請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 施養信 | zh_TW |
| dc.contributor.advisor | Yang-hsin Shih | en |
| dc.contributor.author | 黃凱令 | zh_TW |
| dc.contributor.author | Kai-Ling Huang | en |
| dc.date.accessioned | 2025-09-10T16:24:20Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Aasfar, A., A. Bargaz, K. Yaakoubi, A. Hilali, I. Bennis, et al. 2021. Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Front. Microbiol. 12.
Aguado-Norese, C., V. Cárdenas, A. Gaete, D. Mandakovic, J. Vasquez-Dean, et al. 2023. Topsoil and subsoil bacterial community assemblies across different drainage conditions in a mountain environment. Biol Res 56(1): 35. Ahmed, W., M. Qaswar, H. Jing, D. Wenjun, S. Geng, et al. 2020. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils. J Soils Sediments 20(2): 850–861. Akhtar, K., W. Wang, G. Ren, A. Khan, Y. Feng, et al. 2019. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environment International 132: 105092. Angst, G., I. Kögel-Knabner, K. Kirfel, D. Hertel, and C.W. Mueller. 2016. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.). Geoderma 264: 179–187. Antunes, F., I.F. Mota, J. da Silva Burgal, M. Pintado, and P.S. Costa. 2022. A review on the valorization of lignin from sugarcane by-products: From extraction to application. Biomass and Bioenergy 166: 106603. Bai, Y.-L., L. Wang, Y.-L. Lu, L.-P. Yang, L.-P. Zhou, et al. 2015. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation. Journal of Integrative Agriculture 14: 2467–2476. Barka, E.A., P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, et al. 2016. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol Mol Biol Rev 80(1): 1–43. Belenguer-Manzanedo, M., C. Alcaraz, A. Camacho, C. Ibáñez, M. Català-Forner, et al. 2022. Effect of post-harvest practices on greenhouse gas emissions in rice paddies: flooding regime and straw management. Plant Soil 474(1): 77–98. van Bodegom, P.M., J.C.M. Scholten, and A.J.M. Stams. 2004. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiology Ecology 49(2): 261–268. Boerjan W., Ralph J., and Baucher M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology 54(Volume 54, 2003): 519–546. Bogale, F.M., B. Teffera, and T.A. Aragaw. 2024. Recent developments in integrated anaerobic/aerobic (A/O) process for textile industry wastewater treatment: A review. Journal of Hazardous Materials Advances 15: 100438. Bovio-Winkler, P., A. Cabezas, and C. Etchebehere. 2021. Database mining to unravel the ecology of the phylum Chloroflexi in methanogenic full scale bioreactors. Frontiers in Microbiology 11: 603234. Bowman, J.P., L.I. Sly, P.D. Nichols, and A.C. Hayward. 1993. Revised Taxonomy of the Methanotrophs: Description of Methylobacter gen. nov., Emendation of Methylococcus, Validation of Methylosinus and Methylocystis Species, and a Proposal that the Family Methylococcaceae Includes Only the Group I Methanotrophs. International Journal of Systematic and Evolutionary Microbiology 43(4): 735–753. Brassard, P., S. Godbout, J.H. Palacios, T. Jeanne, R. Hogue, et al. 2018. Effect of six engineered biochars on GHG emissions from two agricultural soils: A short-term incubation study. Geoderma 327: 73–84. Brewer, T.E., E.L. Aronson, K. Arogyaswamy, S.A. Billings, J.K. Botthoff, et al. 2019. Ecological and Genomic Attributes of Novel Bacterial Taxa That Thrive in Subsurface Soil Horizons. mBio 10(5): 10.1128/mbio.01318-19. Bridgham, S.D., H. Cadillo-Quiroz, J.K. Keller, and Q. Zhuang. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19(5): 1325–1346. Button, E. 2022. Deep soil: investigating carbon sequestration potential and greenhouse gas behaviour in agricultural subsoil. Bangor University (United Kingdom). Carlson, K.M., J.S. Gerber, N.D. Mueller, M. Herrero, G.K. MacDonald, et al. 2017. Greenhouse gas emissions intensity of global croplands. Nature Clim Change 7(1): 63–68. Chataut, G., B. Bhatta, D. Joshi, K. Subedi, and K. Kafle. 2023. Greenhouse gases emission from agricultural soil: A review. Journal of Agriculture and Food Research 11: 100533. Che, S., Y. Xu, X. Qin, S. Tian, J. Wang, et al. 2024. Building microbial consortia to enhance straw degradation, phosphorus solubilization, and soil fertility for rice growth. Microb Cell Fact 23(1): 232. Chen, Z., H. Wang, X. Liu, X. Zhao, D. Lu, et al. 2017. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research 165: 121–127. Chen, W., P. Westerhoff, J.A. Leenheer, and K. Booksh. 2003. Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. Environ. Sci. Technol. 37(24): 5701–5710. Chen, S., and J. Wu. 2019. The sensitivity of soil microbial respiration declined due to crop straw addition but did not depend on the type of crop straw. Environ Sci Pollut Res 26(29): 30167–30176. Chen, X., Y.-J. Zhang, J.-L. Zou, T.-Z. Li, Y. Yu, et al. 2024. [Tillage Depth Regulation and the Effect of Straw Return on Soil Respiration in Farmland]. Huan Jing Ke Xue 45(3): 1702–1712. Chirinda, N., L. Elsgaard, I.K. Thomsen, G. Heckrath, and J.E. Olesen. 2014. Carbon dynamics in topsoil and subsoil along a cultivated toposequence. CATENA 120: 20–28. Cleveland, C.C., and D. Liptzin. 2007. C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85(3): 235–252. Conrad, R. 2020. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere 30(1): 25–39. Corrochano-Monsalve, M., A. Bozal-Leorri, C. Sánchez, C. González-Murua, and J.-M. Estavillo. 2021. Joint application of urease and nitrification inhibitors to diminish gaseous nitrogen losses under different tillage systems. Journal of Cleaner Production 289: 125701. Costa, O.Y.A., J.M. Raaijmakers, and E.E. Kuramae. 2018. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 9. Cui, L., Z. Wang, Y. Zeng, N. Yang, M. Liu, et al. 2022. Lignin Biodegradation and Its Valorization. Fermentation 8(8): 366. Demay, J., B. Ringeval, S. Pellerin, and T. Nesme. 2023. Half of global agricultural soil phosphorus fertility derived from anthropogenic sources. Nat. Geosci. 16(1): 69–74. Demin, K.A., E.V. Prazdnova, T.M. Minkina, and A.V. Gorovtsov. 2024. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Applied and Environmental Microbiology 90(4): e01390-23. Devêvre, O.C., and W.R. Horwáth. 2000. