Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃瀅瑛zh_TW
dc.contributor.advisorYing-Yin Huangen
dc.contributor.author張益銓zh_TW
dc.contributor.authorYi-Chuan Changen
dc.date.accessioned2025-09-10T16:25:52Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] K. Kaur, B. Gurnani, S. Nayak, N. Deori, S. Kaur, J. Jethani, et al., “Digital eye strain—A comprehensive review,” Ophthalmol. Ther., vol. 11, no. 5, pp. 1655–1680, 2022.
[2] P. Ranasinghe, W. S. Wathurapatha, Y. S. Perera, D. A. Lamabadusuriya, S. Kulatunga, N. Jayawardana, et al., “Computer vision syndrome among computer office workers in a developing country: an evaluation of prevalence and risk factors,” BMC Res. Notes, vol. 9, Art. no. 150, 2016.
[3] L. S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthalmic Physiol. Opt., vol. 13, no. 3, pp. 258–265, 1993.
[4] F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol., vol. 145, no. 3, pp. 579–594, 1959.
[5] C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express, vol. 18, no. 3, pp. 2668–2681, 2010.
[6] T. E. Lockhart and W. Shi, “Effects of age on dynamic accommodation,” Ergonomics, vol. 53, no. 7, pp. 892–903, 2010.
[7] C.-F. Chi and F.-T. Lin, “A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks,” Hum. Factors, vol. 40, no. 4, pp. 577–590, 1998.
[8] S. Benedetto, V. Drai-Zerbib, M. Pedrotti, G. Tissier, and T. Baccino, “E-readers and visual fatigue,” PLoS One, vol. 8, no. 12, Art. e83676, 2013.
[9] P. P. Monticone and M. Menozzi,“A review on methods used to record and analyze microfluctuations of the accommodation in the human eye,” J. Eur. Opt. Soc. Rapid Publ., vol. 6, Art. 11003, 2011.
[10] C. Tosha, E. Borsting, W. H. Ridder III, and C. Chase, “Accommodation response and visual discomfort,” Ophthalmic Physiol. Opt., vol. 29, no. 6, pp. 625–633, 2009.
[11] T. R. Candy and S. R. Bharadwaj, “The stability of steady state accommodation in human infants,” Vis. Res., vol. 47, no. 7, pp. 1021–1032, 2007.
[12] P. Artal, “Image formation in the living human eye,” Annu. Rev. Vis. Sci., vol. 1, pp. 1–25, 2015.
[13] R. Navarro, “The optical design of the human eye: a critical review,” J. Optom., vol. 2, no. 1, pp. 3–18, 2009.
[14] S. V. Mahesh Kumar and R. Gunasundari, “Computer-aided diagnosis of anterior segment eye abnormalities using visible wavelength image analysis based machine learning,” J. Med. Syst., vol. 42, no. 7, Art. 128, 2018.
[15] J. Zhu, E. Zhang, and K. Del Rio-Tsonis, “Eye anatomy,” Encyclopedia of Life Sciences, John Wiley & Sons, Chichester, UK, 2012.
[16] H. Kolb, “Gross anatomy of the eye,” Webvision: The Organization of the Retina and Visual System, University of Utah Health Sciences Center, Salt Lake City, UT, 2011.
[17] I. Rehman, B. Hazhirkarzar, and B. C. Patel, “Anatomy, head and neck, eye,” in StatPearls, Treasure Island, FL, USA: StatPearls Publishing, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK570594/
[18] M. S. Sridhar, “Anatomy of cornea and ocular surface,” Indian J. Ophthalmol., vol. 66, no. 2, pp. 190–194, 2018.
[19] G. J. Andersen, “Aging and vision: changes in function and performance from optics to perception,” Wiley Interdiscip. Rev.: Cogn. Sci., vol. 3, no. 3, pp. 403–410, 2012.
[20] A. Glasser and M. C. W. Campbell, “Presbyopia and the optical changes in the human crystalline lens with age,” Vis. Res., vol. 38, no. 2, pp. 209–229, 1998.
[21] J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye: changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci., vol. 38, no. 3, pp. 569–578, 1997.
[22] K. Shinomori, J. L. Barbur, and J. S. Werner, “Aging of visual mechanisms,” in Prog. Brain Res., H. Kolb, E. Fernández, and R. Nelson, Eds., vol. 273, Elsevier, pp. 257–274, 2022.
[23] A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology, vol. 106, no. 5, pp. 863–872, 1999.
[24] W. N. Charman, “The eye in focus: Accommodation and presbyopia,” Clin. Exp. Optom., vol. 91, no. 3, pp. 207–225, 2008.
[25] L. A. Ostrin and A. Glasser, “Edinger–Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys,” Exp. Eye Res., vol. 84, no. 2, pp. 302–313, 2007.
[26] M. Motlagh and R. Geetha, “Physiology, accommodation,” StatPearls, 2022. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK542189/
[27] E. S. Enaholo, M. J. Musa, and M. Zeppieri, “Accommodative insufficiency,” StatPearls, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK587363/
[28] University of Waikato, Department of Anatomy & Structural Biology, “How the eye focuses light,” © University of Waikato, 2015–2022. Available: https://www.sciencelearn.org.nz/resources/50-how-the-eye-focuses-light/
[29] M. Hirota, H. Uozato, T. Kawamorita, Y. Shibata, and S. Yamamoto, “Effect of incomplete blinking on tear film stability,” Optom. Vis. Sci., vol. 90, no. 7, pp. 650–657, 2013.
[30] K. Tsubota and K. Nakamori, “Dry eyes and video display terminals,” N. Engl. J. Med., vol. 328, no. 8, p. 584, 1993.
[31] J. E. Sheedy, S. Gowrisankaran, and J. R. Hayes, “Blink rate decreases with eyelid squint,” Optom. Vis. Sci., vol. 82, no. 10, pp. 905–911, 2005.
[32] C. A. Chu, M. Rosenfield, and J. K. Portello, “Blink patterns: reading from a computer screen versus hard copy,” Optom. Vis. Sci., vol. 91, no. 3, pp. 297–302, 2014.
[33] R. Z. Marandi, P. Madeleine, Ø. Omland, N. Vuillerme, and A. Samani, “Eye movement characteristics reflected fatigue development in both young and elderly individuals,” Sci. Rep., vol. 8, Art. 13148, 2018.
[34] J. D. Rodriguez, K. J. Lane, G. W. Ousler III, E. Angjeli, L. M. Smith, and M. B. Abelson, “Blink: characteristics, controls, and relation to dry eyes,” Curr. Eye Res., vol. 43, no. 1, pp. 52–66, 2018.
[35] D. H. McDougal and P. D. Gamlin, “Autonomic control of the eye,” Compr. Physiol., vol. 5, no. 1, pp. 439–473, 2015.
[36] S. Mathôt, “Pupillometry: Psychology, physiology, and function,” J. Cogn., vol. 1, no. 1, p. 16, 2018.
[37] A. Schumann, S. Kietzer, J. Ebel, and K. J. Bär, “Sympathetic and parasympathetic modulation of pupillary unrest,” Front. Neurosci., vol. 14, Art. 178, 2020
[38] A. V. Rukmini, D. Milea, and J. J. Gooley, “Chromatic pupillometry methods for assessing photoreceptor health in retinal and optic nerve diseases,” Front. Neurol., vol. 10, Art. 76, 2019.
[39] P. Yao, H. Lin, J. Huang, R. Chu, and B.-c. Jiang, “Objective depth-of-focus is different from subjective depth-of-focus and correlated with accommodative microfluctuations,” Vis. Res., vol. 50, pp. 1266–1273, 2010.
[40] C.-E. Leroux, C. Leahy, C. Fontvieille, and F. Bardin, “The random walk of accommodation fluctuations,” Biomed. Opt. Express, vol. 12, no. 11, pp. 6897–6912, 2021.
[41] 陳姿竹。「空間頻率對於視覺疲勞之影響」。碩士論文,國立臺北科技大學工業工程與管理系,2024。https://hdl.handle.net/11296/zn94dq。
[42] T. Iwasaki and S. Kurimoto, “Objective evaluation of eye strain using measurements of accommodative oscillation,” Ergonomics, vol. 30, no. 3, pp. 581–587, 1987.
[43] W.-D. Jeng, Y. Ouyang, T.-W. Huang, J.-R. Duann, J.-C. Chiou, Y.-S. Tang, et al., “Research of accommodative microfluctuations caused by visual fatigue based on liquid crystal and laser displays,” Appl. Opt., vol. 53, no. 29, pp. H76–H84, 2014.
[44] L. S. Gray, B. Gilmartin, and B. Winn, “Accommodation microfluctuations and pupil size during sustained viewing of visual display terminals,” Ophthalmic Physiol. Opt., vol. 20, no. 1, pp. 5–10, 2000.
[45] M. Hirota, T. Morimoto, H. Kanda, T. Endo, T. Miyoshi, S. Miyagawa, et al., “Objective evaluation of visual fatigue using binocular fusion maintenance,” Transl. Vis. Sci. Technol., vol. 7, no. 2, Art. 9, 2018.
[46] J. K. Portello, J. R. Hayes, S. Gowrisankaran, R. H. Fisk, C. A. Chu, T. R. Eden, et al., “Computer-related visual symptoms in office workers,” Ophthalmic Physiol. Opt., vol. 32, no. 5, pp. 375–382, 2012.
[47] G. Wang and Y. Cui, “Meta-analysis of visual fatigue based on visual display terminals,” BMC Ophthalmol., vol. 24, Art. 489, 2024.
[48] S. A. Halim, N. A. S. Feisal, W. Y. Cheah, T. N. B. T. Ibrahim, M. A. Aminuddin, N. A. Samat, et al., “The impact of visual digital unit exposure on ocular symptoms of computer vision syndrome among Selangor office workers,” J. Health Sci. Med. Res., vol. 42, no. 6, 2024.
[49] I. A. Steenstra, J. K. Sluiter, and M. H. W. Frings-Dresen, “The eye-complaint questionnaire in a visual display unit work environment: internal consistency and test–retest reliability,” Ergonomics, vol. 52, no. 3, pp. 334–344, 2009.
[50] M. Seguí, J. Cabrero-García, A. Crespo, J. Verdú, and E. Ronda, “A reliable and valid questionnaire was developed to measure computer vision syndrome at the workplace,” J. Clin. Epidemiol., vol. 68, no. 6, pp. 662–673, 2015.
[51] I. Mylona, M. N. Glynatsis, M. Dermenoudi, N. M. Glynatsis, and G. D. Floros, “Validation of the Digital Eye Strain Questionnaire and pilot application to online gaming addicts,” Eur. J. Ophthalmol., vol. 32, no. 5, pp. 375–382, 2022.
[52] P. P. Monticone, M. Menozzi, and M. Schlup, “Instrument for high‑speed recording of accommodation of the human eye,” Biomed Tech., vol. 55, no. 2, pp. 83–88, 2010
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99484-
dc.description.abstract本研究探討在使用數位裝置導致的視覺負荷下,不同年齡層之晶狀體微顫動表現,並透過眨眼頻率、瞳孔直徑、微顫動頻率組成及主觀疲勞量表等指標,評估視覺負荷情境下之變化。本研究招募年輕組(20–25歲)與年長組(40–65歲)各15名視力正常且無眼部疾病之參與者,於桌上型顯示器進行30分鐘之接龍(Solitaire)遊戲以誘發視覺疲勞,並於負荷前(Before, B)、負荷後(After, A)及休息15分鐘後(Recovery, R)進行三階段的微顫動量測。微顫動數據由本團隊開發之精密光學平台擷取,經快速傅立葉轉換分離低頻(Low Frequency Component, LFC,0.13–0.65 Hz)與高頻(High Frequency Component, HFC,1.0–2.1 Hz)能量;眨眼頻率與瞳孔直徑使用Tobii Pro Fusion眼動儀於視覺任務進行中同步記錄;主觀疲勞則藉由任務前後填寫之 Eye-Complaint Questionnaire(ECQ)量表進行評估。結果顯示,兩組參與者之LFC與HFC能量於視覺負荷後均顯著升高,休息階段呈部分回復,其中LFC在總能量中所佔比例增幅最大,顯示低頻成分對視覺負荷較為敏感,而年齡對微顫動變化之主效應與交互效應皆未達顯著,僅年長組變化幅度略低於年輕組;眨眼頻率於任務期間皆低於放鬆狀態,且任務初期、末期及年齡差異皆不顯著;瞳孔直徑於年齡主效應呈現顯著,年輕組之瞳孔直徑顯著大於年長組,惟任務初期、末期差異不顯著;年輕組之ECQ總分及十項症狀於負荷後顯著上升,且增幅顯著大於年長組,此外,年輕組之LFC變化與ECQ變化呈現弱正相關。綜合上述實驗結果,晶狀體微顫動之LFC能量及其佔比可快速反映短期視覺負荷,且於短暫休息後可部分恢復,顯示其作為客觀視覺疲勞指標之潛力,相較之下,眨眼頻率與瞳孔直徑於本實驗強度下之敏感度較低,年齡主要影響瞳孔大小與主觀疲勞反應,對微顫動之變化趨勢影響有限。未來研究建議延長視覺負荷時程、提升任務複雜度並擴大樣本,以驗證微顫動指標於年齡及實際應用場景之適用性。zh_TW
dc.description.abstractThis study examined crystalline lens microfluctuations (MFs) under digital-device visual load in two distinct age cohorts, young (20–25 years; n = 15) and older (40–65 years; n = 15) . Participants completed a 30-minute Solitaire task to induce visual fatigue. MFs were recorded before load (B), immediately after (A), and after a 15-minute rest (R) using an optical platform. Signals were decomposed by FFT into low-frequency (LFC; 0.13–0.65 Hz) and