Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99467
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達zh_TW
dc.contributor.advisorKung-Ta Leeen
dc.contributor.author胡中齊zh_TW
dc.contributor.authorChung-Chi Huen
dc.date.accessioned2025-09-10T16:22:43Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation1. Griehl W, Ruestem D. Nylon-12-preparation, properties, and applications. Industrial & Engineering Chemistry. 1970;62(3):16-22.
2. Kawaguchi H, Ogino C, Kondo A. Microbial conversion of biomass into bio-based polymers. Bioresource technology. 2017;245:1664-73.
3. Reports@899816 VM. Global 1,12-Dodecanediol Market Size By Application (Personal Care Products, Cosmetics), By End-User Industry (Personal Care and Cosmetics, Automotive), By Formulation (Liquid Formulations, Solid Formulations), By Production Method (Catalytic Hydrogenation, Chemical Synthesis), By Grade (Industrial Grade, Pharmaceutical Grade), By Geographic Scope And Forecast. https://www.verifiedmarketreports.com/product/1-12-dodecanediol-market/ (2025). Accessed.
4. Hastings JD, Herkes FE, Rajendran G, Sun Q: Process for producing dodecane-1, 12-diol by reduction of lauryl lactone produced from the oxidation of cyclododecanone. In.: Google Patents; 2015.
5. Kirillova MV, Kirillov AM, Kuznetsov ML, Silva JA, da Silva JJF, Pombeiro AJ. Alkanes to carboxylic acids in aqueous medium: Metal-free and metal-promoted highly efficient and mild conversions. Chemical communications. 2009;(17):2353-5.
6. Hsieh S-C, Wang J-H, Lai Y-C, Su C-Y, Lee K-T. Production of 1-dodecanol, 1-tetradecanol, and 1, 12-dodecanediol through whole-cell biotransformation in Escherichia coli. Applied and Environmental Microbiology. 2018;84(4):e01806-17.
7. Joo S-Y, Yoo H-W, Sarak S, Kim B-G, Yun H. Enzymatic synthesis of ω-hydroxydodecanoic acid by employing a cytochrome P450 from Limnobacter sp. 105 MED. Catalysts. 2019;9(1):54.
8. Park H, Park G, Jeon W, Ahn J-O, Yang Y-H, Choi K-Y. Whole-cell biocatalysis using cytochrome P450 monooxygenases for biotransformation of sustainable bioresources (fatty acids, fatty alkanes, and aromatic amino acids). Biotechnology advances. 2020;40:107504.
9. Scheps D, Malca SH, Hoffmann H, Nestl BM, Hauer B. Regioselective ω-hydroxylation of medium-chain n-alkanes and primary alcohols by CYP153 enzymes from Mycobacterium marinum and Polaromonas sp. strain JS666. Organic & biomolecular chemistry. 2011;9(19):6727-33.
10. Lai Y-C. dodecanediol production by use of recombinant Escherichia coli. 國立台灣大學生化科技研究所學位論文. 2016.
11. Wang X, Quinn PJ. Lipopolysaccharide: Biosynthetic pathway and structure modification. Progress in lipid research. 2010;49(2):97-107.
12. Park HA, Choi K-Y. α, ω-Oxyfunctionalization of C12 alkanes via whole-cell biocatalysis of CYP153A from Marinobacter aquaeolei and a new CYP from Nocardia farcinica IFM10152. Biochemical Engineering Journal. 2020;156:107524.
13. van den Berg B. The FadL family: unusual transporters for unusual substrates. Current opinion in structural biology. 2005;15(4):401-7.
14. Scheps D, Honda Malca S, Richter SM, Marisch K, Nestl BM, Hauer B. Synthesis of ω‐hydroxy dodecanoic acid based on an engineered CYP153A fusion construct. Microbial biotechnology. 2013;6(6):694-707.
15. van Nuland YM, Eggink G, Weusthuis RA. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for selective alkyl ester ω-oxyfunctionalization in Escherichia coli. Applied and environmental microbiology. 2016;82(13):3801-7.
16. Yoo H-W, Kim J, Patil MD, Park BG, Joo S-y, Yun H, et al. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Bioresource Technology. 2019;291:121812.
