Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99483
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佳玲zh_TW
dc.contributor.advisorChia-Ling Liuen
dc.contributor.author梁晏慈zh_TW
dc.contributor.authorYen-Tzu Liangen
dc.date.accessioned2025-09-10T16:25:41Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-28-
dc.identifier.citationAkter, S., Hossain, M. A., Sajib, S., Sultana, S., Rahman, M., Vrontis, D., & McCarthy, G. (2023). A framework for AI-powered service innovation capability: Review and agenda for future research. Technovation, 125, 102768.
Ali, W., & Khan, A. Z. (2025). Factors influencing readiness for artificial intelligence: A systematic literature review. Data Science and Management, 8(2), 224-236.
Ameen, N., Tarba, S., Cheah, J.-H., Xia, S., & Sharma, G. D. (2024). Coupling artificial intelligence capability and strategic agility for enhanced product and service creativity. British Journal of Management, 35(4), 1916-1934.
Anton, E., Behne, A., & Teuteberg, F. (2020, June 15–17). The humans behind artificial intelligence: An operationalisation of AI competencies. In Proceedings of the 28th European Conference on Information Systems (ECIS 2020): Liberty, Equality, and Fraternity in a Digitizing World (pp. 106–117). Association for Information Systems.
Artificial Intelligence Foundation. (2025). AI adoption in Taiwan's industries: 2025 survey findings and implementation guide.
Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, and product innovation. Journal of Financial Economics, 151, 103745.
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of Management, 17(1), 99-120.
Barney, J., Wright, M., & Ketchen, D. J. (2001). The resource-based view of the firm: Ten years after 1991. Journal of Management, 27(6), 625-641.
Boston Consulting Group. (2025). AI radar 2025: From potential to profit – closing the AI impact gap. B. C. G. (BCG).
Braun, V., & Clarke, V. (2013). Successful qualitative research: A practical guide for beginners. SAGE Publications.
Braun, V., & Clarke, V. (2021). Thematic analysis: A practical guide. SAGE Publications.
Brock, J. K.-U., & von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110-134.
Brynjolfsson, E. (1993). The productivity paradox of information technology. Communications of the ACM, 36(12), 66–77.
Brynjolfsson, E., Rock, D., & Syverson, C. (2017). Artificial intelligence and the modern productivity paradox: A clash of expectations and statistics (NBER Working Paper No. 24001). National Bureau of Economic Research.
Cazzaniga, M., Jaumotte, F., Li, L., Melina, G., Panton, A. J., Pizzinelli, C., Rockall, E. J., & Mendes Tavares, M. (2024). Gen-AI: Artificial intelligence and the future of work (IMF Staff Discussion Note No. 2024/001). International Monetary Fund.
Cerutti, E., Garcia Pascual, A. I., Kido, Y., Li, L., Melina, G., Mendes Tavares, M., & Wingender, P. (2025). The global impact of AI: Mind the gap (IMF Working Paper No. 2025/076). International Monetary Fund.
Cetindamar, D., Kitto, K., Wu, M., Zhang, W., Abedin, B., & Knight, S. (2024). Explicating AI literacy of employees at digital workplaces. IEEE Transactions on Engineering Management, 71, 810-823.
Chen, D., Esperança, J. P., & Wang, S. (2022). The impact of artificial intelligence on firm performance: An application of the resource-based view to e-commerce firms [Original Research]. Frontiers in Psychology, 13.
Chen, F., Zhou, J., Holzinger, A., Fleischmann, K. R., & Stumpf, S. (2023). Artificial intelligence ethics and trust: From principles to practice. IEEE Intelligent Systems, 38(6), 5-8.
Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., & Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework. Human Resource Management Review, 33(1), 100899.
Chui, M., Hazan, E., Roberts, R., Singla, A., Smaje, K., Sukharevsky, A., Yee, L., & Zemmel, R. (2023). The economic potential of generative AI: The next productivity frontier. M. Company.
Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five approaches (4th ed.). SAGE Publications.
Denzin, N. K., & Lincoln, Y. S. (Eds.). (2017). The SAGE handbook of qualitative research (5th ed.). SAGE Publications.
Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205-213.
DiMaggio, P. J., & Powell, W. W. (1983). The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. American Sociological Review, 48(2), 147-160.
Eisenhardt, K. M. (1989). Building theories from case study research. The Academy of Management Review, 14(4), 532-550.
Eisenhardt, K. M., & Graebner, M. E. (2007). Theory building from cases: Opportunities and challenges. The Academy of Management Journal, 50(1), 25-32.
Flick, U. (Ed.). (2018). The SAGE handbook of qualitative data collection. SAGE Publications.
Flyvbjerg, B. (2006). Five misunderstandings about case-study research. Qualitative Inquiry, 12(2), 219-245.
Fountaine, T., McCarthy, B., & Saleh, T. (2019). Building the AI-powered organization. Harvard business review, 97(4), 62-73.
Grant, R. M. (1991). The resource-based theory of competitive advantage: Implications for strategy formulation. California Management Review, 33(3), 114-135.
Hadi, H. M., & Zeebaree, S. R. M. (2025). The AI-powered enterprise: A review of cloud computing, web technology and digital marketing. International Journal of Scientific World, 11(1), 158-166.
Huang, C., Zhang, W., Mao, B., & Yao, X. (2023). An overview of artificial intelligence ethics. IEEE Transactions on Artificial Intelligence, 4(4), 799-819.
Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493.
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence,1(9), 389-399.
Jöhnk, J., Weißert, M., & Wyrtki, K. (2021). Ready or not, AI comes: An interview study of organizational AI readiness factors. Business & Information Systems Engineering, 63(1), 5-20.
Kazim, E., & Koshiyama, A. S. (2021). A high-level overview of AI ethics. Patterns, 2(9), 100314.
Kemp, A. (2023). Competitive advantage through artificial intelligence: Toward a theory of situated AI. Academy of Management Review, 49(3), 618-635.
Krakowski, S., Luger, J., & Raisch, S. (2023). Artificial intelligence and the changing sources of competitive advantage. Strategic Management Journal, 44(6), 1425-1452.
Laupichler, M. C., Aster, A., Schirch, J., & Raupach, T. (2022). Artificial intelligence literacy in higher and adult education: A scoping literature review. Computers and Education: Artificial Intelligence, 3, 100101.
Lee, M. C. M., Scheepers, H., Lui, A. K. H., & Ngai, E. W. T. (2023). The implementation of artificial intelligence in organizations: A systematic literature review. Information & Management, 60(5), 103816.
Li, J., Li, M., Wang, X., & Bennett Thatcher, J. (2021). Strategic directions for AI: The role of CIOs and boards of directors. MIS quarterly, 45(3), 1603-1644.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. SAGE Publications.
Liu, Y., Ying, Z., Ying, Y., Wang, D., & Chen, J. (2024). Artificial intelligence orientation and internationalization speed: A knowledge management perspective. Technological Forecasting and Social Change, 205, 123517.
Long, D., & Magerko, B. (2020). What is AI literacy? Competencies and design considerations. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). Association for Computing Machinery.
Mariani, M., & Dwivedi, Y. K. (2024). Generative artificial intelligence in innovation management: A preview of future research developments. Journal of Business Research, 175, 114542.
Merhi, M. I. (2023). An evaluation of the critical success factors impacting artificial intelligence implementation. International Journal of Information Management, 69, 102545.
Meyer, J. W., & Rowan, B. (1977). Institutionalized organizations: Formal structure as myth and ceremony. American Journal of Sociology, 83(2), 340-363.
Mikalef, P., & Gupta, M. (2021). Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management,58(3), 103434.
Mikalef, P., Lemmer, K., Schaefer, C., Ylinen, M., Fjørtoft, S. O., Torvatn, H. Y., Gupta, M., & Niehaves, B. (2023). Examining how AI capabilities can foster organizational performance in public organizations. Government Information Quarterly, 40(2), 101797.
Naeem, R., Kohtamäki, M., & Parida, V. (2025). Artificial intelligence enabled product–service innovation: Past achievements and future directions. Review of Managerial Science, 19(7), 2149-2192.
Nam, K., Dutt, C. S., Chathoth, P., Daghfous, A., & Khan, M. S. (2021). The adoption of artificial intelligence and robotics in the hotel industry: Prospects and challenges. Electronic Markets, 31(3), 553-574.
Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and Education: Artificial Intelligence, 2, 100041.
OECD/BCG/INSEAD. (2025). The adoption of artificial intelligence in firms: New evidence for policymaking. OECD Publishing.
Oliver, C. (1991). Strategic responses to institutional processes. Academy of Management Review, 16(1), 145-179.
Papagiannidis, E., Mikalef, P., & Conboy, K. (2025). Responsible artificial intelligence governance: A review and research framework. The Journal of Strategic Information Systems, 34(2), 101885.
Peretz-Andersson, E., Tabares, S., Mikalef, P., & Parida, V. (2024). Artificial intelligence implementation in manufacturing SMEs: A resource orchestration approach. International Journal of Information Management, 77, 102781.
Pinski, M., Hofmann, T., & Benlian, A. (2024). AI Literacy for the top management: An upper echelons perspective on corporate AI orientation and implementation ability. Electronic Markets, 34(1), 1–23.
Polyportis, A., & Pahos, N. (2024). Navigating the perils of artificial intelligence: A focused review on ChatGPT and responsible research and innovation. Humanities and Social Sciences Communications, 11(1), 107.
Ritala, P., Aaltonen, P., Ruokonen, M., & Nemeh, A. (2024). Developing industrial AI capabilities: An organisational learning perspective. Technovation, 138, 103120.
Sahoo, S., Kumar, S., Donthu, N., & Singh, A. K. (2024). Artificial intelligence capabilities, open innovation, and business performance: Empirical insights from multinational B2B companies. Industrial Marketing Management,117, 28-41.
Sastry, G., Heim, L., Belfield, H., Anderljung, M., Brundage, M., Hazell, J., O'Keefe, C., Hadfield, G. K., Ngo, R., Pilz, K., Gor, G., Bluemke, E., Shoker, S., Egan, J., Trager, R. F., Avin, S., Weller, A., Bengio, Y., & Coyle, D. (2024). Computing power and the governance of artificial intelligence. arXiv.
Schuett, J. (2024). Risk management in the artificial intelligence act. European Journal of Risk Regulation, 15(2), 367-385.
Sikeridis, D., Papapanagiotou, I., Rimal, B. P., & Devetsikiotis, M. (2018). A comparative taxonomy and survey of public cloud infrastructure vendors.
Singh, K., Chatterjee, S., & Mariani, M. (2024). Applications of generative AI and future organizational performance: The mediating role of explorative and exploitative innovation and the moderating role of ethical dilemmas and environmental dynamism. Technovation, 133, 103021.
Sipior, J. C. (2020). Considerations for development and use of AI in response to COVID-19. International Journal of Information Management, 55, 102170.
Sjödin, D., Parida, V., Palmié, M., & Wincent, J. (2021). How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. Journal of Business Research, 134, 574-587.
Stake, R. E. (1995). The art of case study research. SAGE Publications.
Suchman, M. C. (1995). Managing legitimacy: Strategic and institutional approaches. Academy of Management Review,20(3), 571-610.
Suleiman, B., Sakr, S., Jeffery, R., & Liu, A. (2012). On understanding the economics and elasticity challenges of deploying business applications on public cloud infrastructure. Journal of Internet Services and Applications, 3(2), 173-193.
Sun, W., Ren, S., & Tang, G. (2025). In the era of responsible artificial intelligence and digitalization: Business group digitalization, operations and subsidiary performance. Annals of Operations Research.
Tarafdar, M., Beath, C. M., & Ross, J. W. (2019). Using AI to enhance business operations. MIT Sloan management review, 60(4), 37-44.
Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40-49.
Thompson, J. D. (2003). Organizations in action: Social science bases of administrative theory. McGraw-Hill.
Tolbert, P. S., & Zucker, L. G. (1983). Institutional sources of change in the formal structure of organizations: The diffusion of civil service reform, 1880–1935. Administrative Science Quarterly, 28(1), 22-39.
Wamba-Taguimdje, S.-L., Fosso Wamba, S., Kala Kamdjoug, J. R., & Tchatchouang Wanko, C. E. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924.
Weber, M., Engert, M., Schaffer, N., Weking, J., & Krcmar, H. (2023). Organizational capabilities for AI implementation: Coping with inscrutability and data dependency in AI. Information Systems Frontiers, 25(4), 1549-1569.
Wernerfelt, B. (1984). A resource-based view of the firm. Strategic Management Journal, 5(2), 171-180.
Wu, L., Sun, L., Chang, Q., Zhang, D., & Qi, P. (2022). How do digitalization capabilities enable open innovation in manufacturing enterprises? A multiple case study based on resource integration perspective. Technological Forecasting and Social Change, 184, 122019.
Yang, J., Blount, Y., & Amrollahi, A. (2024). Artificial intelligence adoption in a professional service industry: A multiple case study. Technological Forecasting and Social Change, 201, 123251.
Yao, N., Bai, J., Yu, Z., & Guo, Q. (2025). Does AI orientation facilitate operational efficiency? A contingent strategic orientation perspective. Journal of Business Research, 186, 114994.
Yi, S., Choi, J., & Kim, G. (2024). Core problems in information systems implementation: An analytical review and implications for AI systems. Information Development.
Yin, R. K. (2014). Case study research: Design and methods (5th ed.). SAGE Publications.
Zhang, W., Zuo, N., He, W., Li, S., & Yu, L. (2021). Factors influencing the use of artificial intelligence in government: Evidence from China. Technology in Society, 66, 101675.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99483-
dc.description.abstract企業雖積極投資人工智慧(AI),卻往往難以轉化為實際價值,促使策略重心從技術取得轉向組織AI能力的建構。現有文獻對AI能力的形成與創新轉化機制,特別是在制度環境快速演變的臺灣情境中,仍缺乏整合性理論探討。為了填補此缺口,本研究以資源基礎觀點(Resource-Based View, RBV)為理論基礎,建構動態分析框架,探討AI能力的前因及其與創新績效之關聯,並分析AI導向、AI倫理與制度環境的調節作用。
本研究採質性多重個案法,深度訪談臺灣電信、科技與金融產業的三家領導企業高階主管。研究結果指出:(1)組織AI能力的形成,需整合AI素養與基礎資源,並由兼具直接建構與放大效果的「跨功能導向」所驅動。(2)AI能力驅動的創新路徑循「由內而外」發展,始於低風險的內部流程創新,成熟後方擴散至產品、服務及商業模式等風險更高的領域。(3)AI能力轉化為創新績效的過程受三項關鍵因素調節:「AI導向」扮演加速器;「AI倫理」則為煞車,其限制效果隨應用風險提高而加劇;而「外部制度」是一把雙面刃,其對創新的抑制或促進效果,分別取決於法規一致性與企業規模。
理論上,本研究提出整合性的動態AI能力框架,闡明其價值創造的機制與情境調節因子,深化了RBV在數位轉型議題上的應用。實務上,本研究為管理者提供了一份可行的組織轉型藍圖,強調應優先培養組織的資源整合與轉化能力,並為應對倫理與制度挑戰提供差異化策略。
zh_TW
dc.description.abstractDespite significant corporate investment in artificial intelligence (AI), many firms struggle to translate these investments into tangible value. This has prompted a strategic shift from mere technology acquisition to the development of organizational AI capabilities. However, existing literature lacks an integrated theoretical framework to explain the formation of AI capabilities and their conversion into innovation, particularly within the rapidly evolving institutional context of Taiwan. To address this gap, this study draws on the Resource-Based View (RBV) to construct a dynamic analytical framework. It investigates the antecedents of AI capability, its relationship with innovation performance, and the moderating effects of AI orientation, AI ethics, and the institutional environment.
This research employs a qualitative, multiple-case study methodology, conducting in-depth interviews with senior executives from three leading Taiwanese firms in the telecommunications, technology, and financial industries. The findings indicate that: (1) Developing organizational AI capability requires integrating AI literacy with foundational resources, a process driven by a cross-functional orientation that both directly builds and amplifies these capabilities. (2) The innovation trajectory driven by AI capabilities follows an “inside-out” progression, beginning with low-risk internal process innovations before expanding to higher-risk domains such as products, services, and business models as capabilities mature. (3) The conversion of AI capability into innovation performance is moderated by three key factors. “AI orientation” acts as an accelerator. “AI ethics” functions as a brake, with its constraining effect intensifying as application risks increase. The “external institutional environment” is a double-edged sword, either inhibiting or fostering innovation depending on regulatory consistency and firm size.
Theoretically, this study contributes an integrated, dynamic framework of AI capability that clarifies its value-creation mechanisms and contextual moderators, extending RBV’s application to digital transformation. Practically, the findings provide managers with a viable blueprint for organizational transformation, emphasizing the need to prioritize capabilities for resource integration and conversion. The study also offers differentiated strategies for navigating ethical and institutional challenges.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:25:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:25:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsACKNOWLEDGEMENTS I
摘要 II
ABSTRACT III
TABLE OF CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLES VIII
CHAPTER 1. INTRODUCTION 1
1.1 Research Background and Motivations 1
1.2 Research Objectives 3
1.3 Contribution 4
1.4 Research Procedures 5
CHAPTER 2. THEORETICAL BACKGROUND AND LITERATURE REVIEW 7
2.1 Theoretical Lens: The Resource-Based View 7
2.2 The Formation of AI Capabilities: Key Antecedents 8
2.2.1 AI Literacy 8
2.2.2 AI Foundation 9
2.2.3 Cross-functional Orientation 13
2.3 The Role of AI Capabilities: A Bridge from Resources to Innovation 14
2.3.1 Defining AI Capabilities 14
2.3.2 The Impact of AI Capabilities on Innovation Performance 15
2.4 The Moderating Context: Key Factors in Translating Capabilities into Innovation 17
2.4.1 The Strategic Driver: AI Orientation 17
2.4.2 The Governance Guideline: AI Ethics 19
2.4.3 The External Environment: Institutions 22
CHAPTER 3. METHODOLOGY AND RESEARCH DESIGN 26
3.1 Methodology 26
3.1.1 Qualitative Research 26
3.1.2 Case Study Approach 27
3.1.3 Conceptual Framework 28
3.2 Data Collection 30
3.2.1 Case Selection Criteria 30
3.2.2 Interview Participants 31
3.2.3 Interview Protocol 32
3.3 Data Analysis Procedures 34
3.3.1 Within-Case Analysis 34
3.3.2 Cross-Case Analysis 35
3.4 Research Quality and Rigor 36
CHAPTER 4. CASE OVERVIEWS 38
4.1 Company A 38
4.1.1 Company Overview 38
4.1.2 Antecedents of AI Adoption 38
4.1.3 AI Capabilities and Innovation Outcomes 42
4.1.4 Contextual Factors: AI Orientation, AI Ethics, Institution 43
4.2 Company B 44
4.2.1 Company Overview 44
4.2.2 Antecedents of AI Adoption 45
4.2.3 AI Capabilities and Innovation Outcomes 48
4.2.4 Contextual Factors: AI Orientation, AI Ethics, Institution 49
4.3 Company C 50
4.3.1 Company Overview 50
4.3.2 Antecedents of AI Adoption 51
4.3.3 AI Capabilities and Innovation Outcomes 54
4.3.4 Contextual Factors: AI Orientation, AI Ethics, Institution 55
CHAPTER 5. RESEARCH RESULT 58
5.1 Antecedents of AI Capabilities 58
5.1.1 The Role of AI Literacy in Shaping Organizational AI Capabilities 58
5.1.2 Leveraging Foundational AI Resources for Capability 59
5.1.3 The Role of Cross-functional Orientation in Developing AI Capabilities 62
5.2 AI Capabilities as Drivers of Organizational Innovation 64
5.3 The Moderating Role of Contextual Conditions in the AI Capability–Performance Linkage 65
5.3.1 AI Orientation 65
5.3.2 AI Ethics 67
5.3.3 Institution 70
5.4 The Summary of Research Findings 73
CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 77
6.1 Conclusions 77
6.1.1 Antecedents of AI Capabilities 77
6.1.2 AI Capabilities as Drivers of Organizational Innovation 78
6.1.3 The Moderating Role of Contextual Conditions in the AI Capability–Performance Linkage 79
6.2 Managerial Implications 80
6.3 Limitations and Future Research Directions 82
REFERENCES 84
-
dc.language.isoen-
dc.subjectAI能力zh_TW
dc.subject資源基礎理論zh_TW
dc.subject創新績效zh_TW
dc.subjectAI導向zh_TW
dc.subjectAI倫理zh_TW
dc.subject制度環境zh_TW
dc.subjectResource-Based View (RBV)en
dc.subjectAI Capabilityen
dc.subjectInstitutional Environmenten
dc.subjectAI Ethicsen
dc.subjectAI Orientationen
dc.subjectInnovation Performanceen
dc.title人工智慧在企業營運中的採用:策略性前因、促成機制及其對創新成果之影響zh_TW
dc.titleAdopting AI in Business Operations: Strategic Antecedents, Enabling Mechanisms, and Innovation Outcomesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳政衞;李亭林zh_TW
dc.contributor.oralexamcommitteeCheng-Wei Wu;Ting-Lin Leeen
dc.subject.keywordAI能力,資源基礎理論,創新績效,AI導向,AI倫理,制度環境,zh_TW
dc.subject.keywordAI Capability,Resource-Based View (RBV),Innovation Performance,AI Orientation,AI Ethics,Institutional Environment,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202502012-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college管理學院-
dc.contributor.author-dept商學研究所-
dc.date.embargo-lift2030-07-17-
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-07-17
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved