., & Mallon, J. (2012). The Functionality of Pores in Benthic Foraminifera in View of Bottom Water Oxygenation: A Review. In A. V. Altenbach, J. M. Bernhard, & J. Seckbach (Eds.), Anoxia: Evidence for Eukaryote Survival and Paleontological Strategies (Vol. 21, pp. 537-552). https://doi.org/10.1007/978-94-007-1896-8_28 Glock, N., Roy, A. S., Romero, D., Wein, T., Weissenbach, J., Revsbech, N. P., Hogslund, S., Clemens, D., Sommer, S., & Dagan, T. (2019). Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 2860-2865. https://doi.org/10.1073/pnas.1813887116 Govindankutty Menon, A., Davis, C. V., Nürnberg, D., Nomaki, H., Salonen, I., Schmiedl, G., & Glock, N. (2023). A deep-learning automated image recognition method for measuring pore patterns in closely related bolivinids and calibration for quantitative nitrate paleo-reconstructions. Scientific Reports, 13(1), Article 19628. https://doi.org/10.1038/s41598-023-46605-y Greaves, M., Caillon, N., Rebaubier, H., Bartoli, G., Bohaty, S., Cacho, I., Clarke, L., Cooper, M., Daunt, C., Delaney, M., deMenocal, P., Dutton, A., Eggins, S., Elderfield, H., Garbe-Schoenberg, D., Goddard, E., Green, D., Groeneveld, J., Hastings, D., . . . Wilson, P. A. (2008). Interlaboratory comparison study of calibration standards for foraminiferal Mg/Ca thermometry. Geochem. Geophys. Geosyst., 9, Article Q08010. https://doi.org/10.1029/2008gc001974 Groeneveld, J., Steph, S., Tiedemann, R., Garbe-Schönberg, D., Nuernberg, D., & Sturm, A. (2006). Pliocene mixed-layer oceanography for Site 1241, using combined Mg/Ca and δ18O analyses of Globigerinoides sacculifer. Proceedings of the Ocean Drilling Program: Scientific Results, 202, 1-27. https://doi.org/10.2973/odp.proc.sr.202.209.2006. Groeneveld, J., & Filipsson, H. L. (2013). Mg/Ca and Mn/Ca ratios in benthic foraminifera: the potential to reconstruct past variations in temperature and hypoxia in shelf regions. Biogeosciences, 10(7), 5125-5138. https://doi.org/10.5194/bg-10-5125-2013 Groeneveld, J., Hathorne, E. C., Steinke, S., Debey, H., Mackensen, A., & Tiedemann, R. (2014). Glacial induced closure of the Panamanian Gateway during Marine Isotope Stages (MIS) 95-100 (∼2.5 Ma). Earth and Planetary Science Letters, 404, 296-306. https://doi.org/10.1016/j.epsl.2014.08.007 Groeneveld, J., Henderiks, J., Renema, W., McHugh, C. M., De Vleeschouwer, D., Christensen, B. A., Fulthorpe, C. S., Reuning, L., Gallagher, S. J., Bogus, K., Auer, G., & Ishiwa, T. (2017). Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies. Science Advances, 3(5), Article e1602567. https://doi.org/10.1126/sciadv.1602567 Groeneveld, J., Filipsson, H. L., Austin, W. E. N., Darling, K., McCarthy, D., Krupinski, N. B. Q., Bird, C., & Schweizer, M. (2018). Assessing proxy signatures of temperature, salinity, and hypoxia in the Baltic Sea through foraminifera-based geochemistry and faunal assemblages. Journal of Micropalaeontology, 37(2), 403-429. https://doi.org/10.5194/jm-37-403-2018 Haug, G. H., & Tiedemann, R. (1998). Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393(6686), 673-676. https://doi.org/10.1038/31447 Haywood, A. M., Dolan, A. M., Pickering, S. J., Dowsett, H. J., McClymont, E. L., Prescott, C. L., Salzmann, U., Hill, D. J., Hunter, S. J., Lunt, D. J., Pope, J. O., & Valdes, P. J. (2013). On the identification of a Pliocene time slice for data-model comparison. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 371(2001), Article 20120515. https://doi.org/10.1098/rsta.2012.0515 Helly, J. J., & Levin, L. A. (2004). Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research Part I: Oceanographic Research Papers, 51(9), 1159-1168. https://doi.org/10.1016/j.dsr.2004.03.009 Hendy, I. L., & Pedersen, T. F. (2006). Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation. Geophysical Research Letters, 33(20), Article L20602. https://doi.org/10.1029/2006gl025975 Hoogakker, B., Davis, C., Wang, Y., Kusch, S., Nilsson-Kerr, K., Hardisty, D., Jacobel, A., Reyes Macaya, D., Glock, N., Ni, S., Sepúlveda, J., Ren, A., Auderset, A., Hess, A., Meissner, K., Cardich, J., Anderson, R., Barras, C., Basak, C., . . . Zhou, Y. (2025). Reviews and syntheses: Review of proxies for low-oxygen paleoceanographic reconstructions. Biogeosciences, 22, 863–957. https://doi.org/ https://doi.org/10.5194/bg-22-863-2025 Ivanova, E. V., Beaufort, L., Vidal, L., & Kucera, M. (2012). Precession forcing of productivity in the Eastern Equatorial Pacific during the last glacial cycle. Quaternary Science Reviews, 40, 64-77. https://doi.org/10.1016/j.quascirev.2012.02.020 Jakob, K. A., Wilson, P. A., Bahr, A., Bolton, C. T., Pross, J., Fiebig, J., & Friedrich, O. (2016). Plio-Pleistocene glacial-interglacial productivity changes in the eastern equatorial Pacific upwelling system. Paleoceanography, 31(3), 453-470. https://doi.org/10.1002/2015pa002899 Karstensen, J., Stramma, L., & Visbeck, M. (2008). Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Progress in Oceanography, 77(4), 331-350. https://doi.org/10.1016/j.pocean.2007.05.009 Keeling, R. F., Körtzinger, A., & Gruber, N. (2010). Ocean Deoxygenation in a Warming World. Annual Review of Marine Science, 2, 199-229. https://doi.org/10.1146/annurev.marine.010908.163855 Klinkhammer, G. P., & Bender, M. L. (1980). The distribution of manganese in the Pacific Ocean. Earth and Planetary Science Letters, 46(3), 361-384. https://doi.org/10.1016/0012-821x(80)90051-5 Klinkhammer, G. P., Mix, A. C., & Haley, B. A. (2009). Increased dissolved terrestrial input to the coastal ocean during the last deglaciation. Geochem. Geophys. Geosyst., 10, Article Q03009. https://doi.org/10.1029/2008gc002219 Kuhnt, T., Schiebel, R., Schmiedl, G., Milker, Y., Mackensen, A., & Friedrich, O. (2014). Automated and manual analyses of the pore density-to-oxygen relationship in Globobulimina turgida (BAILEY). Journal of Foraminiferal Research, 44(1), 5-16. https://doi.org/10.2113/gsjfr.44.1.5 Kuroyanagi, A., da Rocha, R. E., Bijma, J., Spero, H. J., Russell, A. D., Eggins, S. M., & Kawahata, H. (2013). Effect of dissolved oxygen concentration on planktonic foraminifera through laboratory culture experiments and implications for oceanic anoxic events. Marine Micropaleontology, 101, 28-32. https://doi.org/10.1016/j.marmicro.2013.04.005 Leutenegger, S., & Hansen, H. J. (1979). Ultrastructural and radiotracer studies of pore function in foraminifer. Marine Biology, 54(1), 11-16. https://doi.org/10.1007/bf00387046 Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records (vol 20, art no PA1003, 2005) : art. no. PA2007. Paleoceanography, 20(1), Article Pa1003. https://doi.org/10.1029/2004pa001071 Liu, Z. H., Altabet, M. A., & Herbert, T. D. (2008). Plio-Pleistocene denitrification in the eastern tropical North Pacific: Intensification at 2.1 Ma. Geochem. Geophys. Geosyst., 9, Article Q11006. https://doi.org/10.1029/2008gc002044 Luyten, J. R., Pedlosky, J., & Stommel, H. (1983). The Ventilated Thermocline. Journal of Physical Oceanography, 13(2), 292-309. https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2 McClymont, E. L., Ho, S. L., Ford, H. L., Bailey, I., Berke, M. A., Bolton, C. T., De