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology and Biochemistry 32(11): 1773–1785. Dhyani, V., J. Kumar, and T. Bhaskar. 2017. Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology 245: 1122–1129. Ding, W., W.-F. Cong, and H. Lambers. 2021. Plant phosphorus-acquisition and -use strategies affect soil carbon cycling. Trends in Ecology & Evolution 36(10): 899–906. Dove, N.C., K. Arogyaswamy, S.A. Billings, J.K. Botthoff, C.J. Carey, et al. 2020. Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ. Res. Lett. 15(10): 1040a1. Du, M., W. Chen, C. Qian, Z. Chen, G.-L. Chen, et al. 2023. Using Rayleigh Scattering to Correct the Inner Filter Effect of the Fluorescence Excitation–Emission Matrix. Anal. Chem. 95(33): 12273–12283. Duan, M., F. Wu, Z. Jia, S. Wang, Y. Cai, et al. 2020. Wheat straw and its biochar differently affect soil properties and field-based greenhouse gas emission in a Chernozemic soil. Biol Fertil Soils 56(7): 1023–1036. Dubeux, J.C.B., M. de A. Lira Junior, F.F. Simili, I.L. Bretas, K.R. Trumpp, et al. 2024. Deep soil organic carbon: A review. CABI Reviews 19(1). Dundore-Arias, J.P., S.C. Castle, L. Felice, R. Dill-Macky, and L.L. Kinkel. 2020. Carbon Amendments Influence Composition and Functional Capacities of Indigenous Soil Microbiomes. Front. Mol. Biosci. 6. Dundore-Arias, J.P., L. Felice, R. Dill-Macky, and L.L. Kinkel. 2019. Carbon Amendments Induce Shifts in Nutrient Use, Inhibitory, and Resistance Phenotypes Among Soilborne Streptomyces. Front. Microbiol. 10. Eilers, K.G., S. Debenport, S. Anderson, and N. Fierer. 2012. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry 50: 58–65. Fan, J., W. Ding, J. Xiang, S. Qin, J. Zhang, et al. 2014. Carbon sequestration in an intensively cultivated sandy loam soil in the North China Plain as affected by compost and inorganic fertilizer application. Geoderma 230–231: 22–28. Feng, H., J. Guo, W. Wang, X. Song, and S. Yu. 2019. Soil Depth Determines the Composition and Diversity of Bacterial and Archaeal Communities in a Poplar Plantation. Forests 10(7): 550. Fontaine, S., S. Barot, P. Barré, N. Bdioui, B. Mary, et al. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167): 277–280. Fu, L., X. Wu, D. Ma, W. Yin, A. Liu, et al. 2025. Niche differentiation of denitrifying anaerobic methane oxidation bacteria and archaea in the permafrost peatlands. International Biodeterioration & Biodegradation 198: 105990. Fujinaga, K., Y. Taniguchi, Y. Sun, S. Katayama, J. Minami, et al. 1999. Analysis of genes involved in nitrate reduction in Clostridium perfringensThe GenBank accession number for the sequence reported in this paper is AB017192. Microbiology 145(12): 3377–3387. Gao, X., Lan ,Ting, Deng ,Liangji, and M. and Zeng. 2017. Mushroom residue application affects CH4 and N2O emissions from fields under rice–wheat rotation. Archives of Agronomy and Soil Science 63(6): 748–760. Gmach, M.R., K. Kaiser, M.R. Cherubin, C.E.P. Cerri, I.P. Lisboa, et al. 2021. Soil dissolved organic carbon responses to sugarcane straw removal. Soil Use and Management 37(1): 126–137. Gu, W., S. Huang, S. Lei, J. Yue, Z. Su, et al. 2019. Quantity and quality variations of dissolved organic matter (DOM) in column leaching process from agricultural soil: Hydrochemical effects and DOM fractionation. Science of The Total Environment 691: 407–416. Gunina, A., M.A. Dippold, B. Glaser, and Y. Kuzyakov. 2014. Fate of low molecular weight organic substances in an arable soil: From microbial uptake to utilisation and stabilisation. Soil Biology and Biochemistry 77: 304–313. Guo, C., X. Liu, and X. He. 2022. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Science of The Total Environment 831: 154982. Hall, S.J., D. Liptzin, H.L. Buss, K. DeAngelis, and W.L. Silver. 2016. Drivers and patterns of iron redox cycling from surface to bedrock in a deep tropical forest soil: a new conceptual model. Biogeochemistry 130(1): 177–190. Ham, B., B.-Y. Choi, G.-T. Chae, M.F. Kirk, and M.J. Kwon. 2017. Geochemical Influence on Microbial Communities at CO2-Leakage Analog Sites. Front. Microbiol. 8. Han, X., F. Wang, S. Zheng, H. Qiu, Y. Liu, et al. 2024. Morphological, Microstructural, and In Situ Chemical Characteristics of Siderite Produced by Iron-Reducing Bacteria. Environ. Sci. Technol. 58(25): 11016–11026. Hansel, C.M., S. Fendorf, P.M. Jardine, and C.A. Francis. 2008. Changes in Bacterial and Archaeal Community Structure and Functional Diversity along a Geochemically Variable Soil Profile. Applied and Environmental Microbiology 74(5): 1620–1633. ten Have, R., and P.J.M. Teunissen. 2001. Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chem. Rev. 101(11): 3397–3414. He, Z., H. Cao, C. Qi, Q. Hu, J. Liang, et al. 2024. Straw management in paddy fields can reduce greenhouse gas emissions: A global meta-analysis. Field Crops Research 306: 109218. He, Z., J. Shen, Y. Zhu, J. Feng, and X. Pan. 2023a. Enhanced anaerobic oxidation of methane with the coexistence of iron oxides and sulfate fertilizer in paddy soil. Chemosphere 329: 138623. He, Y., X. Yang, Z. Li, T. Wang, C. Ma, et al. 2023b. Aging rice straw reduces the bioavailability of mercury and methylmercury in paddy soil. Chemosphere 339: 139711. Herre, M., J. Heitkötter, S. Heinze, J. Rethemeyer, S. Preusser, et al. 2022. Differences in organic matter properties and microbial activity between bulk and rhizosphere soil from the top- and subsoils of three forest stands. Geoderma 409: 115589. Hoogsteen, M.J.J., E.A. Lantinga, E.J. Bakker, J.C.J. Groot, and P.A. Tittonell. 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science 66(2): 320–328. Horn, M.A., J. Ihssen, C. Matthies, A. Schramm, G. Acker, et al. 2005. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. International Journal of Systematic and Evolutionary Microbiology 55(3): 1255–1265. Horwath, W. r., and E. a. Paul. 1994. Microbial Biomass. Methods of Soil Analysis. John Wiley & Sons, Ltd. p. 753–773 Hu, Y., P. Ma, Z. Yang, S. Liu, Y. Li, et al. 2025. The Responses of Crop Yield and Greenhouse Gas Emissions to Straw Returning from Staple Crops: A Meta-Analysis. Agriculture 15(4): 408. Hu, M., Z. Qu, Y. Li, Y. Xiong, and G. Huang. 