17. Hsieh S-C. Whole-cell bio-oxidation of medium-long chain alkanes by Marionobacter aquaeolei VT8 alkane-inducible CYP153A operon. 國立台灣大學生化科技研究所學位論文. 2015.
18. Kolin A, Jevtic V, Swint-Kruse L, Egan SM. Linker regions of the RhaS and RhaR proteins. Journal of bacteriology. 2007;189(1):269-71.
19. Zhang D, He Y, Wang Y, Wang H, Wu L, Aries E, et al. Whole‐cell bacterial bioreporter for actively searching and sensing of alkanes and oil spills. Microbial biotechnology. 2012;5(1):87-97.
20. Ratajczak A, GEIßDORFER W, Hillen W. Expression of alkane hydroxylase from Acinetobacter sp. strain ADP1 is induced by a broad range of n-alkanes and requires the transcriptional activator AlkR. Journal of bacteriology. 1998;180(22):5822-7.
21. Cao Y, Mu H, Guo J, Liu H, Zhang R, Liu W, et al. Metabolic engineering of Escherichia coli for the utilization of ethanol. Journal of Biological Research-Thessaloniki. 2020;27:1-10.
22. Membrillo-Hernández J, Echave P, Cabiscol E, Tamarit J, Ros J, Lin EC. Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. Journal of Biological Chemistry. 2000;275(43):33869-75.
23. Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature. 2011;476(7360):355-9.
24. Campbell JW, Morgan‐Kiss RM, E. Cronan Jr J. A new Escherichia coli metabolic competency: growth on fatty acids by a novel anaerobic β‐oxidation pathway. Molecular microbiology. 2003;47(3):793-805.
25. Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Scientific reports. 2019;9(1):14425.
26. Kim H-Y. Statistical notes for clinical researchers: Two-way analysis of variance (ANOVA)-exploring possible interaction between factors. Restorative dentistry & endodontics. 2014;39(2):143-7.
27. Plapp BV. Conformational changes and catalysis by alcohol dehydrogenase. Archives of biochemistry and biophysics. 2010;493(1):3-12.
28. Stewart JD. Self-contained biocatalysts. 2018.
29. Neuhauser W, Steininger M, Haltrich D, Kulbe KD, Nidetzky B. A pH‐controlled fed‐batch process can overcome inhibition by formate in NADH‐dependent enzymatic reductions using formate dehydrogenase‐catalyzed coenzyme regeneration. Biotechnology and bioengineering. 1998;60(3):277-82.
30. Sánchez AM, Bennett GN, San K-Y. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Journal of biotechnology. 2005;117(4):395-405.
31. Kaswurm V, Hecke WV, Kulbe KD, Ludwig R. Guidelines for the application of NAD (P) H regenerating glucose dehydrogenase in synthetic processes. Advanced Synthesis & Catalysis. 2013;355(9):1709-14.
32. Pongtharangkul T, Chuekitkumchorn P, Suwanampa N, Payongsri P, Honda K, Panbangred W. Kinetic properties and stability of glucose dehydrogenase from Bacillus amyloliquefaciens SB5 and its potential for cofactor regeneration. Amb Express. 2015;5:1-12.
33. Martínez-Gómez K, Flores N, Castañeda HM, Martínez-Batallar G, Hernández-Chávez G, Ramírez OT, et al. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microbial cell factories. 2012;11:1-21.
34. Kumar R, Shimizu K. Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microbial Cell Factories. 2010;9:1-17.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99467-
dc.description.abstract1,12-十二烷二醇(1,12-diol)為具高化學穩定性與親水性的中長鏈二醇,可廣泛應用於潤滑劑、聚合物前驅物與界面活性劑等工業用途。目前其製程主要仰賴化學催化法,存在環境污染與製程成本高等問題。為實現綠色永續化生產,本研究以基因工程改造大腸桿菌為宿主,建立1,12-diol之生物製程。本實驗以細胞色素P450 monooxygenase CYP153A 為關鍵氧化酵素,催化1-dodecanol末端碳氧化為1,12-diol,並搭配烷烴轉運蛋白AlkL提升細胞內基質濃度。本研究室先前使用之轉運蛋白alkL表現受rhaBAD啟動子控制,須添加外源性誘導劑 L-rhamnose 調控表現,雖可提高轉換效率,惟操作複雜且增加成本。因此,本研究建構一套以烷烴感應轉錄調控蛋白AlkR為核心之烷烴誘導系統(Alkane Induction System, AIS),同時利用基質1-dodecanol作為誘導劑,自主驅動下游啟動子Pcyp,啟動cyp153A及alkL基因表現,實現誘導與產物轉換同步化之目的。根據qPCR數據顯示AIS菌株於無添加額外誘導劑 L-rhamnose 下,alkR與alkL mRNA表現量顯著提高,且在5公升發酵槽當中1,12-diol生產量達到11.56 g/L。為進一步提升生產量,針對內源性1-dodecanol代謝路徑進行基因剔除。發現在搖瓶實驗中,剔除其中負責啟動β-氧化的fadD,能顯著提升1,12-diol 的累積量。;相反地,當大腸桿菌中之酒精去氫酶adhE與yiaY分別被剔除後卻導致目標產量下降,推測因該基因剔除導致NADH再生能力受損,CYP153A反應受限而產量下降。此策略亦應用於發酵槽試驗,然而fadD剔除株產率不如預期,可能與培養基碳氮比與培養條件相關代謝壓力變動有關。整體而言,本研究成功建立以AIS為基礎,結合代謝剔除策略,展現轉換基質與氧化酶誘導劑合一下,生產1,12-diol之潛力,對未來長鏈脂肪族二醇或其氧化衍生物之綠色製程應用具高度發展潛力。zh_TW
dc.description.abstract1,12-Dodecanediol (1,12-diol), a medium- to long-chain diol with high chemical stability and hydrophilicity, is widely used in industrial applications such as lubricants, polymer precursors, and surfactants. Currently, its production primarily relies on chemical catalysis, which poses environmental concerns and high process costs. To enable sustainable and environmentally friendly production, this study engineered Escherichia coli as a microbial host for the biosynthesis of 1,12-diol. The key oxidative enzyme used in this process is cytochrome P450 monooxygenase CYP153A, which catalyzes the terminal oxidation of 1-dodecanol to 1,12-diol. To enhance uptake of substrate, the alkane transporter AlkL was co-expressed. In previous systems, AlkL expression was regulated by the rhaBAD promoter, requiring the addition of the external inducer L-rhamnose. While this improved conversion efficiency, it added operational complexity and increased costs. Therefore, this study established an Alkane Induction System (AIS). In this system, the alkane-responsive regulator AlkR senses the substrate 1-dodecanol and activates the Pcyp promoter, thereby driving cyp153A and alkL expression and achieving synchronized induction and product formation. qPCR data revealed significantly elevated alkR and alkL mRNA levels in AIS strains even without additional inducers, and 1,12-diol production reached 11.56 g/L in a 5-L bioreactor with 1.5 L medium. To further increase yield, endogenous genes involved in 1-dodecanol catabolism were disrupted. Knockout of fadD in β-oxidation pathway effectively enhanced 1,12-diol production, whereas individual knockouts of either adhE or yiaY led to decreased production, likely due to impaired NADH regeneration that limited CYP153A catalytic activity. This knockout strategy was also applied in bioreactor trials; however, the ΔfadD strain did not perform as expected, potentially due to changes in medium carbon-to-nitrogen ratio and scale-dependent metabolic stress. In summary, this study successfully developed a platform that integrates substrate-inducible expression via the AIS with metabolic engineering strategies. It demonstrated the potential for efficient 1,12-diol by utilizing the substrate as an inducer, eliminating the need for additional inducers and offering promising applications for the green biosynthesis of long-chain aliphatic diols and their oxidized derivatives.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:22:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:22:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
中文摘要 II
Abstract III
Abbreviation V
Contents VII
List of Figures IX
List of Tables X
