請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99487完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 童世煌 | zh_TW |
| dc.contributor.advisor | Shih-Huang Tung | en |
| dc.contributor.author | 徐子翔 | zh_TW |
| dc.contributor.author | Zi-Xiang Xu | en |
| dc.date.accessioned | 2025-09-10T16:26:25Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | (1) Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polymer Testing 2016, 54, 19-28.
(2) Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly (lactic acid)/wood flour composites. Composites Part A: Applied Science and Manufacturing 2017, 103, 283-291. (3) Freitas, F. L. S.; Chinellato, A. C.; Pereira Filho, E. R.; Cruz, S. A. Evaluation of the effect of additives on thermo-oxidative and hydrolytic stabilization of recycled post-consumer poly (ethylene terephthalate) using Design of Experiments. Polymer Testing 2020, 81, 106275. (4) Sun, C.; Huang, Z.; Liu, Y.; Li, C.; Tan, H.; Zhang, Y. The effect of carbodiimide on the stability of wood fiber/poly (lactic acid) composites during soil degradation. Journal of Polymers and the Environment 2020, 28, 1315-1325. (5) Freitas, F. L. S.; Chinellato, A. C.; Cruz, S. A. molar mass alteration during post-consumer PET recycling using polycarbodiimide-based additive. Journal of Polymers and the Environment 2021, 29, 734-744. (6) Sun, X.; Chen, L.; Wang, R.; Jiang, M.; Sun, M.; Liang, W. Control of hydrolytic degradation of polyglycolic acid using chain extender and anti‐hydrolysis agent. Journal of Applied Polymer Science 2022, 139 (25), e52398. (7) Bi, T.-T.; Shuai, M.-K.; Gong, Y.; Ding, Q.; Sun, K.-Y.; Tang, X.-F.; Yang, Z.-G.; Zhang, Z.-Z. Effect of hydrolysis stabilizers on anti-aging performance of PET under pressure cooker test. Polymer Degradation and Stability 2024, 225, 110816. (8) Paiva, R.; Bonatti, S. H.; Estremera, C.; Wrona, M.; Ramos, V. M.; de Lima Batista, A. P.; Staffa, L. H.; Nerín, C.; Cruz, S. A. How Carbodiimide Modulates Oligomer Migration and Molar Mass in Recycled Poly (lactic acid): A Study Using UPLC-QTOF-MSE. ACS Applied Polymer Materials 2024, 6 (24), 15230-15241. (9) Ren, J.; Zeng, C.; Zhang, S.; Xu, J.; Tian, H.; Ji, P.; Wang, C.; Wang, H. Enhancing flame retardancy and hydrolysis resistance of flame retardant copolyester fibers by reactive carbodiimide. Polymer Degradation and Stability 2024, 223, 110713. (10) Zhang, Y.; Liu, C.; Chen, K.; Fan, J.; Zhang, Z.; Li, B.; Xu, Y.; Zhang, X. Comprehensive study of the steam-aging degradation behaviors and its correspondence to aging mechanism of PET monofilaments under artificially accelerated environment. Polymer 2025, 128159. (11) Deopura, B.; Alagirusamy, R.; Joshi, M.; Gupta, B. Polyesters and polyamides; Elsevier, 2008. (12) Kannan, G.; Grieshaber, S. E.; Zhao, W. Thermoplastic polyesters. Handbook of Thermoplastics 2016, 41, 319. (13) Mandal, S.; Dey, A. PET chemistry. In Recycling of Polyethylene Terephthalate Bottles, Elsevier, 2019; pp 1-22. (14) Pang, K.; Kotek, R.; Tonelli, A. Review of conventional and novel polymerization processes for polyesters. Progress in polymer science 2006, 31 (11), 