2024a. Contrasting effects of different straw return modes on net ecosystem carbon budget and carbon footprint in saline-alkali arid farmland. Soil and Tillage Research 239: 106031. Hu, J., C.M. VanZomeren, K.S. Inglett, A.L. Wright, M.W. Clark, et al. 2017. Greenhouse Gas Emissions Under Different Drainage and Flooding Regimes of Cultivated Peatlands. Journal of Geophysical Research: Biogeosciences 122(11): 3047–3062. Hu, N., B. Wang, Z. Gu, B. Tao, Z. Zhang, et al. 2016. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agriculture, Ecosystems & Environment 223: 115–122. Hu, J., R. Xiao, R. Zhang, Z. Wu, F. Jiang, et al. 2024b. Application of EEM fluorescence spectroscopy for characterizing organic DBP precursors in different water sources: a review. AQUA - Water Infrastructure, Ecosystems and Society 73(3): 464–486. Huang, J., L. Han, and G. Huang. 2019. Characterization of digestate composting stability using fluorescence EEM spectroscopy combining with PARAFAC. Waste Manag Res 37(5): 486–494. Huang, M., X. Zhou, and Y. Zou. 2018. Improving nitrogen management for zero-tillage rice in China. The Crop Journal 6(4): 406–412. Intergovernmental Panel on Climate Change (IPCC). 2023. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. Ipcc, I. 2006. Guidelines for national greenhouse gas inventories. Prepared by the National Greenhouse Gas Inventories Programme. Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Published: IGES, Japan. Javier-Astete, R., J. Jimenez-Davalos, and G. Zolla. 2021. Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam. PLOS ONE 16(10): e0256559. Jha, P., Biswas ,A. K., Lakaria ,Brij Lal, Saha ,R., Singh ,Muneshwar, et al. 2014. Predicting Total Organic Carbon Content of Soils from Walkley and Black Analysis. Communications in Soil Science and Plant Analysis 45(6): 713–725. Jiang, Y., L. Ling, L. Zhang, A. Domingo, M. Cai, et al. 2017. Different response of an elite Bt restorer line of hybrid rice (Oryza sativa L.) in adaptation to nitrogen deficiency. Acta Physiol Plant 39(3): 89. Jiang, M., B.E. Medlyn, D. Wårlind, J. Knauer, K. Fleischer, et al. 2024. Carbon-phosphorus cycle models overestimate CO2 enrichment response in a mature Eucalyptus forest. Science Advances 10(27): eadl5822. Jiang, M., N. Yang, J. Zhao, M. Shaaban, and R. Hu. 2021. Crop straw incorporation mediates the impacts of soil aggregate size on greenhouse gas emissions. Geoderma 401: 115342. Jimenez, R.R., and J.K. and Ladha. 1993. Automated elemental analysis: A rapid and reliable but expensive measurement of total carbon and nitrogen in plant and soil samples. Communications in Soil Science and Plant Analysis 24(15–16): 1897–1924. Jin, Y., X. Liang, M. He, Y. Liu, G. Tian, et al. 2016. Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: A microcosm incubation study. Chemosphere 142: 128–135. Jindo, K., Y. Audette, F.L. Olivares, L.P. Canellas, D.S. Smith, et al. 2023. Biotic and abiotic effects of soil organic matter on the phytoavailable phosphorus in soils: a review. Chem. Biol. Technol. Agric. 10(1): 29. Johnson D.K., Adam P., Ashley P., Chum H., Deutch S., et al. 1994. Study of compositional changes in biomass feedstocks upon storage (results). Rapport - Sveriges Lantbruksuniversitet, Institutionen foer Virkeslaera (Sweden) (241). Kaiser, J.-P., and J.-M. Bollag. 1990. Microbial activity in the terrestrial subsurface. Experientia 46(8): 797–806. Kan, Z.-R., Y. Li, X. Yang, S. Zhai, Y. Meng, et al. 2023. Methane emission under straw return is mitigated by tillage types depending on crop growth stages in a wheat-rotated rice farming system. Soil and Tillage Research 228: 105649. Kang, Y., H. Wu, Q. Guan, and Z. Zhang. 2024. Responses of soil greenhouse gas emissions to soil mesofauna invasions and its driving mechanisms in the alpine tundra: A microcosm study. Science of The Total Environment 908: 168255. Ke, C., S. Zhang, C. Guo, Y. Deng, Y. Li, et al. 2023. Biogenic FeS nanoparticles modulate the extracellular electron transfer and schwertmannite transformation. Environmental Science: Nano 10(10): 2733–2743. Kim, G.W., J. Gutierrez-Suson, and P.J. Kim. 2019. Optimum N rate for grain yield coincides with minimum greenhouse gas intensity in flooded rice fields. Field Crops Research 237: 23–31. Kim, B.-C., B. Seung Jeon, S. Kim, H. Kim, Y. Um, et al. 2015. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology 65(Pt_12): 4902–4908. Kirfel, K., C. Leuschner, D. Hertel, and B. Schuldt. 2017. Influence of Root Diameter and Soil Depth on the Xylem Anatomy of Fine- to Medium-Sized Roots of Mature Beech Trees in the Top- and Subsoil. Front. Plant Sci. 8. Kumar, M., K. Revathi, and S. Khanna. 2015. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp R-28. Carbohydrate Polymers 134: 761–766. Kuzyakov, Y. 2002. Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165(4): 382–396. Lal, R., W. Negassa, and K. Lorenz. 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability 15: 79–86. Lee, Y.-G., E.-J. Cho, S. Maskey, D.-T. Nguyen, and H.-J. Bae. 2023. Value-Added Products from Coffee Waste: A Review. Molecules 28(8): 3562. van Leeuwen, J.P., I. Djukic, J. Bloem, T. Lehtinen, L. Hemerik, et al. 2017. Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain. European Journal of Soil Biology 79: 14–20. Li, H., M. Dai, S. Dai, and X. Dong. 2018. Current status and environment impact of direct straw return in China’s cropland – A review. Ecotoxicology and Environmental Safety 159: 293–300. Li, S., L. Guo, C. Cao, and C. Li. 2021a. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China. Environ Sci Pollut Res 28(5): 5742–5754. Li, Y., Z. Li, S. Cui, G. Liang, and Q. Zhang. 2021b. Microbial-derived carbon components are critical for enhancing soil organic carbon in no-tillage croplands: A global perspective. Soil and Tillage Research 205: 104758. Li, J., J. Li, X. Ye, B. Roland, X. Jin, et al. 2024. High starch and hemicellulose labile C degradation functional genes increase soil CO2 emissions follow straw return. Applied Soil Ecology 198: 105370. Li, Q., C. Rückert, G. Li, P. Huang, O. Schneider, et al. 2020. Prauserella flavalba sp. nov., a novel species of the genus Prauserella, isolated from alkaline soil. International Journal of Systematic and Evolutionary Microbiology 70(1): 380–387. Liang, C., J.P. Schimel, and J.D. Jastrow. 