Schepper, S., Grant, G. R., Groeneveld, J., Inglis, G. N., Karas, C., Patterson, M. O., Swann, G. E. A., Thirumalai, K., White, S. M., Alonso-Garcia, M., Anand, P., Hoogakker, B. A., Littler, K., . . . Tangunan, D. (2023). Climate Evolution Through the Onset and Intensification of Northern Hemisphere Glaciation. Reviews of Geophysics, 61(3), Article e2022RG000793. https://doi.org/10.1029/2022rg000793 Menzel, D. W., & Ryther, J. H. (1968). Organic carbon and the oxygen minimum in the South Atlantic Ocean. Deep Sea Research and Oceanographic Abstracts, 15(3), 327-337. https://doi.org/10.1016/0011-7471(68)90009-0 Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K., & Hill, T. M. (2015). Paleoceanographic Insights on Recent Oxygen Minimum Zone Expansion: Lessons for Modern Oceanography. Plos One, 10(1), Article e0115246. https://doi.org/10.1371/journal.pone.0115246 Moodley, L., & Hess, C. (1992). Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biological Bulletin, 183(1), 94-98. https://doi.org/10.2307/1542410 Nilsson-Kerr, K., Hoogakker, B. A. A., Macaya, D. A. R., Winkelbauer, H. A., Hamilton, E., Chenery, S., Davis, C., & Leng, M. J. (2025). Late Cenozoic intensification of deoxygenation in the Pacific Ocean. Earth and Planetary Science Letters, 655, Article 119253. https://doi.org/10.1016/j.epsl.2025.119253 Ogg, J. G. (2012). Chapter 5 - Geomagnetic Polarity Time Scale. In F. M. Gradstein, J. G. Ogg, M. D. Schmitz, & G. M. Ogg (Eds.), The Geologic Time Scale (pp. 85-113). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-59425-9.00005-6 OriginLab Corporation. (2024). Origin. In (Version 2024b) OriginLab Corporation. Pallone, C. T., McManus, J. F., & Jacobel, A. W. (2025). Eastern equatorial Pacific paleo-productivity and carbon cycling during the late Pleistocene. Earth and Planetary Science Letters, 656, Article 119255. https://doi.org/10.1016/j.epsl.2025.119255 Paulmier, A., & Ruiz-Pino, D. (2009). Oxygen minimum zones (OMZs) in the modern ocean. Progress in Oceanography, 80(3-4), 113-128. https://doi.org/10.1016/j.pocean.2008.08.001 Petersen, J., Riedel, B., Barras, C., Pays, O., Guihéneuf, A., Mabilleau, G., Schweizer, M., Meysman, F. J. R., & Jorissen, F. J. (2016). Improved methodology for measuring pore patterns in the benthic foraminiferal genus Ammonia. Marine Micropaleontology, 128, 1-13. https://doi.org/10.1016/j.marmicro.2016.08.001 R Core Team. (2024). R: A Language and Environment for Statistical Computing. In (Version R version 4.3.3) R Foundation for Statistical Computing. https://www.R-project.org/ Ravelo, A., Dekens, P., & McCarthy, M. (2006). Evidence for El Niño - Like conditions during the Pliocene. Gsa Today, 16. https://doi.org/10.1130/1052-5173(2006)016<4:EFENLC>2.0.CO;2 Ravelo, A. C., Andreasen, D. H., Lyle, M., Lyle, A. O., & Wara, M. W. (2004). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429(6989), 263-267. https://doi.org/10.1038/nature02567 Richirt, J., Champmartin, S., Schweizer, M., Mouret, A., Petersen, J., Ambari, A., & Jorissen, F. J. (2019). Scaling laws explain foraminiferal pore patterns. Scientific Reports, 9, Article 9149. https://doi.org/10.1038/s41598-019-45617-x Rippert, N., Max, L., Mackensen, A., Cacho, I., Povea, P., & Tiedemann, R. (2017). Alternating Influence of Northern Versus Southern-Sourced Water Masses on the Equatorial Pacific Subthermocline During the Past 240 ka. Paleoceanography, 32(11), 1256-1274. https://doi.org/10.1002/2017pa003133 Schiebel, R., Spielhagen, R. F., Gamier, J., Hagemann, J., Howa, H., Jentzen, A., Martínez-Garcia, A., Meilland, J., Michel, E., Repschläger, J., Salter, I., Yamasaki, M., & Haug, G. (2017). Modern planktic foraminifers in the high-latitude ocean. Marine Micropaleontology, 136, 1-13. https://doi.org/10.1016/j.marmicro.2017.08.004 Schlitzer, R. (2023). Ocean Data View. In odv.awi.de Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content during the past five decades. Nature, 542(7641), 335-+. https://doi.org/10.1038/nature21399 Seki, O., Foster, G. L., Schmidt, D. N., Mackensen, A., Kawamura, K., & Pancost, R. D. (2010). Alkenone and boron-based Pliocene pCO2 records. Earth and Planetary Science Letters, 292(1-2), 201-211. https://doi.org/10.1016/j.epsl.2010.01.037 Seki, O., Schmidt, D. N., Schouten, S., Hopmans, E. C., Damsté, J. S. S., & Pancost, R. D. (2012). Paleoceanographic changes in the Eastern Equatorial Pacific over the last 10 Myr. Paleoceanography, 27, Article Pa3224. https://doi.org/10.1029/2011pa002158 Shipboard Scientific Party. (2003). Site 1241. In A. C. Mix, Tiedemann, R., Blum, P., Et Al. (Ed.), Proc. ODP, Init. Repts., 202 (pp. 1–101). Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.202.112.2003 Simmons, G. R. (1990). Subsidence history of basement sites and sites along a carbonate dissolution profile, leg 115. Proceedings of the Ocean Drilling Program, Initial Reports, 115, 123-126. Sverdrup, H. U. (1938). On the Explanation of the Oxygen Minima and Maxima in the Oceans. ICES Journal of Marine Science, 13(2), 163-172. https://doi.org/10.1093/icesjms/13.2.163 Sykes, T. J. S., & Ramsay, A. T. S. (1995). Calculation of mass accumulation rates in the absence of density or porosity measurements. Marine Geology, 122(3), 173-179. https://doi.org/10.1016/0025-3227(94)00112-x Tiedemann, R., Sturm, A., Steph, S., Lund, S. P., & Stoner, J. (2007). Astronomically calibrated timescales from 6 to 2.5 Ma and benthic isotope stratigraphies, Sites 1236, 1237, 1239, and 1241. Proceedings Ocean Drilling Program Scientific Results, 202, 1-69. https://doi.org/10.2973/odp.proc.sr.202.210.2007 Tribovillard, N., Algeo, T. J., Lyons, T., & Riboulleau, A. (2006). Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232(1-2), 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105(40), 15452-15457. https://doi.org/10.1073/pnas.0803833105 Weiner, A. K. M., Weinkauf, M. F. G., Kurasawa, A., Darling, K. F., & Kucera, M. (2015). Genetic and morphometric evidence for parallel evolution of the Globigerinella calida morphotype. Marine Micropaleontology, 114, 19-35. https://doi.org/10.1016/j.marmicro.2014.10.003 Westerhold, T., Marwan, N., Drury, A. J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J. S. K., Bohaty, S. M., De Vleeschouwer, D., Florindo, F., Frederichs, T., Hodell, D. A., Holbourn, A. E., Kroon, D., Lauretano, V., Littler, K., Lourens, L. J., Lyle, M., Pälike, H., . . . Zachos, J. C. (2020). An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509), 1383-1387. https://doi.org/10.1126/science.aba6853 Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. In Springer-Verlag New York. https://ggplot2.tidyverse.org Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D., & Mahowald, N. (2008). Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science, 320(5872), 93-96. https://doi.org/10.1126/science.1150595 Wyrtki, K. (1962). The oxygen minima in relation to ocean circulation. Deep-Sea Research, 9(1), 11-23. https://doi.org/10.1016/0011-7471(62)90243-7 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99488 | - |
| dc.description.abstract | 先前的研究指出,浮游有孔蟲Globorotaloides hexagonus 喜好生存在缺氧水域中,顯示其作為最低含氧區(Oxygen Minimum Zones, OMZ)研究指標的潛力。然而,由於 G. hexagonus 的運用在古海洋的重建使用相對有限,其與OMZ之間的生地化關係仍須更全面了解。本研究使用取自東赤道太平地區的海洋鑽探計畫 (Ocean Drilling Program, ODP) 1241站位,經由分析樣本中浮游性有孔蟲G. hexagonus的殼體孔隙度變化及其殼體微量元素成分(例如:錳鈣比氧化還原環境的輔助指標),以探討其與OMZ之間的關係,並探討上新世OMZ的演化歷程。研究中鎖定上新世晚期/更新世早期海洋同位素階段 (Marine Isotope Stage, MIS) 96-100(2.55-2.4 百萬年前)和上新世中期MIS M2(3.35-3.25 百萬年前)兩個時期的樣本。首先,我們計算ODP第1241站點 樣本中G. hexagonus 的相對豐度,藉此確定其豐度與OMZ之間是否存在關聯。隨後,我們統計篩選出具有高、低相對豐度的樣本各四個,分析G. hexagonus的、殼體孔隙度(porosity),並運用掃描電子顯微鏡(SEM)拍攝殼體影像,然後使用於前人發表已經訓練的深度學習模型重新訓練,並自動量化孔隙度參數,以克服傳統影像識別耗時及可能破壞樣本的問題。此外,本研究也使用ICP-OES測定殼體錳鈣比及殼層微量元素(錳鈣比)變化,作為氧化還原環境的輔助指標。結果顯示高、低豐度組間的殼體總孔隙度存在顯著差異(p < 0.05),且主要與孔隙的尺寸變化有關,而非孔隙數量,此現象支持此時期的G. hexagonus如同現代樣本可透過調節孔隙度以適應低氧環境的假設。而G. hexagonus相對豐度與孔隙度的資料變化,暗示MIS96-100期間OMZ的厚度與強度發生變化,且此變化與冰期-間冰期循環無關,可能是受而受到與歲差相關的日照變化所影響。另外,研究也發現殼體的錳鈣比值與豐度及孔隙度變化趨勢不一致,顯示其受陸源輸入影響較大,難以直接反映OMZ強度。而MIS M2的樣本資料在豐度及微量元素變化上並不明顯,表明此一暖期時,OMZ呈現相對穩定的狀態。本研究不僅證實了G. hexagonus的豐度與殼體孔隙度可作為重建上新世OMZ變化的有效指標,並揭示其殼體結構對低氧環境的適應機制。未來建議可進一步擴展樣本涵蓋的年代範圍,以連接不同時間區段,來驗證驅動OMZ變化的主要因素。 | zh_TW |
| dc.description.abstract | Exploring the development of Oxygen Minimum Zones (OMZs) during the Plio-Pleistocene (5.3-2.6 Ma) can provide valuable insights into the effects of ongoing climate change. Previous studies suggest that the planktic foraminifer Globorotaloides hexagonus thrives in oxygen-deficient waters, indicating its potential as an indicator for OMZ studies. However, because G. hexagonus has not been used very often in paleo-reconstructions, the biogeochemical relationship between G. hexagonus and OMZs has not yet been fully explored. This study examines three proxies derived from G. hexagonus at Ocean Drilling Program (ODP) Site 1241 in the Eastern Equatorial Pacific, which hosted a significant OMZ during the Pliocene. First focusing on Marine Isotope Stages (MIS) 96–100 (~2.5 Ma) in the Plio-Pleistocene transition, we analyzed G. hexagonus abundance, porosity variations of its test, and test trace metal composition (e.g., redox proxy: Mn/Ca) to explore its relationship with OMZ dynamics. In previous research, modern G. hexagonus also displays porosity variations under different dissolved oxygen levels in the water column. However, detecting pore parameters using image recognition methods is often time-consuming and can be destructive, limiting the efficiency of pore pattern analysis. To implement a more effective and non-destructive approach, we utilized a deep learning image recognition technique to examine G. hexagonus pore patterns. First, we quantified the abundance of G. hexagonus at ODP Site 1241 in the Eastern Equatorial Pacific to determine if a relationship exists between G. hexagonus abundance and oxygen concentrations. We then selected four samples with high or low G. hexagonus abundance and captured their images using scanning electron microscopy (SEM). Building on a previously trained deep learning algorithm for benthic foraminifera, we retrained the model specifically for G. hexagonus SEM images to obtain detailed pore parameter data. The results reveal significant variations in G. hexagonus porosity between high- and low-abundance samples, suggesting that G. hexagonus may adapt to low-oxygen conditions by increasing porosity. Notably, these porosity changes are primarily driven by alterations in pore size rather than the number of pores. The variations in the abundance of G. hexagonus along with the porosity results suggest the OMZ varied during MIS96-100, and could have indicated that the OMZ changed in thickness and intensity independently of glacial-interglacial cycles. Instead, a potential precession-related variability in insolation might dominate. On the other hand, Mn/Ca in the tests, measured with ICP-OES, does not correspond with abundance or porosity data but shows potential influence from the 41-kyr obliquity cycle. We suggest that Mn/Ca in G. hexagonus may reflect terrestrial input in the region rather than the OMZ intensity, and thus may not be a direct indicator for OMZ variation in the paleo-reconstruction. Furthermore, we also look into the interval around MIS M2 (covering 3.35–3.25 Ma, including MIS KM5c). Our data show less variability in abundance and trace metals proxies, suggesting that the OMZ was more stable in the warm Pliocene. Although the current results cover only the MIS96-100 and MIS M2, they provide insight into how each proxy derived from G. hexagonus can be employed for OMZ paleo-studies. Future work will quantify the abundance and trace metals of G. hexagonus across a wider age range throughout the Pliocene (connecting the two studied intervals) to determine the primary drivers of the observed variations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:26:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:26:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | MASTER’S THESIS ACCEPTANCE CERTIFICATE i
ACKNOWLEDGEMENT ii 中文摘要 iii ABSTRACT iv TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES x Chapter 1 INTRODUCTION 1 1.1 Motivation and Background 1 1.2 The Oxygen Minimum Zone (OMZ) 3 1.3 Geological Setting 5 1.4 Proxies Background 9 1.4.1 Globorotaloides hexagonus as OMZ Indicator 9 1.4.2 Pore Patterns of G. hexagonus 10 1.4.3 Mn/Ca Ratio 11 1.5 Purpose and Outlines 13 Chapter 2 MATERIAL AND METHODS 15 2.1 Sampling and Core Details 15 2.2 Determine G. hexagonus Relative Abundance 17 2.3 Porosity Analysis Using Deep Learning 19 2.3.1 Image Acquisition and Preprocessing 19 2.3.2 Deep Learning Training and Workflow for G. hexagonus 20 2.3.3 Data processing 21 2.4 Trace Element/Calcium 26 2.4.1 Sample Cleaning and Dissolution 26 2.4.2 Sample Analysis 29 2.5 Software and Statistics 30 Chapter 3 RESULTS 31 3.1 Relative Abundance of G. hexagonus 31 3.2 Pore Patterns of G. hexagonus 34 3.3 Trace Metals: Mn/Ca and Mg/Ca 39 Chapter 4 DISCUSSION 43 4.1 Abundance vs. Orbital signals in MIS96-100 43 4.2 Deep learning on G. hexagonus 46 4.3 Controlling factor: Pore Density or Pore Sizes? 48 4.4 Abundance + Porosity vs. Trace Metals 53 4.5 MIS M2 Interval 59 4.6 Limitations and Future Work 62 Chapter 5 CONCLUSIONS 63 REFERENCES 65 APPENDIX 79 | - |
| dc.language.iso | en | - |
| dc.subject | 孔隙度 | zh_TW |
| dc.subject | 微量元素 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 上新世 | zh_TW |
| dc.subject | 浮游有孔蟲 | zh_TW |
| dc.subject | 最低含氧區 | zh_TW |
| dc.subject | Globorotaloides hexagonus | en |
| dc.subject | Mn/Ca | en |
| dc.subject | Deep learning | en |
| dc.subject | Eastern Equatorial Pacifi | en |
| dc.subject | Plio-Pleistocene | en |
| dc.subject | Porosity | en |
| dc.subject | Oxygen Minimum Zone (OMZ) | en |
| dc.subject | Planktic foraminifera | en |
| dc.title | 利用 Globorotaloides hexagonus 重建上新世-更新世東太平洋的最低含氧區 | zh_TW |
| dc.title | Reconstructing the Oxygen Minimum Zone in the East Pacific during the Plio-Pleistocene using Globorotaloides hexagonus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張詠斌;羅立 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Pin Chang;Li Lo | en |
| dc.subject.keyword | 浮游有孔蟲,上新世,最低含氧區,孔隙度,深度學習,微量元素, | zh_TW |
| dc.subject.keyword | Planktic foraminifera,Oxygen Minimum Zone (OMZ),Globorotaloides hexagonus,Plio-Pleistocene,Porosity,Mn/Ca,Deep learning,Eastern Equatorial Pacifi, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202501732 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2030-07-27 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