1. Introduction 1
1.1. α, ω-Alkanediols: Structure, properties, and industrial Applications 1
1.1.1. The challenges and solutions in the production of α, ω-Alkanediols 1
1.2. Whole-Cell Biocatalysis for 1,12-diol Production Using CYP153A 3
1.2.1. Escherichia coli K-12 MG1655 as microbial host 4
1.3. 1-Dodecanol transport across the membrane in Escherichia coli 5
1.3.1. Alkane transporter— AlkL 5
1.4. Inducible expression of AlkL via rhaBAD and AlkR systems 6
1.4.1. rhaBAD Promoter 6
1.4.2. AlkR— Alkane response regulator 7
1.5. Endogenous catabolism of 1-Alkanol in Escherichia coli 8
1.6. Aim of the study 10
2. Materials and methods 12
2.1. Materials & reagents 12
2.2. Plasmid construction 13
2.3. Plasmid amplification, extraction method, and purification 14
2.4. Establishment of engineering Escherichia coli K-12 MG1655 15
2.4.1. Gene deletion with λ Red and FLP helper plasmids 15
2.4.2. Construction of recombinant strains 16
2.5. Flask bioconversion test 17
2.6. Products analysis 17
2.6.1. Standard curves preparation 17
2.6.2. Extraction of 1, 12-dodecanediol 18
2.6.3. Derivatization of ω-hydroxylated products 19
2.6.4. Gas chromatography analysis 19
2.7. Bioreactor approach 20
2.8. Detection of glycerol residue by high-performance liquid chromatography 21
2.9. Extraction of RNAs 21
2.10. Rt-qPCR of mRNA 22
3. Results 24
3.1. Construction of Inducible Expression Plasmids for 1,12-diol Production 24
3.2. Cell Growth and 1,12-diol Production in Flask Culture 25
3.3. Gene Expression Analysis via qPCR 25
3.4. Fed-Batch Fermentation Performance of AIS201 in Bioreactor culture, HB1 26
3.5. Identification of Native Catabolic Pathways and Target Genes for Knockout 26
3.6. Evaluation of 1,12-diol Production in AL Strains with Gene Knockouts 27
3.7. fadD Knockout Effects in different engineered strains 27
3.7.1. Comparison of ΔfadD Effects in the flask culture 27
3.7.2. ΔfadD AL strain in bioreactor culture, HB2 28
3.7.3. AIS201-ΔfadD strain in bioreactor culture, HB3 28
3.7.4. Substrate-to-Product conversion rate in the ΔfadD strain 29
4. Discussion 30
4.1. Comparison and Advantages of AIS over the AL strain 30
4.2. Potential of AlkR as a Novel Induction System 31
4.3. Feasibility of Metabolic Engineering to Improve 1,12-diol Production 32
4.4. Impact of ADH Knockouts on Redox Balance and CYP153A Activity 32
4.5. Strategies for Cofactor Regeneration 33
4.6. Divergent Results between Flask and Bioreactor Culture in fadD Knockout Strains 34
5. Conclusion 37
6. Figures 39
7. Tables 52
8. Reference 59
9. Appendix 62
-
dc.language.isoen-
dc.subjectCYP153A 單氧化酶zh_TW
dc.subject12-十二烷二醇zh_TW
dc.subject重組大腸桿菌zh_TW
dc.subject饋料批式生物反應器zh_TW
dc.subjectfadD 基因剔除zh_TW
dc.subject代謝調控zh_TW
dc.subject烷烴誘導系統zh_TW
dc.subjectrecombinant Escherichia colien
dc.subjectfed-batch Bioreactoren
dc.subjectfadD Knockouten
dc.subjectAlkane Induction Systemen
dc.subjectCYP153Aen
dc.subjectMetabolic Engineeringen
dc.subject12-Dodecanediolen
dc.title重組大腸桿菌生產 1,12-十二烷二醇之烷烴誘導系統與代謝剔除策略之建立zh_TW
dc.titleEstablishment of the Alkane Induction System and Metabolic Engineering for 1,12-Dodecanediol Production in Recombinant Escherichia colien
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳定峰;楊昭順;林俊材;王正利zh_TW
dc.contributor.oralexamcommitteeTing-Feng Wu;Chao-Hsun Yang;Jiun-Tsai Lin;Cheng-Li Wangen
dc.subject.keyword1,12-十二烷二醇,CYP153A 單氧化酶,烷烴誘導系統,代謝調控,fadD 基因剔除,饋料批式生物反應器,重組大腸桿菌,zh_TW
dc.subject.keyword1,12-Dodecanediol,CYP153A,Alkane Induction System,Metabolic Engineering,fadD Knockout,fed-batch Bioreactor,recombinant Escherichia coli,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202502376-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科技學系-
dc.date.embargo-lift2030-07-28-
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved