請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99486完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施博仁 | zh_TW |
| dc.contributor.advisor | Po-Jen Shih | en |
| dc.contributor.author | 廖焄伶 | zh_TW |
| dc.contributor.author | Hsun-Ling Liao | en |
| dc.date.accessioned | 2025-09-10T16:26:14Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-28 | - |
| dc.identifier.citation | 1. Voleti, V.B. and J.-P. Hubschman, Age-related eye disease. Maturitas, 2013. 75(1): p. 29-33.
2. Organization, W.H., Universal eye health: a global action plan 2014-2019, in Universal eye health: a global action plan 2014-2019. 2013. 3. Steinmetz, J.D., et al., Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. The Lancet Global Health, 2021. 9(2): p. e144-e160. 4. Kamińska, A., et al., A national registry-based epidemiological study to evaluate 395 646 patients hospitalized due to eye diseases in Poland in 2019. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 2023. 29: p. e939351-1. 5. 汪開勛, et al., 台灣門診及住院眼睛手術處置之流行病學:2012-2019年. Journal of Data Analysis, 2021. 16(3): p. 65-79. 6. Dahaghin, A., et al., Investigation of crystalline lens overshooting: ex vivo experiment and optomechanical simulation results. Frontiers in Bioengineering and Biotechnology, 2024. 12: p. 1348774. 7. Wu, C., et al., Assessing the biomechanical properties of the porcine crystalline lens as a function of intraocular pressure with optical coherence elastography. Biomedical Optics Express, 2018. 9(12): p. 6455-6466. 8. Lee, D.A. and E.J. Higginbotham, Glaucoma and its treatment: a review. American journal of health-system pharmacy, 2005. 62(7): p. 691-699. 9. Dahaghin, A., et al., Effect of intraocular pressure on crystalline lens oscillations: a computational study using porcine eye model. PloS one, 2025. 20(3): p. e0320205. 10. Schenker, H.I., et al., Exercise-induced increase of intraocular pressure in the pigmentary dispersion syndrome. American journal of ophthalmology, 1980. 89(4): p. 598-600. 11. Atchison, D., Optics of the human eye. 2023: CRC Press. 12. Ferwerda, J.A., Fundamentals of spatial vision. Applications of visual perception in computer graphics, 1998. 140. 13. Goel, M., et al., Aqueous humor dynamics: a review. The open ophthalmology journal, 2010. 4: p. 52. 14. Remington, L.A. and D. Goodwin, Clinical Anatomy and Physiology of the Visual System E-book: Clinical Anatomy and Physiology of the Visual System E-book. 2021: Elsevier Health Sciences. 15. Sebag, J., Imaging vitreous. Eye, 2002. 16(4): p. 429-439. 16. Kokavec, J., et al., Biochemical analysis of the living human vitreous. Clinical & experimental ophthalmology, 2016. 44(7): p. 597-609. 17. Armstrong, R. and R. Cubbidge, The eye and vision: an overview. Handbook of Nutrition, Diet and the Eye, 2014: p. 3-9. 18. Jay, J., Functional organization of the human eye. BJA: British Journal of Anaesthesia, 1980. 52(7): p. 649-654. 19. Pescosolido, N., et al., Age-related changes in the kinetics of human lenses: prevention of the cataract. International Journal of Ophthalmology, 2016. 9(10): p. 1506. 20. Wang, K. and B.K. Pierscionek, Biomechanics of the human lens and accommodative system: Functional relevance to physiological states. Progress in retinal and eye research, 2019. 71: p. 114-131. 21. Cheng, C., R.B. Nowak, and V.M. Fowler, The lens actin filament cytoskeleton: Diverse structures for complex functions. Experimental eye research, 2017. 156: p. 58-71. 22. Asbell, P.A., et al., Age-related cataract. The Lancet, 2005. 365(9459): p. 599-609. 23. Donaldson, P.J., et al., The physiological optics of the lens. Progress in retinal and eye research, 2017. 56: p. e1-e24. 24. Ruan, X., et al., Structure of the lens and its associations with the visual quality. BMJ Open Ophthalmology, 2020. 5(1): p. e000459. 25. Ang, M.J. and N.A. Afshari, Cataract and systemic disease: A review. Clinical & experimental ophthalmology, 2021. 49(2): p. 118-127. 26. Chen, W., X. Tan, and X. Chen, Anatomy and physiology of the crystalline lens. Pediatric lens diseases, 2017: p. 21-28. 27. Tucker, R., Comparative and functional studies on the suspensory apparatus of the lens (Mammalia). Zeitschrift für Morphologie der Tiere, 1973. 74(3): p. 171-191. 28. Bourge, J.-L., et al., Zonular fibers, multimolecular composition as related to function (elasticity) and pathology. Pathologie Biologie, 2007. 55(7): p. 347-359. 29. Schachar, R.A., The mechanism of accommodation and presbyopia. International ophthalmology clinics, 2006. 46(3): p. 39-61. 30. Peng, Y., et al. Modeling of Human Crystalline Lens. in 2008 2nd International Conference on Bioinformatics and Biomedical Engineering. 2008. IEEE. 31. Remington, L. and D. Goodwin, Chapter 5-crystalline lens. Clinical anatomy and physiology of the visual system. St. Louis: Elsevier, 2012: p. 93-108. 32. Streeten, B.W., The nature of the ocular zonule. Transactions of the American Ophthalmological Society, 1982. 80: p. 823. 33. Pardue, M.T. and J.G. Sivak, Age-related changes in human ciliary muscle. Optometry and Vision Science, 2000. 77(4): p. 204-210. 34. Knaus, K.R., A. Hipsley, and S.S. Blemker, The action of ciliary muscle contraction on accommodation of the lens explored with a 3D model. Biomechanics and Modeling in Mechanobiology, 2021. 20: p. 879-894. 35. Remington, L.A. and L. Remington, Uvea. Clinical Anatomy and Physiology of the Visual System, 2012: p. 40-60. 36. Shafaie, S., et al., Diffusion through the ex vivo vitreal body–bovine, porcine, and ovine models are poor surrogates for the human vitreous. International journal of pharmaceutics, 2018. 550(1-2): p. 207-215. 37. Kleinberg, T.T., et al., Vitreous substitutes: a comprehensive review. Survey of ophthalmology, 2011. 56(4): p. 300-323. 38. Urbańska, M.A., S.S. Thakur, and S.M. Kolenderska, OCT-based dynamic mechanical analysis of vitreous humour. Optics and Lasers in Engineering, 2024. 172: p. 107881. 39. Silva, A.F., M.A. Alves, and M.S. Oliveira, Rheological behaviour of vitreous humour. Rheologica Acta, 2017. 56: p. 377-386. 40. Remington, L., Chapter 6-aqueous and vitreous humors. Clinical anatomy and physiology of the visual system. Third ed. Saint Louis: Butterworth-Heinemann, 2012: p. 109-22. 41. Clough, R.W. and J. Penzien, Dynamics of structures, Third Edit. ed. Computers & Structures, Inc., Berkeley, CA, 1995. 94704. 42. Walber, C., P. Walter, and S. Seidlitz, Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7. 2022: Springer. 43. Hernández-Montes, E., M.A. Aschheim, and L.M. Gil-Martín, Energy components in nonlinear dynamic response of SDOF systems. Nonlinear Dynamics, 2015. 82: p. 933-945. 44. Li, X., L. Huo, and H. Li, Beat phenomenon analysis of concrete beam with piezoelectric sensors. International Journal of Distributed Sensor Networks, 2012. 8(9): p. 296124. 45. Tevatia, A., S. Srivastava, and S. Nigam, Fundamentals of Vibrations, in Handbook of Vibroacoustics, Noise and Harshness. 2024, Springer. p. 1-29. 46. Gil-Martín, L.M., et al., Dynamic magnification factors of SDOF oscillators under harmonic loading. Applied mathematics letters, 2012. 25(1): p. 38-42. 47. Senetakis, K., A. Anastasiadis, and K. Pitilakis, A comparison of material damping measurements in resonant column using the steady-state and free-vibration decay methods. Soil Dynamics and Earthquake Engineering, 2015. 74: p. 10-13. 48. Rajasekaran, S., Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB. 2009: Elsevier. 49. Cimellaro, G.P., et al., Mdof systems. Introduction to Dynamics of Structures and Earthquake Engineering, 2018: p. 95-160. 50. Emami, M., M. Eskandari-Ghadi, and A.K. Ghorbani-Tanha, Generalization of Duhamel's integral to multi-degree-of-freedom systems. Proceedings of the Royal Society A, 2022. 478(2259): p. 20210576. 51. Shih, P.-J. and Y.-R. Guo, Resonance frequency of fluid-filled and prestressed spherical shell—A model of the human eyeball. The Journal of the Acoustical Society of America, 2016. 139(4): p. 1784-1792. 52. Erpelding, T.N., K.W. Hollman, and M. O'Donnell, Mapping age-related elasticity changes in porcine lenses using bubble-based acoustic radiation force. Experimental eye research, 2007. 84(2): p. 332-341. 53. Sanchez, I., et al., The parameters of the porcine eyeball. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011. 249: p. 475-482. 54. Dahaghin, A., et al., Biomechanical simulations of crystalline lens oscillations resulting from the changes in the gaze in an accommodated eye. Frontiers in Bioengineering and Biotechnology, 2025. 13: p. 1504769. 55. 蔡明伸, 水晶體與人工水晶體之力學分析. 國立臺灣大學醫學工程學系學位論文, 2024: p. 1-86. 56. Mimura, M., et al., Measurement of vitreous humor pressure in vivo using an optic fiber pressure sensor. Scientific Reports, 2023. 13(1): p. 18233. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99486 | - |
| dc.description.abstract | 水晶體作為眼球中關鍵的光學與調焦結構,其力學穩定性與動態響應能力對維持清晰視覺扮演重要角色。然而,目前對於水晶體在視線轉動、眼壓變化或外力激發下之力學行為仍缺乏量化理解。因此,本研究旨在建立簡化振動理論於豬眼水晶體,在外力激發產生之動態行為,可推算水晶體彈性係數與阻尼特性。理論部分以單自由度與雙自由度的響應分析方法,並輔以協方差分析其特徵值,探討模態間的耦合關係。實驗部分,採用敲擊、噴氣與聲波驅動等外力輸入方式,並以紅外線測距儀記錄水晶體位移響應。另設計質量變動實驗以驗證模型適用性,並將振動參數代入根據理論自行撰寫的求解程式模擬其動態行為。分析結果顯示,水晶體振動頻率主要分布於10至20 Hz,阻尼比約為0.1至0.2,整體行為符合彈性體理論的趨勢;且於不同激發與邊界條件下均以單向振動模態為主。進一步配合有限元素分析,建立具懸韌帶與液體邊界條件之水晶體動態模型,要模態解析水晶體於外力激發下之位移響應與應力分佈,結果與對應之第一模態特徵值與實驗觀測結果一致。本研究透過單自由度與多自由度模型的第一模態響應確認水晶體在單顆與置於眼球中的頻率在10到20Hz之間。提出之實驗與數據,為未來眼球動態力學建模提供基礎依據。 | zh_TW |
| dc.description.abstract | The crystalline lens is a key optical and focusing structure in the eye, and its mechanical stability and dynamic response play an essential role in maintaining clear vision. However, the dynamic behavior of the lens under eye rotation, intraocular pressure changes, or external forces has not yet been fully characterized. This study aims to apply simplified vibration theory to describe the dynamic response of porcine lenses under external excitation, and to estimate their elastic modulus and damping ratio. Both single-degree-of-freedom (SDOF) and two-degree-of-freedom (2DOF) models were analyzed, with covariance analysis used to explore the coupling between vibration modes. Experimentally, lenses were stimulated by tapping, air puff, and acoustic input, and their displacement responses were measured using infrared sensors. A mass variation test was also designed to verify model applicability, and lens dynamics were simulated using custom MATLAB solvers. Results showed that lens vibration frequencies were mostly between 10–20 Hz, with damping ratios around 0.1–0.2, consistent with elastic system theory. Finite element modeling including zonular fibers and fluid boundaries further validated the lens’s primary mode behavior under force. The proposed experimental and modeling framework provides a biomechanical basis for future studies on ocular dynamics and intraocular lens design. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:26:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:26:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 xvi 第一章 緒論 1 1.1 研究背景 1 1.2 動機 3 1.3 眼睛結構 4 1.3.1 水晶體 5 1.3.2 懸韌帶 7 1.3.3 睫狀肌 8 1.3.4 玻璃體 9 第二章 振動理論及文獻回顧 11 2.1 單自由度振動模型理論 11 2.1.1 無外力的振動模型 11 2.1.2外力為諧和振動下的振動模型 17 2.1.3單自由度振動模型於水晶體的阻尼推算 21 2.2多自由度振動模型理論 22 2.2.1 無外力的振動模型 24 2.2.2 振動模型之模態展開概念 27 2.3水晶體力學研究 31 2.3.1利用外力對眼球進行振動分析 31 2.3.2 非接觸式方式捕捉人眼動訊號 36 第三章 材料與方法 39 3.1 材料之準備 39 3.2 水晶體在外力作用下之振動頻率 40 3.2.1 敲擊方式測量水晶體振動頻率 41 3.2.2 噴氣方式測量水晶體振動頻率 42 3.2.3 掃頻方式測量水晶體振動頻率 42 3.3 水晶體在豬眼睛中之振動頻率 44 3.3.1探針撞擊方式測量水晶體振動頻率 45 3.3.2噴氣方式自角膜施力 46 3.3.3噴氣方式自眼底施力 47 3.3.4保留玻璃體並用噴氣方式自角膜施力 50 3.3.5多自由度振動模型分析 51 3.3.6 特徵值問題的求解方法 52 3.4有限元素法分析 55 第四章 實驗結果 60 4.1水晶體在外力作用下之振動頻率測量結果 60 4.1.1 敲擊方式之振動頻率比較 60 4.1.2 移液器噴氣方式之振動頻率比較 62 4.1.3 掃頻方式之振動頻率比較 64 4.1.4 探針撞擊方式之振動頻率範圍 65 4.1.5 綜合性分析 66 4.2 水晶體在豬眼睛中之振動頻率測量結果 67 4.2.4保留玻璃體並用噴氣方式自角膜施力結果 74 4.2.5多自由度振動模型分析結果 76 4.3有限元素法分析 82 第五章 討論 90 5.3 單自由度與雙自由度分析之討論 94 5.4 有限元素法分析討論 95 5.5 本研究的限制 96 第六章 結論與未來展望 98 6.1結論 98 6.2 未來展望 99 第七章 參考文獻 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 特徵頻率 | zh_TW |
| dc.subject | 水晶體振動 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 自由度分析 | zh_TW |
| dc.subject | 阻尼分析 | zh_TW |
| dc.subject | Damping analysis | en |
| dc.subject | Degree-of-freedom analysis | en |
| dc.subject | Finite element analysis | en |
| dc.subject | Natural frequency | en |
| dc.subject | Crystalline lens vibration | en |
| dc.title | 水晶體在眼球中之動態力學特徵分析 | zh_TW |
| dc.title | Dynamics and Biomechanical Applications of the Crystalline Lens | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 施華儒;戴芝軒 | zh_TW |
| dc.contributor.oralexamcommittee | Hua-Ju Shih;Zhi-Xuan Dai | en |
| dc.subject.keyword | 水晶體振動,特徵頻率,阻尼分析,自由度分析,有限元素分析, | zh_TW |
| dc.subject.keyword | Crystalline lens vibration,Natural frequency,Damping analysis,Degree-of-freedom analysis,Finite element analysis, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202502524 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