1009-1037. (15) Lagaron, J.; Catalá, R.; Gavara, R. Structural characteristics defining high barrier properties in polymeric materials. Materials science and technology 2004, 20 (1), 1-7. (16) Han, X.; Zhang, Y.; Wang, R.; Ren, C.; Qu, C.; Niu, X.; Xiao, W.; Chen, H.; Yin, P. High Heat Resistance, Barrier Property, and Low Carbon Emission PET for Sustainable Food Packaging Applications Based on Biobased Functional Monomers. Macromolecules 2025. (17) Insights, F. B. Polyethylene Terephthalate (PET) Market Size, Share & Industry Analysis, By Type (Virgin and Recycled), Application (Rigid Packaging, Film, Sheets & Straps, and Others), and Regional Forecast, 2024-2032. Fortune Business Insights, 2025. https://www.fortunebusinessinsights.com/industry-reports/polyethylene-terephthalate-pet-market-101743 (accessed 2025 6/4). (18) Insights, F. B. PET Packaging Market Size, Share & Industry Analysis, By Packaging Type (Rigid Packaging and Flexible Packaging), By Product Type (Bottles & Jars, Caps & Closures, Trays & Clamshells, Bags & Pouches, Films & Wraps, Sachets & Stick Packs, and Cans & Containers), By End-user (Food & Beverage, Pharmaceutical, Personal Care & Cosmetics, Automotive, Electricals & Electronics, Chemicals, Building & Construction, Agriculture, Household, and Others), and Regional Forecast, 2024-2032. Fortune Business Insights, 2025. (accessed 2025 6/5). (19) Vyavahare, S. A.; Kharat, B. M.; More, A. P. Polybutylene terephthalate (PBT) blends and composites: A review. Vietnam Journal of Chemistry 2024, 62 (5), 579-589. (20) Cheng, S. Z.; Pan, R.; Wunderlich, B. Thermal analysis of poly (butylene terephthalate) for heat capacity, rigid‐amorphous content, and transition behavior. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics 1988, 189 (10), 2443-2458. (21) Turner, S.; Liu, Y. Chemistry and technology of step-growth polyesters. Polymer science: a comprehensive reference 2012, 311-331. (22) Prezenszky, A. C.; Ambrósio, J. D.; Pessan, L. A.; Hage Jr, E. Correlation between processing, morphology and impact resistance of PBT/ABS blends. Materials Research 2017, 20 (Suppl 2), 452-457. (23) Liu, X.; Bertilsson, H. Recycling of ABS and ABS/PC blends. Journal of applied polymer science 1999, 74 (3), 510-515. (24) Tai, C.; Li, R. K.; Ng, C. Impact behaviour of polypropylene/polyethylene blends. Polymer Testing 2000, 19 (2), 143-154. (25) Halimatudahliana, H. I.; Nasir, M. The effect of various compatibilizers on mechanical properties of polystyrene/polypropylene blend. Polymer Testing 2002, 21 (2), 163-170. (26) Liu, X.; Boldizar, A.; Rigdahl, M.; Bertilsson, H. Recycling of blends of acrylonitrile–butadiene–styrene (ABS) and polyamide. Journal of Applied Polymer Science 2002, 86 (10), 2535-2543. (27) Bhattacharyya, A. R.; Maiti, S.; Misra, A. Mechanical properties and morphology of PA6/EVA blends. Journal of applied polymer science 2002, 85 (8), 1593-1606. (28) Golovoy, A.; Cheung, M. F.; Carduner, K.; Rokosz, M. Control of transesterification in polyester blends. Polymer Engineering & Science 1989, 29 (18), 1226-1231. (29) Avramova, N.; Fakirov, S.; Avramov, I. High performance polyamide‐6 and blends of poly (ethylene terephthalate) and poly (butylene terephthalate) through ultraquenching. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics 1992, 199 (1), 129-135. (30) Miley, D.; Runt, J. Transesterification in poly (butylene terephthalate)/polyarylate blends. Polymer 1992, 33 (21), 4643-4646. (31) Avramova, N. Amorphous poly (ethylene terephthalate)/poly (butylene terephthalate) blends: miscibility and properties. Polymer 1995, 36 (4), 801-808. (32) Szostak, M. Mechanical and thermal properties of PET/PBT blends. Molecular Crystals and Liquid Crystals 2004, 416 (1), 209-215. (33) Aravinthan, G.; Kale, D. Blends of poly (ethylene terephthalate) and poly (butylene terephthalate). Journal of Applied Polymer Science 2005, 98 (1), 75-82. (34) Wang, F.; Meng, X.; Xu, X.; Wen, B.; Qian, Z.; Gao, X.; Ding, Y.; Zhang, S.; Yang, M. Inhibited transesterification of PET/PBT blends filled with silica nanoparticles during melt processing. Polymer Degradation and Stability 2008, 93 (8), 1397-1404. (35) Shin, H.; Park, E. S. Mechanical and dielectric breakdown properties of PBT/TPE, PBT/PBT/PET, and PBT/antioxidant blends. Journal of Applied Polymer Science 2009, 114 (5), 3008-3015. (36) Poulose, A. M.; Piccarolo, S.; Carbone, D.; Al‐Zahrani, S. M. Influence of plasticizers and cryogenic grinding on the high‐cooling‐rate solidification behavior of PBT/PET blends. Journal of Applied Polymer Science 2016, 133 (10). (37) Nofar, M.; Oğuz, H. Development of PBT/recycled-PET blends and the influence of using chain extender. Journal of Polymers and the Environment 2019, 27, 1404-1417. (38) Saidi, M. A. A.; Hassan, A.; Wahit, M. U.; Choy, L. J.; Anuar, H. Thermal, dynamic mechanical analysis and mechanical properties of polybutylene terephthalate/polyethylene terephthalate blends. Jurnal Teknologi (Sciences & Engineering) 2020, 82 (5). (39) Ucpinar Durmaz, B.; Ozturk, C.; Aytac, A. Reduced graphene oxide reinforced PET/PBT nanocomposites: Compatibilization and characterization. Polymer Engineering & Science 2020, 60 (10), 2606-2618. (40) Chen, S.; Fu, X.; Jing, Z.; Chen, H. Non-isothermal crystallization kinetics and rheological behaviors of PBT/PET blends: effects of PET property and nano-silica content. Designed Monomers and Polymers 2022, 25 (1), 32-46. (41) Guclu, M.; Alkan Göksu, Y.; Özdemir, B.; Ghanbari, A.; Nofar, M. Thermal stabilization of recycled PET through chain extension and blending with PBT. Journal of Polymers and the Environment 2022, 1-9. (42) Himmelsbach, A.; Brütting, C.; Akdevelioglu, Y.; Albuquerque, R. Q.; Nofar, M.; Ruckdäschel, H. Non‐isothermal crystallization kinetic of recycled PET and its blends with PBT modified with epoxy‐based multifunctional chain extender. Journal of Applied Polymer Science 2024, 141 (19), e55357. (43) Aliberti, F.; Oliviero, M.; Longo, R.; Guadagno, L.; Sorrentino, A. Effect of Crystallinity on the Printability of Poly (ethylene Terephthalate)/Poly (butylene Terephthalate) Blends. Polymers 2025, 17 (2), 156. (44) Lee, S. S.; Kim, J.; Park, M.; Lim, S.; Choe, C. R. Transesterification reaction of the BaSO4‐filled PBT/poly (ethylene terephthalate) blend. Journal of Polymer Science Part B: Polymer Physics 2001, 39 (21), 2589-2597. (45) Ma, Y.; Zha, L.; Hu, W.; Reiter, G.; Han, C. C. Crystal nucleation enhanced at the diffuse interface of immiscible polymer blends. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 2008, 77 (6), 061801. (46) Jacques, B.; Devaux, J.; Legras, R.; Nield, E. NMR study of ester‐interchange reactions during melt mixing of poly (ethylene terephthalate)/poly (butylene terephthalate) blends. Journal of Polymer Science Part A: Polymer Chemistry 1996, 34 (7), 1189-1194. (47) Backsona, S.; Richards, R.; King, S. Small angle neutron scattering investigation of transesterification in poly (ethylene terephthalate)-poly (butylene terephthalate) mixtures. Polymer 1999, 40 (15), 4205-4211. (48) Cooper, S. L.; Estes, G. M. Multiphase polymers; ACS Publications, 1979. (49) Eitouni, H. B.; Balsara, N. P. Thermodynamics of polymer blends. In Physical Properties of Polymers Handbook, Springer, 2007; pp 339-356. (50) Allan, R. P.; Arias, P. A.; Berger, S.; Canadell, J. G.; Cassou, C.; Chen, D.; Cherchi, A.; Connors, S. L.; Coppola, E.; Cruz, F. A. Intergovernmental panel on climate change (IPCC). Summary for policymakers. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, Cambridge University Press, 2023; pp 3-32. (51) Seneviratne, S. I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A. D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S. Weather and climate extreme events in a changing climate. 2021. (52) Arhant, M.; Le Gall, M.; Le Gac, P.-Y.; Davies, P. Impact of hydrolytic degradation on mechanical properties of PET-Towards an understanding of microplastics formation. Polymer degradation and stability 2019, 161, 175-182. (53) Arhant, M.; Le Gall, M.; Le Gac, P.-Y. Fracture test to accelerate the prediction of polymer embrittlement during aging–Case of PET hydrolysis. Polymer Degradation and Stability 2022, 196, 109848. (54) Doyle, L.; Weidlich, I. Hydrolytic degradation of closed cell polyethylene terephthalate foams. The role of the mobile amorphous phase in the ductile-brittle transition. Polymer Degradation and Stability 2022, 202, 110022. (55) Bellenger, V.; Ganem, M.; Mortaigne, B.; Verdu, J. Lifetime prediction in the hydrolytic ageing of polyesters. Polymer degradation and stability 1995, 49 (1), 91-97. (56) Pickett, J. E.; Coyle, D. J. Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polymer Degradation and Stability 2013, 98 (7), 1311-1320. (57) Loyer, C.; Régnier, G.; Duval, V.; Ould, Y.; Richaud, E. PBT plasticity loss induced by oxidative and hydrolysis ageing. Polymer Degradation and Stability 2020, 181, 109368. (58) Loyer, C.; Regnier, G.; Duval, V.; Richaud, E. Multiscale study of poly (butylene terephthalate) hydrolysis. Polymer Degradation and Stability 2021, 192, 109690. (59) Arhant, M.; Le Gall, M.; Le Gac, P.-Y. Non-Arrhenian hydrolysis of polyethylene terephthalate–A 5-year long aging study above and below the glass transition temperature. Polymer Degradation and Stability 2023, 215, 110439. (60) Kadoma, A.; Jiao, Q.; Vlassak, J. J.; Suo, Z. Hydrolytic crack growth and embrittlement in poly (ethylene terephthalate). Journal of the Mechanics and Physics of Solids 2023, 176, 105303. (61) Oreski, G.; Ottersböck, B.; Barretta, C.; Christöfl, P.; Radl, S.; Pinter, G. Degradation of PET–quantitative estimation of changes in molar mass using mechanical and thermal characterization methods. Polymer Testing 2023, 125, 108130. (62) Limsukon, W.; Auras, R.; Selke, S. Hydrolytic degradation and lifetime prediction of poly (lactic acid) modified with a multifunctional epoxy-based chain extender. Polymer Testing 2019, 80, 106108. (63) Lv, S.; Gu, J.; Tan, H.; Zhang, Y. Modification of wood flour/PLA composites by reactive extrusion with maleic anhydride. Journal of Applied Polymer Science 2016, 133 (15). (64) Khaledi, B.; Golshan Ebrahimi, N. Structural analysis of poly (ethylene terephthalate) modified by polypropylene‐graft‐maleic anhydride from rheological data. Journal of Applied Polymer Science 2019, 136 (1), 46896. (65) Tuna, B.; Ozkoc, G. Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly (lactic acid). Journal of Polymers and the Environment 2017, 25, 983-993. (66) Stloukal, P.; Kalendova, A.; Mattausch, H.; Laske, S.; Holzer, C.; Koutny, M. The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polymer Testing 2015, 41, 124-132. (67) Zhang, Y.; Liu, C.; Chen, K.; Fan, J.; Zhang, Z.; Li, B.; Xu, Y.; Zhang, X. Comprehensive study of the steam-aging degradation behaviors and its correspondence to aging mechanism of PET monofilaments under artificially accelerated environment. Polymer 2025, 322, 128159. (68) Niu, H.; Lyu, M.; Guo, P.; Zhang, Z.; Xu, Y.; Zhang, C.; Liu, X.; Ren, M.; Zhang, S. Effect of Antihydrolysis Agents on the Structure and Properties of PBAT/PGA Blend Films under Artificial Accelerated Weathering. Industrial & Engineering Chemistry Research 2024, 63 (8), 3504-3513. (69) Porfyris, A.; Vasilakos, S.; Zotiadis, C.; Papaspyrides, C.; Moser, K.; Van der Schueren, L.; Buyle, G.; Pavlidou, S.; Vouyiouka, S. Accelerated ageing and hydrolytic stabilization of poly (lactic acid)(PLA) under humidity and temperature conditioning. Polymer Testing 2018, 68, 315-332. (70) Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Wood-Adams, P. M. Control of thermal degradation of polylactide (PLA)-clay nanocomposites using chain extenders. Polymer Degradation and Stability 2012, 97 (4), 554-565. (71) Yang, H. J.; Kim, Y. K.; Son, J. A.; Choi, I. S.; Lim, S. K. Preparation of modified polylactic acid fiber containing anti‐hydrolysis agents. Journal of Applied Polymer Science 2023, 140 (38), e54436. (72) Illers, K.-H. Heat of fusion and specific volume of poly (ethylene terephthalate) and poly (butylene terephthalate. Colloid and Polymer Science 1980, 258, 117-124. (73) Runt, J.; Miley, D.; Zhang, X.; Gallagher, K.; McFeaters, K.; Fishburn, J. Crystallization of poly (butylene terephthalate) and its blends with polyarylate. Macromolecules 1992, 25 (7), 1929-1934. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99487 | - |
| dc.description.abstract | 聚對苯二甲酸乙二酯(PET)具高剛性、優異的機械性質與出色的阻氣性;聚對苯二甲酸丁二酯(PBT)則結晶速度快、韌性高,且加工效率高。將兩者熔融混摻可同時兼具PET的強度與PBT的成形優勢,因此廣泛用於汽車、電子與包裝等工程應用。然而兩種聚酯在高溫高濕條件下易發生水解,分子量迅速衰減,造成材料脆化並縮短使用壽命。
為探討其濕熱老化行為,本研究以熔融混煉製備不同比例的PBT/PET共混物,並加入不同含量的碳二亞胺(BDICDI)抗水解劑,於85°C/85% RH進行長達800小時老化,並使用拉伸試驗、SEC、DSC及SAXS分析機械性質、分子量、結晶行為與微觀結構的變化。 結果顯示,在85°C/85% RH濕熱老化下,PBT/PET共混物的抗拉強度隨老化時間顯著衰減。主要原因是鏈段水解使分子量急劇下降,隨後的化學結晶又縮短層狀週期與無定形區厚度,並伴隨tie-chains與分子糾纏的流失,最終導致材料脆化。然而僅添加0.5 phr BDICDI即能在500小時老化後維持抗拉強度;當添加量高於1.5 phr以上,經800小時老化後抗拉強度仍可保留75%以上。SEC、DSC及SAXS分析證實BDICDI可與聚酯末端羧酸以及水分反應,從而減緩分子量下降及隨後的化學結晶,並穩定層狀週期與無定形區厚度,保留充足的tie-chains與分子糾纏。此外,本研究進一步建立了抗拉強度與重量平均分子量(Mw)的對應曲線,並量化各配方的臨界分子量Mc,為聚酯材料的配方優化與壽命評估提供量化依據。 綜上所述,本研究闡明了PBT/PET共混物在濕熱環境下的降解與結晶機制,也證實BDICDI的抗水解能力。此成果可用於含回收料之聚酯配方,減輕二次加工帶來的分子量衰減,並為極端氣候下聚酯產品的設計與耐久預測提供具體參考。 | zh_TW |
| dc.description.abstract | Polyethylene terephthalate (PET) has high rigidity, excellent mechanical properties, and outstanding gas barrier performance. Polybutylene terephthalate (PBT) features fast crystallization, high toughness, and efficient processability. Blending the two through melt mixing allows the material to retain the strength of PET and the molding advantages of PBT, making it widely used in automotive, electronics, and packaging applications. However, both polyesters are prone to hydrolysis under high temperature and humidity, leading to rapid molecular weight degradation, material brittleness, and reduced service life.
To evaluate their hygrothermal ageing behavior, PBT/PET blends with various compositions were prepared by melt compounding, and bis(2,6-diisopropylphenyl) carbodiimide (BDICDI) was incorporated at different loadings as a hydrolysis stabiliser. The blend samples were aged for up to 800 h at 85 °C and 85 % RH, and changes in mechanical properties, molar mass, crystallization behavior and microstructure were examined by tensile testing, SEC, DSC and SAXS. The results show that, at 85 °C and 85 % RH, the tensile strength of PBT/PET blends decreases markedly with aging time. The main reason is chain-scission hydrolysis, which sharply lowers the molecular weight. The resulting chemi-crystallization then shortens the long period and amorphous region thickness. At the same time, tie-chains and molecular entanglements are lost, and the material eventually becomes brittle. Adding only 0.5 phr BDICDI can keep the tensile strength after 500 h of ageing, and the doses above 1.5 phr still preserve more than 75% of the tensile strength after 800 h. SEC, DSC, and SAXS analyses confirm that BDICDI reacts with terminal carboxyl groups and moisture, thereby slowing the molecular-weight drop and subsequent chemi-crystallization, stabilizing the long period and amorphous region thickness, and retaining ample tie-chains and entanglements. In addition, the correlation curve between tensile strength and weight-average molecular weight (Mw) was established, and the critical molecular weight (Mc) for each formulation was quantified, providing a basis for optimizing polyester formulations and evaluating their lifespan. In conclusion, this study clarifies how PBT/PET blends degrade and crystallize under hygrothermal conditions and confirms the hydrolysis-blocking effect of BDICDI. The results can guide polyester formulations that include recycled resin by reducing molecular-weight loss during reprocessing and offer concrete reference points for the design and durability prediction of polyester products intended for extreme climates. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:26:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:26:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv 目 次 vi 圖 次 ix 表 次 xiii 第一章 緒論 1 1.1 前言及研究動機 1 第二章 文獻回顧 3 2.1 PET與PBT熱塑性材料 3 2.1.1 聚對苯二甲酸乙二酯(PET) 3 2.1.2 聚對苯二甲酸丁二酯(PBT) 5 2.1.3 PBT/PET共混物 6 2.2 聚酯材料在濕熱環境的老化行為 11 2.3 抗水解劑(Hydrolysis Stabilizers) 14 第三章 實驗方法與儀器 18 3.1 實驗藥品 18 3.1.1 聚對苯二甲酸丁二酯 (Polybutylene terephthalate, PBT) 18 3.1.2 聚對苯二甲酸乙二酯 (polyethylene terephthalate, PET) 18 3.1.3 雙(2,6-二異丙基苯基)碳二亞胺 (Bis(2,6-diisopropylphenyl)carbodiimide, BDICDI) 19 3.1.4 六氟異丙醇 (1,1,1,3,3,3-Hexafluoro-2-propanol, HFIP) 19 3.1.5 氘代三氟乙酸 (Trifluoroacetic acid-d, TFA-d) 20 3.1.6 氘代氯仿 (Chloroform-d) 20 3.2 實驗樣品製備步驟 21 3.2.1 混煉樣品製備 21 3.2.1.1 PBT/PET共混物 21 3.2.1.2 PBT/PET/BDICDI共混物 22 3.2.2 PBT/PET膜 25 3.2.3 高溫高濕老化實驗 26 3.2.4 拉伸試片 26 3.3 實驗儀器與分析方法 27 3.3.1 微量雙螺桿混煉機(Micro-Compounder MC 15 HT, MC 15 HT) 27 3.3.2 熱壓成型機 (Hot Press Molding Machine) 28 3.3.3 核磁共振光譜儀(Nuclear Magnetic Resonance Spectrometer, NMR) 29 3.3.4 尺寸排阻色譜法(Size Exclusion Chromatography, SEC) 31 3.3.5 微差掃描量熱儀(Differential Scanning Calorimeter, DSC) 32 3.3.6 小角及廣角X射線散射(Small- and Wide-Angle X-ray Scattering, SAXS/WAXS) 34 3.3.7 一維相關函數(One-dimensional correlation function) 37 3.3.8 萬能試驗機(Universal Testing Machine, UTM) 39 第四章 結果與討論 41 4.1 組成與相容性分析 41 4.1.1 PBT/PET共混物組成分析 41 4.1.2 PBT/PET共混物相容性分析 43 4.2 85°C/85% RH老化後機械性質分析 45 4.2.1 未添加BDICDI 45 4.2.2 添加BDICDI 47 4.3 分子量分析 53 4.3.1 PBT與PET混煉前後之分子量變化 53 4.3.2 85°C/85% RH老化後分子量分析 55 4.4 以最大抗拉強度決定臨界分子量Mc 60 4.5 BDICDI抗水解機制 63 4.6 85°C/85% RH老化後結晶度分析 67 4.7 85°C/85% RH老化後層狀週期變化 74 4.7.1 SAXS分析 74 4.7.2 一維相關函數分析 79 第五章 結論 84 第六章 未來研究方向 86 第七章 參考資料 87 第八章 附錄 93 一、 1H-NMR 93 二、 UTM 97 三、 SEC 102 四、 DSC 107 五、 SAXS 116 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | PBT | zh_TW |
| dc.subject | PET | zh_TW |
| dc.subject | BDICDI | zh_TW |
| dc.subject | 混煉 | zh_TW |
| dc.subject | 抗水解劑 | zh_TW |
| dc.subject | 濕熱老化 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | PET | en |
| dc.subject | mechanical properties | en |
| dc.subject | hygrothermal aging | en |
| dc.subject | hydrolysis stabilizer | en |
| dc.subject | melt blending | en |
| dc.subject | BDICDI | en |
| dc.subject | PBT | en |
| dc.title | PBT/PET共混物濕熱老化行為之研究 | zh_TW |
| dc.title | Study on the Hygrothermal Aging Behaviors of PBT/PET Blends | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭如忠;梁文傑;廖英志 | zh_TW |
| dc.contributor.oralexamcommittee | Ru-Jong Jeng;Man-kit Leung;Ying-Chih Liao | en |
| dc.subject.keyword | PBT,PET,BDICDI,混煉,抗水解劑,濕熱老化,機械性質, | zh_TW |
| dc.subject.keyword | PBT,PET,BDICDI,melt blending,hydrolysis stabilizer,hygrothermal aging,mechanical properties, | en |
| dc.relation.page | 117 | - |
| dc.identifier.doi | 10.6342/NTU202502627 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-29 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