2017. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol 2(8): 1–6. Linquist, B., K.J. van Groenigen, M.A. Adviento-Borbe, C. Pittelkow, and C. van Kessel. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biology 18(1): 194–209. Liu, L., M. Cheng, L. Yang, X. Gu, J. Jin, et al. 2023. Regulation of straw decomposition and its effect on soil function by the amount of returned straw in a cool zone rice crop system. Sci Rep 13(1): 15673. Liu, T.Q., D.J. Fan, X.X. Zhang, J. Chen, C.F. Li, et al. 2015. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research 184: 80–90. Liu, N., H. Hu, W. Ma, Y. Deng, Y. Liu, et al. 2019a. Contrasting Biogeographic Patterns of Bacterial and Archaeal Diversity in the Top- and Subsoils of Temperate Grasslands. mSystems 4(5): 10.1128/msystems.00566-19. Liu, C., Z. Li, A.A. Berhe, H. Xiao, L. Liu, et al. 2019b. Characterizing dissolved organic matter in eroded sediments from a loess hilly catchment using fluorescence EEM-PARAFAC and UV–Visible absorption: Insights from source identification and carbon cycling. Geoderma 334: 37–48. Liu, Q., Y. Li, S. Liu, W. Gao, J. Shen, et al. 2022. Anaerobic primed CO2 and CH4 in paddy soil are driven by Fe reduction and stimulated by biochar. Science of The Total Environment 808: 151911. Liu, B., Q. Wu, F. Wang, and B. Zhang. 2019c. Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis. Energy 171: 393–402. Liu, X., Q. Wu, H. Wu, J. Shi, and Z. Zhang. 2024. Earthworm invasion and interaction with litter increased CO2 and N2O emissions in Changbai Mountain: A microcosm study. Applied Soil Ecology 202: 105533. Liu, F., Y. Zhang, H. Liang, and D. Gao. 2021. Resilience of methane cycle and microbial functional genes to drought and flood in an alkaline wetland: A metagenomic analysis. Chemosphere 265: 129034. Lu, X., P.M. Vitousek, Q. Mao, F.S. Gilliam, Y. Luo, et al. 2021. Nitrogen deposition accelerates soil carbon sequestration in tropical forests. Proceedings of the National Academy of Sciences 118(16): e2020790118. Lu, C., Z. Yu, J. Zhang, P. Cao, H. Tian, et al. 2022. Century-long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Global Change Biology 28(7): 2505–2524. Luong, J., Y. Hua, R. Gras, and M. Hawryluk. 2018. In situ methanation with flame ionization detection for the determination of carbon dioxide in various matrices. Analytical Methods 10(10): 1275–1279. Ma, Y., Y. Qu, X. Yao, C. Xia, M. Lv, et al. 2024. Unveiling the unique role of iron in the metabolism of methanogens: A review. Environmental Research 250: 118495. Mandal, U.K., A.K. Bhardwaj, T.D. Lama, D.B. Nayak, A. Samui, et al. 2021. Net ecosystem exchange of carbon, greenhouse gases, and energy budget in coastal lowland double cropped rice ecology. Soil and Tillage Research 212: 105076. Mate, Ch.J., I. Mukherjee, and S.K. Das. 2014. Mobility of spiromesifen in packed soil columns under laboratory conditions. Environ Monit Assess 186(11): 7195–7202. McCarty, G.W., J.B. Reeves, V.B. Reeves, R.F. Follett, and J.M. Kimble. 2002. Mid-Infrared and Near-Infrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement. Soil Science Society of America Journal 66(2): 640–646. Meersmans, J., B. Van Wesemael, and M. Van Molle. 2009. Determining soil organic carbon for agricultural soils: a comparison between the Walkley & Black and the dry combustion methods (north Belgium). Soil Use and Management 25(4): 346–353. Meng L.I., Haiyu L.I., and Ming G. a. O. 2022. Effect of conservation tillage on the abundance and diversities of soil diazotrophic communities in different soil layers of Mollisol. tryzw 11(3): 273–281. Miller, K.E., C.-T. Lai, R.A. Dahlgren, and D.A. Lipson. 2019. Anaerobic Methane Oxidation in High-Arctic Alaskan Peatlands as a Significant Control on Net CH4 Fluxes. Soil Systems 3(1): 7. Min, Y., Q. Gao, Y. Wang, X. Yu, L. Tong, et al. 2023. Flooding lowers the emissions of CO2 and CH4 during the freeze-thaw process in a lacustrine wetland. CATENA 227: 107132. Mo, D., Y. Liu, M. Li, H. Li, J. Zhang, et al. 2025. Warming increases CH4 emissions from rice paddies through shifts in methanogenic and methanotrophic communities. Soil Biology and Biochemistry 200: 109639. Mohan, D., C.U.Jr. Pittman, and P.H. Steele. 2006. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy Fuels 20(3): 848–889. Monforti, F., E. Lugato, V. Motola, K. Bodis, N. Scarlat, et al. 2015. Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe. Renewable and Sustainable Energy Reviews 44: 519–529. Mu, D., L. Mu, X. Geng, T.A. Mohamed, and Z. Wei. 2024. Evolution from basic to advanced structure of fulvic acid and humic acid prepared by food waste. International Journal of Biological Macromolecules 256: 128413. Mueller, R.C., J. Belnap, and C.R. Kuske. 2015. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland. Front. Microbiol. 6. Murphy, K.R., K.D. Butler, R.G.M. Spencer, C.A. Stedmon, J.R. Boehme, et al. 2010. Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An Interlaboratory Comparison. Environ. Sci. Technol. 44(24): 9405–9412. Nagai, M., H. Sakata, E. Sakaiya, and Y. Tako. 2023. Degradation rate of 13C-enriched rice straw ploughed into paddy fields and uptake of released 13C by rice plants grown in the fields. Eco-Engineering 35(1): 3–12. Nayak, A.K., M.M. Rahman, R. Naidu, B. Dhal, C.K. Swain, et al. 2019. Current and emerging methodologies for estimating carbon sequestration in agricultural soils: A review. Science of The Total Environment 665: 890–912. Nelson, D.W., and L.E. Sommers. 1996. Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis. John Wiley & Sons, Ltd. p. 961–1010 Ng, C.W.W., W.H. Yan, K.W.K. Tsim, P.S. So, Y.T. Xia, et al. 2022. Effects of Bacillus subtilis and Pseudomonas fluorescens as the soil amendment. Heliyon 8(11). Obruca, S., P. Benesova, D. Kucera, S. Petrik, and I. Marova. 2015. Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnology 32(6): 569–574. O’Dwyer, J., D. Walshe, and K.A. Byrne. 2018. Wood waste decomposition in landfills: An assessment of current knowledge and implications for emissions reporting. Waste Management 73: 181–188. Pal, D., and F.E. Broadbent. 1975. Kinetics of Rice Straw Decomposition in Soils. Journal of Environmental Quality 4(2): 256–260. pan, shenggang, X. Pu, H. Guo, Y. Wang, L. Xia, et al. 2025. Mechanical deep placement of slow/controlled-release fertilizer increases grain yield and nitrogen use efficiency by improving the carbon and nitrogen metabolism abilities of rice. Pang, J., Y. Liang, F. Mi, G. Jiang, T. Tsuji, et al. 2024. Nanoscale Understanding on CO2 Diffusion and Adsorption in Clay Matrix Nanopores: Implications for Carbon Geosequestration. Environ Sci Technol 58(46): 20401–20411. Park, M., and S.A. Snyder. 2018. Sample handling and data processing for fluorescent excitation-emission matrix (EEM) of dissolved organic matter (DOM). Chemosphere 193: 530–537. Pasangulapati, V., K.D. Ramachandriya, A. Kumar, M.R. Wilkins, C.L. Jones, et al. 2012. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Bioresource Technology 114: 663–669. Pereira, A.P. de A., P.A.M. de Andrade, D. Bini, A. Durrer, A. Robin, et al. 2017. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLOS ONE 12(7): e0180371. Podgorski, D.C., P. Zito, J.T. McGuire, D. Martinovic-Weigelt, I.M. Cozzarelli, et al. 2018. Examining Natural Attenuation and Acute Toxicity of Petroleum-Derived Dissolved Organic Matter with Optical Spectroscopy. Environ. Sci. Technol. 52(11): 6157–6166. Qian, H., X. Zhu, S. Huang, B. Linquist, Y. Kuzyakov, et al. 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nat Rev Earth Environ 4(10): 716–732. Rabenhorst, M.C., W.D. Hively, and B.R. James. 2009. Measurements of Soil Redox Potential. Soil Science Society of America Journal 73(2): 668–674. Ramos, M., E. Laveriano, L. San Sebastián, M. Perez, A. Jiménez, et al. 2023. Rice straw as a valuable source of cellulose and polyphenols: Applications in the food industry. Trends in Food Science & Technology 131: 14–27. Reddy, K.R., and W.H. Patrick. 1975. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biology and Biochemistry 7(2): 87–94. Rennert, T., and L. Herrmann. 2022. Thermal-gradient analysis of soil organic matter using an elemental analyser – A tool for qualitative characterization? Geoderma 425: 116085. Rickard, D. 2006. The solubility of FeS. Geochimica et Cosmochimica Acta 70(23): 5779–5789. Rickard, D., and G.W. Luther. 2007. Chemistry of Iron Sulfides. Chem. Rev. 107(2): 514–562. Rinnan, Å., K.S. Booksh, and R. Bro. 2005. First order Rayleigh scatter as a separate component in the decomposition of fluorescence landscapes. Analytica Chimica Acta 537(1): 349–358. Rumpel, C., and I. Kögel-Knabner. 2011. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338(1): 143–158. Russell, M.B., C.W. Woodall, S. Fraver, A.W. D’Amato, G.M. Domke, et al. 2014. Residence Times and Decay Rates of Downed Woody Debris Biomass/Carbon in Eastern US Forests. Ecosystems 17(5): 765–777. Salomé, C., N. Nunan, V. Pouteau, T.Z. Lerch, and C. Chenu. 2010. Carbon dynamics in topsoil and in subsoil may be controlled by different regulatory mechanisms. Global Change Biology 16(1): 416–426. Satoh, Y., S. Ishizuka, S. Hiradate, M. Atarashi-Andoh, H. Nagano, et al. 2023. Sequential loss-on-ignition as a simple method for evaluating the stability of soil organic matter under actual environmental conditions. Environmental Research 239: 117224. Schellekens, J., P. Buurman, K. Kalbitz, A. van Zomeren, P. Vidal-Torrado, et al. 2017. Molecular Features of Humic Acids and Fulvic Acids from Contrasting Environments. Environ. Sci. Technol. 51(3): 1330–1339. Schimel, J.P., and M.N. Weintraub. 2003. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry 35(4): 549–563. Schippers, A., and B.B. Jørgensen. 2002. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta 66(1): 85–92. Schönbichler, A., S.M. Díaz-Moreno, V. Srivastava, and L.S. McKee. 2020. Exploring the Potential for Fungal Antagonism and Cell Wall Attack by Bacillus subtilis natto. Front. Microbiol. 11. Schütz, K., E. Kandeler, P. Nagel, S. Scheu, and L. Ruess. 2010. Functional microbial community response to nutrient pulses by artificial groundwater recharge practice in surface soils and subsoils. FEMS Microbiology Ecology 72(3): 445–455. Séquaris, J.-M., E. Klumpp, and H. Vereecken. 2013. Colloidal properties and potential release of water-dispersible colloids in an agricultural soil depth profile. Geoderma 193: 94–101. Seuradge, B.J., M. Oelbermann, and J.D. Neufeld. 2017. Depth-dependent influence of different land-use systems on bacterial biogeography. FEMS Microbiology Ecology 93(2): fiw239. Shahzad, T., F. Anwar, S. Hussain, F. Mahmood, M.S. Arif, et al. 2019. Carbon dynamics in surface and deep soil in response to increasing litter addition rates in an agro-ecosystem. Geoderma 333: 1–9. Shang, C., Y. Chai, L. Peng, J. Shao, H. Huang, et al. 2023. Remediation of Cr(VI) contaminated soil by chitosan stabilized FeS composite and the changes in microorganism community. Chemosphere 327: 138517. Sharma, N., B.J. Allardyce, R. Rajkhowa, and R. Agrawal. 2023. Rice straw-derived cellulose: a comparative study of various pre-treatment technologies and its conversion to nanofibres. Sci Rep 13(1): 16327. Shi, Z., S.D. Allison, Y. He, P.A. Levine, A.M. Hoyt, et al. 2020. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13(8): 555–559. Shi, J., S. Wang, S. Li, and X. Tian. 2022. Increasing soil organic carbon sequestration and yield stability by no-tillage and straw-returning in wheat–maize rotation. Agronomy Journal 114(2): 1534–1545. Sinsabaugh, R.L., C.L. Lauber, M.N. Weintraub, B. Ahmed, S.D. Allison, et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11(11): 1252–1264. Spohn, M. 2020. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Global Change Biology 26(8): 4169–4177. Spohn, M., K. Klaus, W. Wanek, and A. Richter. 2016. Microbial carbon use efficiency and biomass turnover times depending on soil depth – Implications for carbon cycling. Soil Biology and Biochemistry 96: 74–81. Stanley, P., J. Spertus, J. Chiartas, P.B. Stark, and T. Bowles. 2023. Valid inferences about soil carbon in heterogeneous landscapes. Geoderma 430: 116323. Su, Y., Z. He, Y. Yang, S. Jia, M. Yu, et al. 2020a. Linking soil microbial community dynamics to straw-carbon distribution in soil organic carbon. Sci Rep 10(1): 5526. Su, Y., M. Yu, H. Xi, J. Lv, Z. Ma, et al. 2020b. Soil microbial community shifts with long-term of different straw return in wheat-corn rotation system. Sci Rep 10(1): 6360. Sui, X., R. Zhang, B. Frey, L. Yang, M.-H. Li, et al. 2019. Land use change effects on diversity of soil bacterial, Acidobacterial and fungal communities in wetlands of the Sanjiang Plain, northeastern China. Sci Rep 9(1): 18535. Tecon, R., and D. Or. 2017. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiology Reviews 41(5): 599–623. Tian, J., F. Ge, D. Zhang, S. Deng, and X. Liu. 2021. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology 10(2): 158. Tikhonova, E.N., D.S. Grouzdev, A.N. Avtukh, and I.K. Kravchenko. 2021. Methylocystis silviterrae sp.nov., a high-affinity methanotrophic bacterium isolated from the boreal forest soil. International Journal of Systematic and Evolutionary Microbiology 71(12): 005166. Tripathi, B.M., M. Kim, Y. Kim, E. Byun, J.-W. Yang, et al. 2018. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores. Sci Rep 8(1): 504. Tripathi, B.M., H.M. Kim1, J.Y. Jung, S. Nam, H.T. Ju, et al. 2019. Distinct Taxonomic and Functional Profiles of the Microbiome Associated With Different Soil Horizons of a Moist Tussock Tundra in Alaska. Front. Microbiol. 10. Tveit, A., R. Schwacke, M.M. Svenning, and T. Urich. 2013. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. The ISME Journal 7(2): 299–311. Ueki, A., A. Tonouchi, N. Kaku, and K. Ueki. 2021. Anaerocolumna chitinilytica sp. nov., a chitin-decomposing anaerobic bacterium isolated from anoxic soil subjected to biological soil disinfestation. International Journal of Systematic and Evolutionary Microbiology 71(9): 004999. Verbrigghe, N., N.I.W. Leblans, B.D. Sigurdsson, S. Vicca, C. Fang, et al. 2022. Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil. Biogeosciences 19(14): 3381–3393. Wang, Y.-S., C.S. Byrd, and M.A. Barlaz. 1994. Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. Journal of Industrial Microbiology 13(3): 147–153. Wang, X., J. Feng, G. Ao, W. Qin, M. Han, et al. 2023. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biology and Biochemistry 179: 108982. Wang, X., P. He, X. Xu, S. Qiu, and S. Zhao. 2022a. Characteristics of rice straw decomposition and bacterial community succession for 2 consecutive years in a paddy field in southeastern China. Sci Rep 12(1): 20893. Wang, D., J.Y. Lin, J.M. Sayre, R. Schmidt, S.J. Fonte, et al. 2022b. Compost amendment maintains soil structure and carbon storage by increasing available carbon and microbial biomass in agricultural soil – A six-year field study. Geoderma 427: 116117. Wang, J., Y. Ma, L. Di, X. Qian, and G. Wang. 2021. Straw Incorporation with Nitrogen Amendment Shapes Bacterial Community Structure in an Iron-Rich Paddy Soil by Altering Nitrogen Reserves. Microorganisms 9(5): 988. Wang, X., J.M. Padgett, J.S. Powell, and M.A. Barlaz. 2013. Decomposition of forest products buried in landfills. Waste Management 33(11): 2267–2276. Wang, J., D. Wu, Q. Wu, J. Chen, Y. Zhao, et al. 2024a. Vertical profiles of community and activity of methanotrophs in large lake and reservoir of Southwest China. Science of The Total Environment 957: 177782. Wang, N., J.-G. Yu, Y.-H. Zhao, Z.-Z. Chang, X.-X. Shi, et al. 2018. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions. Atmospheric Environment 174: 171–179. Wang, Y., C. Zhao, A. Lu, D. Dong, and W. Gong. 2024b. Unveiling the hidden impact: How biodegradable microplastics influence CO2 and CH4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. Journal of Hazardous Materials 471: 134294. Wang, F., F. Zhou, L. Zhang, W. Liu, Y. Su, et al. 2025. Mechanisms of manganese-modified biochar and white-rot fungi in enhancing compost humification: Boosting polyphenol pathway by lignocellulose degradation. Chemical Engineering Journal 507: 160637. Wangersky, P.J. 1993. Dissolved organic carbon methods: a critical review. Marine Chemistry 41(1): 61–74. Wei, C., S. Ren, P. Yang, Y. Wang, X. He, et al. 2021. Effects of irrigation methods and salinity on CO2 emissions from farmland soil during growth and fallow periods. Science of The Total Environment 752: 141639. Wells, M.J.M., J. Hooper, G.A. Mullins, and K.Y. Bell. 2022. Development of a fluorescence EEM-PARAFAC model for potable water reuse monitoring: Implications for inter-component protein–fulvic–humic interactions. Science of The Total Environment 820: 153070. Wu, G., J. Ling, Y.-P. Xu, D.-Q. Zhao, Z.-X. Liu, et al. 2022. Effects of soil warming and straw return on soil organic matter and greenhouse gas fluxes in winter wheat seasons in the North China Plain. Journal of Cleaner Production 356: 131810. Xiao, L., W. Wei, M. Luo, H. Xu, D. Feng, et al. 2019. A potential contribution of a Fe(III)-rich red clay horizon to methane release: Biogenetic magnetite-mediated methanogenesis. CATENA 181: 104081. Xie, Z., Z. Yu, Y. Li, G. Wang, X. Liu, et al. 2022. Soil microbial metabolism on carbon and nitrogen transformation links the crop-residue contribution to soil organic carbon. npj Biofilms Microbiomes 8(1): 1–10. Xu, L., Y. Jiang, and L. Wang. 2017. Thermal decomposition of rape straw: Pyrolysis modeling and kinetic study via particle swarm optimization. Energy Conversion and Management 146: 124–133. Yan, C., S.-S. Yan, T.-Y. Jia, S.-K. Dong, C.-M. Ma, et al. 2019. Decomposition characteristics of rice straw returned to the soil in northeast China. Nutr Cycl Agroecosyst 114(3): 211–224. Yan, Y., C. Zhang, Q. Lin, X. Wang, B. Cheng, et al. 2018. Microwave-Assisted Oxalic Acid Pretreatment for the Enhancing of Enzyme Hydrolysis in the Production of Xylose and Arabinose from Bagasse. Molecules 23(4): 862. Yang, F. ke, B. He, L. Zhang, G. Zhang, and Y. Gao. 2020. An Approach to Improve Soil Quality: a Case Study of Straw Incorporation with a Decomposer Under Full Film-Mulched Ridge-Furrow Tillage on the Semiarid Loess Plateau, China. J Soil Sci Plant Nutr 20(1): 125–138. Yang, S.-S., C.-M. Liu, C.-M. Lai, and Y.-L. Liu. 2003. Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990–2000 in Taiwan. Chemosphere 52(8): 1295–1305. Yang, C., X. Wang, J. Li, G. Zhang, H. Shu, et al. 2024. Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system. Journal of Integrative Agriculture 23(2): 669–679. Yiqi, L., and X. Zhou. 2010. Soil Respiration and the Environment. Elsevier. You, M., Q. Zhao, Y. Liu, W. Zhang, Z. Shen, et al. 2023. Insights into lignocellulose degradation: comparative genomics of anaerobic and cellulolytic Ruminiclostridium-type species. Front. Microbiol. 14. Yousuf, A., D. Pirozzi, and F. Sannino. 2020. Chapter 1 - Fundamentals of lignocellulosic biomass. In: Yousuf, A., Pirozzi, D., and Sannino, F., editors, Lignocellulosic Biomass to Liquid Biofuels. Academic Press. p. 1–15 Yu, H., Z. He, A. Wang, J. Xie, L. Wu, et al. 2017. Divergent Responses of Forest Soil Microbial Communities under Elevated CO2 in Different Depths of Upper Soil Layers. Applied and Environmental Microbiology 84(1): e01694-17. Yu, W., W. Huang, S.R. Weintraub-Leff, and S.J. Hall. 2022. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry 172: 108756. Yu, H., Z. Zhang, Y. Zhang, Q. Song, P. Fan, et al. 2021. Effects of microplastics on soil organic carbon and greenhouse gas emissions in the context of straw incorporation: A comparison with different types of soil. Environmental Pollution 288: 117733. Yuan, L.-J., Y.-Q. Zhang, Y. Guan, Y.-Z. Wei, Q.-P. Li, et al. 2008. Saccharopolyspora antimicrobica sp. nov., an actinomycete from soil. International Journal of Systematic and Evolutionary Microbiology 58(5): 1180–1185. Zeng, N., X. Zhao, G. Poisson, B. Clifford, Y. Liu, et al. 2024. 3775-year-old wood burial supports “wood vaulting” as a durable carbon removal method. Science 385(6716): 1454–1459. Zhang, F., X. Chen, S. Yao, Y. Ye, and B. Zhang. 2022. Responses of soil mineral-associated and particulate organic carbon to carbon input: A meta-analysis. Science of The Total Environment 829: 154626. Zhang, M., G. Cheng, H. Feng, B. Sun, Y. Zhao, et al. 2017a. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ Sci Pollut Res 24(11): 10108–10120. Zhang, M., P. Dang, B. Haegeman, X. Han, X. Wang, et al. 2024. The effects of straw return on soil bacterial diversity and functional profiles: A meta-analysis. Soil Biology and Biochemistry 195: 109484. Zhang, B.-Y., S. Dou, S. Guan, C. Yang, and Z. Wang. 2023a. Deep Straw Burial Accelerates Straw Decomposition and Improves Soil Water Repellency. Agronomy 13(7): 1927. Zhang, B., C.R. Penton, C. Xue, J.F. Quensen, S.S. Roley, et al. 2017b. Soil depth and crop determinants of bacterial communities under ten biofuel cropping systems. Soil Biology and Biochemistry 112: 140–152. Zhang, J., N. Wang, S. Li, J. Wang, Y. Feng, et al. 2023b. The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. Plants 12(19): 3421. Zhang, Y., Wang ,Weijin, and H. and Yao. 2023c. Urea-based nitrogen fertilization in agriculture: a key source of N2O emissions and recent development in mitigating strategies. Archives of Agronomy and Soil Science 69(5): 663–678. Zhang, Y., J. Zou, B. Osborne, W. Dang, Y. Xu, et al. 2023d. Effect of straw return on soil respiration in dryland agroecosystem of China: A meta-analysis. Ecological Engineering 196: 107099. Zhao, C., H. Huang, Z. Qian, H. Jiang, G. Liu, et al. 2021. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice. Journal of Integrative Agriculture 20(6): 1487–1502. Zhao, Y., Y. Liu, S. Cao, Q. Hao, C. Liu, et al. 2024. Anaerobic oxidation of methane driven by different electron acceptors: A review. Science of The Total Environment 946: 174287. Zhu, X., J. An, L. Ma, S. Chen, J. Li, et al. 2020. Effects of different straw returning depths on soil greenhouse gas emission and maize yield. Zuo, S., D. Wu, Z. Du, C. Xu, Y. Tan, et al. 2023. Mitigation of soil N2O emissions by decomposed straw based on changes in dissolved organic matter and denitrifying bacteria. Science of The Total Environment 905: 167148. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99476 | - |
| dc.description.abstract | 面對氣候變遷挑戰,農業應用上有許多方式來對抗,例如含碳農業剩餘物還田、不整地栽培以及輪作等,如何巧妙應用農業技術進行土壤儲碳已成為提升土壤品質與永續利用的重要課題。臺灣目前對農餘物還田多採表層還田方式 (0-30 cm),但在表層微生物活性旺盛與環境變動頻繁的條件下,農餘物常迅速分解,釋出大量溫室氣體 (Greenhouse Gases, GHGs),不利於長期土壤有機碳 (Soil Organic Carbon, SOC) 累積與形成穩定碳。相較之下,深層土壤因氧氣供應較少、微生物活性較低等特性,有潛力延緩分解,使農餘物得以在土壤中存留更久。本研究方向以稻稈作為還田資材,觀察生態瓶添加硫化鐵 (FeS) 後GHGs的排放以及模擬管柱、現地試驗之稻稈於不同深度 (表層至深層) 埋設後的分解速率差異。
在生態瓶試驗中,分別添加不同比例的FeS以探討其在土壤碳穩定與GHGs排放控制上的潛力。FeS具有良好的氧化還原能力,可在厭氧條件下作為電子受體。試驗結果顯示,越高比例FeS的添加抑制了甲烷 (CH4) 的生成,顯示 FeS 可有效地競爭電子,減緩溫室氣體排放,進而降低碳損失。 管柱試驗中,稻稈分別埋設於30-50、80-100與140-160 cm深度,並定期分析稻稈碳含量變化,應用一階動力學模型估算分解速率常數 (k值)。結果顯示,稻稈在表層 30 cm 處的分解速率最高,k值為0.088 month-1;中層80-100 cm處為0.030 month-1;最深層140-160 cm處則為0.025 month-1,顯示深層處理能有效減緩有機質分解。此一分解速率差異與土壤環境因子密切相關。表層處理 (30-50 cm) 具有較高的氧化還原電位 (Oxidation-Reduction Potential, ORP) 伴隨著較高GHGs排放與Shannon多樣性指數,顯示此處具較強的好氧微生物活性,促進稻稈的快速分解。相對地,較深層的兩個處理 (80-100 cm、140-160 cm) 中,ORP顯著下降、土壤含水量 (Soil water content, SWC) 升高,反映出更強的還原性環境,有助於厭氧菌生長,但整體GHGs排放量與Shannon指數下降,這些環境條件共同限制了深層土壤對稻稈的分解效率,使其有機碳得以在土壤中保存較長期 。 在現地試驗部分,將稻稈分別埋設於 30、60 及90 cm 深度,並持續觀察稻稈碳變化。結果顯示,30 cm處理之分解速率最高為0.33 month-1,而60 cm與90 cm處理之速率常數皆為0.04 month-1,與管柱試驗結果一致,進一步驗證深層埋入可有效延緩有機質分解並提升碳封存潛力。各處理土壤性質亦呈現差異,深層埋設處理相較於淺層具有較高之SOC與SWC,而表層處理則與較高的GHGs排放有關,顯示稻稈埋設深度對碳循環與土壤環境條件具有顯著影響。 在微生物群落分析方面,管柱中30-50cm埋入處理中以Bacillus、Ruminiclostridium與Anaerocolumna為優勢菌屬,屬於具纖維素分解能力之需氧或兼性厭氧菌,反映表層稻稈易被分解的特性。相對地,80-100 cm 及 140-160 cm 深層處理則以厭氧發酵菌Caproiciproducens為主,且群落組成展現出更強烈的厭氧代謝特徵,顯示不同深度調控了微生物多樣性與功能性表現。現地試驗結果亦佐證深層稻稈埋入可顯著提升微生物多樣性,有助於形成具穩定性的微生物碳循環系統。 綜合以上所述,將稻稈掩埋於土壤深層,能有效延緩其分解速率,深層掩埋不僅能提升土壤碳的滯留時間與穩定性,更能減緩溫室氣體排放風險,值得進一步推廣與深入研究。 | zh_TW |
| dc.description.abstract | Facing the challenges of climate change, various agricultural practices—such as the incorporation of crop residues, no-tillage, and crop rotation—have been adopted to mitigate greenhouse gas (GHG) emissions. Among these, enhancing soil carbon sequestration has become critical for improving soil quality and sustainability. In Taiwan, surface incorporation of crop residues (0-30 cm) is common; however, due to active microbial processes and environmental fluctuations at the surface, residues rapidly decompose, releasing GHGs and hindering long-term soil organic carbon (SOC) accumulation. In contrast, deeper soil layers—with lower oxygen and microbial activity—may delay decomposition and prolong carbon retention.
This study investigated rice straw carbon mineralization dynamics at different soil depths through microcosm, column, and field experiments, including the use of iron sulfide (FeS) as a potential GHG mitigation agent. In microcosms, increasing FeS addition suppressed methane (CH4) emissions, indicating FeS effectively acts as a competitive electron acceptor under anaerobic conditions, reducing carbon losses. In soil column trials, rice straw was buried at 30-50, 80-100, and 140-160 cm. First-order kinetic modeling revealed the highest decomposition rate at 30-50 cm (k = 0.088 month-1), followed by 80-100 cm (k = 0.030 month-1) and 140-160 cm (k = 0.025 month-1). Surface soils exhibited higher oxidation-reduction potential (ORP), greater GHG emissions, and higher microbial diversity (Shannon index), reflecting aerobic conditions favorable for rapid decomposition. In contrast, deeper soils showed reduced ORP and increased soil water content (SWC), indicating more reductive environments conducive to anaerobic conditions and slower decomposition. Field trials supported these results. Rice straw was buried at 30, 60, and 90 cm, and decomposition rates were highest at 30 cm (k = 0.33 month-1), while both 60 and 90 cm depths showed significantly lower rates (k=0.04 month-1).Deep burial treatments also exhibited higher SOC and SWC, while surface treatments were associated with greater GHG emissions, underscoring the environmental impact of burial depth. Microbial community analysis from the column experiment revealed that surface soils (30-50 cm) were dominated by cellulolytic aerobic and facultative anaerobic genera such as Bacillus, Ruminiclostridium, and Anaerocolumna. In contrast, deeper layers were dominated by the anaerobic fermentative genus Caproiciproducens, with microbial profiles indicating more pronounced anaerobic metabolic functions. Field results further confirmed that deep burial enhances microbial diversity and contributes to more stable microbial carbon cycling. In conclusion, deep burial of rice straw effectively slows decomposition, prolongs SOC residence time, and reduces GHG emissions. This approach offers significant potential for carbon sequestration and merits broader application in sustainable agriculture. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:24:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:24:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目次 vi 表次 ix 圖次 x Abbreviations xiii 第1章 前言 1 1.1研究背景 1 1.2研究項目 2 第2章 文獻回顧 3 2.1土壤增加有機碳策略 3 2.1.1施用有機資材 3 2.1.2土壤有機碳含量與性質之多元分析方法探討 4 2.2深層土壤碳封存 7 2.3農業土壤溫室氣體排放 8 2.3.1溫室氣體排放原因 8 2.3.2減緩溫室氣體排放策略 10 2.3.3 添加硫化鐵對溫室氣體排放影響 11 2.4 含碳農餘物之降解潛勢與木質纖維組成關聯性分析 12 2.4.1不同農業廢棄物之木質纖維組成特徵分析 12 2.4.2稻稈之分解速率比較與影響因素探討 13 2.5營養元素與碳儲量關係 16 2.6土壤微生物在碳穩定與儲存中的作用 17 2.6.1微生物對土壤碳儲存之影響 17 2.6.2土壤深度對微生物生物量與多樣性的影響 19 2.6.3土壤深度對功能性菌群的變化 19 第3章 材料與方法 21 3.1化學藥品與溶劑 21 3.2土壤及農餘物基本性質測定 21 3.2.1土壤水分含量 (Soil Water Content, SWC) 測定 21 3.2.2土壤酸鹼值測定 21 3.2.3土壤氧化還原電位 (Oxidation-Reduction Potential, ORP) 測定 21 3.2.4土壤有機碳測定 22 3.2.5稻稈有機碳測定 22 3.3小型生態瓶微觀系統 22 3.3.1生態瓶設置 22 3.3.2 CH4、CO2採樣 23 3.3.3 以氣相層析儀分析CH4、CO2 23 3.3.4 CH4、CO2排放通量計算 24 3.4模擬管柱系統 25 3.4.1管柱試驗之設置 25 3.4.2管柱試驗土壤pH值、水分含量、溫度及電導度即時監測系統 27 3.4.3管柱採樣之方法及含碳量計算 27 3.4.4管柱滲濾液總有機碳測定 27 3.4.5管柱滲濾液激發-發射分析 (Excitation-Emission Matrix, EEM-PARAFAC) 測定 28 3.4.6管柱中農餘物降解之計算 29 3.4.7管柱溫室氣體 (Greenhouse gases, GHGs) 分析 29 3.4.8管柱GHGs計算 30 3.4.9 二氧化碳當量 (CO2e) 之計算 30 3.5現地掩埋農餘物系統 31 3.5.1現地試驗之設置 31 3.5.2現地採樣之方法 32 3.5.3現地中農餘物降解之計算 32 3.5.4現地溫室氣體分析 32 3.5.5現地溫室氣體計算 32 3.6菌相分析 33 3.7圖表製作 33 第4章 結果與討論 34 4.1生態瓶試驗 34 4.1.1添加不同比例硫化鐵 (FeS) 土壤性質測定 34 4.1.2添加不同比例硫化鐵 (FeS) 溫室氣體排放趨勢 36 4.2 模擬土壤管柱觀測結果 40 4.2.1土壤管柱型態觀察 40 4.2.2管柱氧化還原電位監測 43 4.2.3管柱稻稈降解動力曲線計算及含碳量變化 45 4.2.4管柱中土壤有機碳含量變化 48 4.2.5管柱溫室氣體排放趨勢 49 4.2.6土壤管柱滲濾液之TOC及其時序變化 53 4.2.6分析各管柱滲濾液螢光光譜與其時序變化 56 4.2.7管柱碳平衡計算 60 4.2.8管柱主成分分析 (Principal Component Analysis, PCA) 63 4.3掩埋稻稈於現地之觀測結果 65 4.3.1現地氧化還原電位監測 65 4.3.2現地稻稈含碳量及降解動力曲線計算 68 4.3.3現地土壤有機碳變化 70 4.3.4現地溫室氣體排放趨勢 72 4.3.5 現地實驗主成分分析 75 4.4土壤菌相分析 76 4.4.1管柱土壤菌相分析 76 4.4.2現地土壤各深度菌相分析 77 4.4.3現地土壤掩埋90cm稻稈處理隨時間菌相分析 82 4.5稻稈處理於管柱與現地條件下的差異性分析 85 第5章 結論 86 參考文獻 87 附錄 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 溫室氣體 | zh_TW |
| dc.subject | 土壤有機碳 | zh_TW |
| dc.subject | 土壤微生物群落 | zh_TW |
| dc.subject | 稻稈分解速率 | zh_TW |
| dc.subject | 稻稈還田 | zh_TW |
| dc.subject | Rice straw return | en |
| dc.subject | Straw decomposition rate | en |
| dc.subject | Soil microbial community | en |
| dc.subject | Greenhouse gases | en |
| dc.subject | Soil organic carbon | en |
| dc.title | 添加稻稈於土壤生態瓶、土壤管柱以及現地不同深度的土壤碳降解變化 | zh_TW |
| dc.title | Effects of rice straw addition on soil carbon degradation in microcosms, column experiments, and field soils at varying depths | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賴朝明;陳世裕;郭大孚 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Ming Lai;Shih-Yu Chen;Dave T. F. Kuo | en |
| dc.subject.keyword | 土壤有機碳,溫室氣體,稻稈還田,稻稈分解速率,土壤微生物群落, | zh_TW |
| dc.subject.keyword | Soil organic carbon,Greenhouse gases,Rice straw return,Straw decomposition rate,Soil microbial community, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202502426 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2030-07-24 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-24 | 3.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