high-frequency (HFC; 1.0–2.1 Hz) energy bands. Blink rate and pupil diameter were recorded during the task, and subjective fatigue was assessed via the Eye-Complaint Questionnaire (ECQ) before and after. Both cohorts showed significant increases in LFC and HFC energy after load, with partial recovery at R. The LFC proportion of total MF energy increased most, indicating greater sensitivity of low-frequency components. Age did not significantly affect MF changes, though the older cohort exhibited slightly smaller increases. Blink rate remained suppressed throughout with no significant age or temporal differences. Pupil diameter was larger at baseline in the young cohort but did not change across conditions. ECQ scores increased significantly post-load in both cohorts, with a greater increment in the young cohort, and changes in LFC energy were weakly correlated with ECQ scores in young participants. LFC energy and its proportional contribution may serve as rapid indicators of short-term visual load, partially recovering after rest. Blink rate and pupil diameter were less responsive. Age influenced baseline pupil size and subjective fatigue, with limited effects on MF dynamics. Future research should extend load duration, increase task complexity, and recruit larger samples to validate MF-based indicators.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:25:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:25:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目次 v
圖次 viii
表次 ix
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究架構 4
第二章 文獻回顧 6
2.1 人體眼睛 6
2.1.1 眼睛結構 6
2.1.2 年齡與視功能之關聯 8
2.2 調節機制 8
2.3 眨眼生理現象與控制 10
2.4 瞳孔變化 11
2.5 調節微顫動 12
2.6 數位眼睛疲勞 15
2.6.1 視覺疲勞主觀量表 16
第三章 研究方法 18
3.1 實驗設計 18
3.2 研究參與者招募及資格限制 19
3.3 實驗環境及設備 19
3.3.1 實驗儀器及軟體 20
3.3.2 實驗環境 24
3.4 實驗流程 26
3.4.1 準備階段 26
3.4.2 實驗階段 27
3.4.3 數據蒐集與資料分析 30
3.5 研究目標及假設 32
第四章 研究結果 34
4.1 研究參與者 34
4.2 ECQ量表分數 34
4.2.1 不同年齡層於ECQ量表分數之影響 35
4.3 微顫動現象 39
4.3.1 視覺負荷後之微顫動表現 39
4.3.2 不同效應下的微顫動表現 44
4.3.3 微顫動現象與視覺疲勞之間的關聯 46
4.3.4 小結 47
4.4 眨眼表現 48
4.4.1 視覺負荷任務下之眨眼頻率 48
4.4.2 小結 51
4.5 瞳孔直徑 51
4.5.1 視覺負荷下之瞳孔直徑變化 52
4.5.2 小結 54
第五章 結果與討論 55
5.1 主要發現與討論 55
5.2 研究限制及未來方向 57
參考文獻 58
附錄 64
-
dc.language.isozh_TW-
dc.subject瞳孔直徑zh_TW
dc.subject視覺疲勞zh_TW
dc.subject微顫動zh_TW
dc.subject年齡效應zh_TW
dc.subject視覺負荷zh_TW
dc.subject眨眼頻率zh_TW
dc.subjectECQzh_TW
dc.subjectmicrofluctuationsen
dc.subjectpupil diameteren
dc.subjectECQen
dc.subjectvisual fatigueen
dc.subjectvisual loaden
dc.subjectblink rateen
dc.subjectage effecten
dc.title不同年齡層在視覺負荷下之微顫動表現zh_TW
dc.titleAccommodative microfluctuation performance under visual load across agesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳協慶;Marino Menozzizh_TW
dc.contributor.oralexamcommitteeHsieh-Ching Chen;Marino Menozzien
dc.subject.keyword年齡效應,微顫動,視覺負荷,眨眼頻率,瞳孔直徑,ECQ,視覺疲勞,zh_TW
dc.subject.keywordage effect,microfluctuations,visual load,blink rate,pupil diameter,ECQ,visual fatigue,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202500822-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-07-29-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-29
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved