請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99465完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪英超 | zh_TW |
| dc.contributor.advisor | Ying-Chau Hung | en |
| dc.contributor.author | 郭沛恩 | zh_TW |
| dc.contributor.author | Pei-En Kuo | en |
| dc.date.accessioned | 2025-09-10T16:22:21Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | [1] S. W. Chen and J. C. Lin, "Performance evaluation of dispatching rules for automated material handling systems in wafer fabrication," *J. Manuf. Syst.*, vol. 28, no. 4, pp. 177–185, 2009, doi: 10.1016/j.rcim.2003.08.002.
[2] A. Azizi, P. G. Yazdi, A. A. Humairi, et al., "Design and fabrication of intelligent material handling system in modern manufacturing with industry 4.0 approaches," *Int. Robot. Autom. J.*, vol. 4, no. 3, pp. 186–195, 2018, doi: 10.15406/iratj.2018.04.00121. [3] A. M. Law, "Simulation Modeling and Analysis, 5th ed.," *New York, NY, USA: McGraw-Hill Education*, 2014. [4] B. L. Nelson, "Optimization via simulation over discrete decision variables," *in Risk and Optimization in an Uncertain World, INFORMS*, pp. 193–207, 2010. [5] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, "Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.," *Hoboken, NJ, USA: Wiley*, 2016. [6] M.-G. Lee and K.-M. Yu, "Dynamic path planning based on an improved ant colony optimization with genetic algorithm," *Proc. IEEE Asia-Pacific Conf. Antennas Propag. (APCAP)*, pp. 1–2, 2018, doi: 10.1109/APCAP.2018.8538211. [7] M. Haddadin and W. Moreno, "Automated material handling systems: System of systems architecture examination semiconductor manufacturing perspective," *Proc. 32nd Annu. SEMI Adv. Semicond. Manuf. Conf. (ASMC)*, pp. 1–6, 2021, doi: 10.1109/ASMC51741.2021.9435681. [8] M. Haddadin and W. Moreno, "Automated material handling systems: System of systems architecture examination semiconductor manufacturing perspective," *IEEE Xplore*, 2021, doi: https://ieeexplore.ieee.org/document/9435681. [9] 彥碩 孫 and 喬溫 劉, "無人化未來勢在必行,打造智慧工廠從 AMHS 開始," *機械工業雜誌*, no. 461, 2021, doi: https://www.automan.tw/tw/magazine-period/202108-461/2390. [10] Wikipedia, "反應曲面法," *維基百科*, 2022. [11] N. Klebanov and C. Georgakis, "Bayesian optimization in chemical engineering: Applications and challenges," *Ind. Eng. Chem. Res.*, vol. 55, no. 12, pp. 3439–3454, 2016, doi: 10.1021/acs.iecr.5b03572. [12] H. Zhang and Z. Jiang, "Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology," *Int. J. Adv. Manuf. Technol.*, vol. 41, pp. 110–121, 2009, doi: 10.1007/s00170-008-1462-0. [13] Y. Ma, F. Qiao, F. Zhao, and J. W. Sutherland, "Dynamic scheduling of a semiconductor production line based on composite rule set," *Appl. Sci.*, vol. 7, no. 10, pp. 1052, 2017, doi: 10.3390/app7101052. [14] I. Hwang and Y. J. Jang, "Q(λ) learning-based dynamic route guidance algorithm for overhead hoist transport systems in semiconductor fabs," *Int. J. Prod. Res.*, vol. 58, no. 4, pp. 1199–1221, 2020, doi: 10.1080/00207543.2019.1614692. [15] B. Kang, B. M. Kang, and S. Hong, "Multi-agent simulation based traffic control policy for OHT system," *J. Korean Soc. Ind. Eng.*, vol. 45, no. 1, pp. 52–60, 2019, doi: http://www.ksie.ne.kr/journal/article.php?code=84385. [16] Neural Concept, "Response surface methodology: Overview and applications," *Neural Concept*, 2025, doi: https://www.neuralconcept.com/post/response-surface-methodology-overview-applications. [17] Tufts University, "Dynamic Response Surface Methodology (DRSM)," *SRI.Tufts.edu*, doi: https://sri.tufts.edu/research/drsm. [18] I. Hwang and Y. J. Jang, "Q(λ) learning-based dynamic route guidance algorithm for overhead hoist transport systems in semiconductor fabs," *Int. J. Prod. Res.*, vol. 58, no. 4, pp. 1199–1221, 2019, doi: 10.1080/00207543.2019.1614692. [19] W. Z. Wang and Y. Wu, "An ant colony optimization–simulated annealing algorithm for solving a multiload AGVs workshop scheduling problem with limited buffer capacity," *Processes*, vol. 11, no. 3, pp. 861, 2023, doi: 10.3390/pr11030861. [20] T. Oyelere, "The application of model predictive control (MPC) to fast systems such as autonomous ground vehicles (AGV)," *IOSR J. Comput. Eng.*, vol. 16, no. 3, pp. 27–37, 2014, doi: 10.9790/0661-16342737. [21] D. R. Ramírez, D. Limón, J. Gomez-Ortega, and E. F. Camacho, "Nonlinear MBPC for mobile robot navigation using genetic algorithms," *Proc. IEEE Int. Conf. Robot. Autom.*, pp. 2452–2457, 1999. [22] F. Künhe, J. Gomes, and W. Fetter, "Mobile robot trajectory tracking using model predictive control," *Proc. II IEEE Latin-American Robot. Symp.*, 2005. [23] A. S. Conceicao, H. P. Oliveira, A. S. e Silva, D. Oliveira, and A. P. Moreira, "A nonlinear model predictive control of an omni-directional mobile robot," *Proc. IEEE Int. Symp. Ind. Electron.*, pp. 2161–2166, 2007. [24] A. S. Conceição, A. P. Moreira, and P. J. Costa, "A nonlinear model predictive control strategy for trajectory tracking of a four-wheeled omnidirectional mobile robot," *Optim. Contr. Appl. Met.*, vol. 29, pp. 335–352, 2008. [25] Y. Kang and J. K. Hedrick, "Linear tracking for a fixed-wing UAV using nonlinear model predictive control," *IEEE Trans. Control. Syst. Technol.*, vol. 17, pp. 1202–1210, 2009. [26] Y. Yoon, J. Shin, H. J. Kim, and S. Sastry, "Model-predictive active steering and obstacle avoidance for autonomous ground vehicles," *Control. Eng. Pract.*, vol. 17, pp. 741–750, 2009. [27] T. Faulwasser, B. Kern, and R. Findeisen, "Model predictive path-following for constrained nonlinear systems," *Proc. CDC Held Jointly with CCC*, pp. 8642–8647, 2009. [28] T. Faulwasser and R. Findeisen, "Nonlinear model predictive path-following control," *Lecture Notes in Control and Information Sciences*, vol. 384, pp. 335–343, 2009. [29] R. Ghaemi, S. Oh, and J. Sun, "Path following of a model ship using model predictive control with experimental verification," in Proc. ACC, Baltimore, MD, USA, 2010, pp. 5236–5241. [30] J. Backman, T. Oksanen, and A. Visala, "Navigation system for agricultural machines: Nonlinear model predictive path tracking," Comput. Electron. Agric., vol. 82, pp. 32–43, 2012. [31] T. Kraus et al., "Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles," Comput. Electron. Agric., vol. 98, pp. 25–33, 2013. [32] K. Yang, Y. Kang, and S. Sukkarieh, "Adaptive nonlinear model predictive path-following control for a fixed-wing unmanned aerial vehicle," Int. J. Control. Autom. Syst., vol. 11, pp. 65–74, 2013. [33] T. A. V. Teatro, J. M. Eklund, and R. Milman, "Nonlinear model predictive control for omnidirectional robot motion planning and tracking with avoidance of moving obstacles," Can. J. Elect. Comput. Eng., vol. 37, pp. 151–156, 2014. [34] S. S. Oyelere, "The application of model predictive control (MPC) to fast systems such as autonomous ground vehicles (AGV)," IOSR J. Comput. Eng., vol. 16, pp. 27–37, 2014. [35] M. A. Abbas, R. Milman, and J. M. Eklund, "Obstacle avoidance in real time with nonlinear model predictive control of autonomous vehicles," Can. J. Elect. Comput. Eng., vol. 40, pp. 12–22, 2017. [36] T. P. Nascimento, C. E. T. Dórea, and L. M. G. Gonçalves, "Nonholonomic mobile robots’ trajectory tracking model predictive control: A survey," Robotica, vol. 36, pp. 676–696, 2018. [37] T. P. Nascimento, C. E. T. Dórea, and L. M. G. Gonçalves, "Nonlinear model predictive control for trajectory tracking of nonholonomic mobile robots: A modified approach," Int. J. Adv. Robot. Syst., vol. 15, 2018, Art. no. 1729881418760461. [38] S. Li et al., "Path tracking for autonomous vehicles based on nonlinear model: Predictive control method," in Proc. WCX SAE World Congr. Exp., Detroit, MI, USA, 2019. [39] G. Bai et al., "Path tracking of mining vehicles based on nonlinear model predictive control," Appl. Sci., vol. 9, 2019, Art. no. 1372. [40] G. Bai et al., "Path tracking of wheeled mobile robots based on dynamic prediction model," IEEE Access, vol. 7, pp. 39690–39701, 2019. [41] G. Bai et al., "Study of obstacle avoidance controller of agricultural tractor-trailers based on predictive control of nonlinear model," Trans. Chin. Soc. Agric. Mach., vol. 50, pp. 356–362, 2019. [42] D. Gu and H. Hu, "Receding horizon tracking control of wheeled mobile robots," IEEE Trans. Control. Syst. Technol., vol. 14, pp. 743–749, 2006. [43] T. C. Lee, K. T. Song, C. H. Lee, and C. C. Teng, "Tracking control of unicycle-modeled mobile robots using a saturation feedback controller," IEEE Trans. Control. Syst. Technol., vol. 9, pp. 305–318, 2001. [44] K. Kanjanawanishkul, M. Hofmeister, and A. Zell, "Smooth reference tracking of a mobile robot using nonlinear model predictive control," in Proc. ECMR, Dubrovnik, Croatia, 2009, pp. 161–166. [45] Y. Wang, X. Zhu, Z. Zhou, and H. Zhang, "UAV path following in 3-D dynamic environment," Robot, vol. 36, pp. 83–91, 2014. [46] S. Yu, X. Li, H. Chen, and F. Allgöwer, "Nonlinear model predictive control for path following problems," Int. J. Robust. Nonlin., vol. 25, pp. 1168–1182, 2015. [47] Y. Liu et al., "Receding horizon following control of wheeled mobile robots: A case study," in Proc. ICMA, Beijing, China, 2015, pp. 2571–2576. [48] Z. Li et al., "Vision-based model predictive control for steering of a nonholonomic mobile robot," IEEE Trans. Control. Syst. Technol., vol. 24, pp. 553–564, 2016. [49] Y. Liu et al., "Receding horizon control for path following problems of wheeled mobile robots," Control Theory Appl., vol. 34, pp. 424–432, 2017. [50] X. Yang et al., "An intelligent predictive control approach to path tracking problem of autonomous mobile robot," in Proc. IEEE Int. Conf. Syst., Man, Cybern., San Diego, CA, USA, 1998, pp. 3301–3306. [51] D. Gu and H. Hu, "Neural predictive control for a car-like mobile robot," Robot. Auton. Syst., vol. 39, pp. 73–86, 2002. [52] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, "Learning-based nonlinear model predictive control to improve vision-based mobile robot path-tracking in challenging outdoor environments," in Proc. ICRA, Hong Kong, China, 2014, pp. 4029–4036. [53] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, "Learning-based nonlinear model predictive control to improve vision-based mobile robot path tracking," J. Field Robot., vol. 33, pp. 133–152, 2016. [54] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, "Robust constrained learning-based NMPC enabling reliable mobile robot path tracking," Int. J. Robot. Res., vol. 35, pp. 1547–1563, 2016. [55] T. Kim and H. J. Kim, "Path tracking control and identification of tire parameters using on-line model-based reinforcement learning," in Proc. ICCAS, Gyeongju, Korea, 2016, pp. 215–219. [56] G. Bai et al., "MPC-based path tracking of mobile robots in the non-global coordinate system," in Proc. CCDC, Nanchang, China, 2019 [57] R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, *Response Surface Methodology: Process and Product Optimization Using Designed Experiments*, 4th ed. Hoboken, NJ, USA: Wiley, 2016. [58] D. Y. Sha & C. J. Yang (2009) The transport strategies for fully automated manufacturing in 300 mm wafer fab, International Journal of Computer Integrated Manufacturing, 22:10, 962-975, DOI: 10.1080/09511920902942863 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99465 | - |
| dc.description.abstract | 本研究針對半導體製造中高架軌道運輸系統(Overhead Hoist Transport)之動態搬運挑戰,提出一套結合「動態反應曲面法(Dynamic Response Surface Methodology, Dynamic RSM)」與模擬最佳化技術之決策支援模型。傳統 RSM 方法雖能有效於固定參數條件下擬合系統輸出,惟在高度時變的製造環境中,易因情境轉變而失效。因此,本研究採用動態 RSM,於各模擬時間區段內建立階段性實驗設計(Design of Experiments),結合分段資料擬合與持續修正,建構動態搬運時間預測模型。透過與基準線模型比較,在平均搬運時間、任務等待時間、緊急任務反應時間等績效指標均獲顯著改善,尤其在多事件壅塞條件下表現尤為穩定。最終,本研究證實動態 RSM 可於變動製程負載與調度規則下提供高韌性的調度決策基礎,並為未來結合強化學習與數位雙生技術之自動化物料搬運系統提供方法論基礎。 | zh_TW |
| dc.description.abstract | This study proposes a decision-support model combining Dynamic Response Surface Methodology (Dynamic RSM) with simulation-based optimization to address the challenges of dynamic material transport in semiconductor fab Overhead Hoist Transport (OHT) systems. Traditional RSM methods are limited to static parameter spaces and fail to adapt to the high variability in modern fab environments. In contrast, the proposed Dynamic RSM approach constructs segmented Design of Experiments(DOE) designs across simulation time windows, enabling stage-wise model fitting and continuous response updates. The approach was validated through simulations, showing significant improvements in average Front Opening Unified Pod (FOUP) transport time, task waiting time, and emergency response time compared to baseline models. Under event-intensive congestion scenarios, the model maintained robust performance. This study demonstrates that Dynamic RSM offers a resilient foundation for adaptive dispatching decisions and paves the way for future integration with reinforcement learning and digital twin frameworks in Automated Material Handling System. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:22:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:22:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目次 iv 圖次 vi 表次 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究範圍與限制 4 1.4 研究方法與流程 6 1.5 論文架構 12 第二章 文獻探討 13 2.1 引言 13 2.2自動化物料搬運系統 13 2.3 國內外研究現況 14 2.4 路徑規劃演算法與技術演進 15 2.5 半導體製造高架軌道運輸系統路徑規劃相關研究 16 第三章 研究方法 19 3.1研究架構與流程 20 3.2 模擬資料建模邏輯 23 3.3 平台選型與模擬器建構策略 26 3.4 動態反應曲面模型建構流程 30 3.5 模型假設與邊界限制 41 3.6 KPI定義與模擬評估方法 43 3.7 DRSM模擬平台程式 45 第四章 研究結果 47 4.1 模擬環境參數設定 47 4.2基準線模型績效 49 4.3 DRSM 最佳化模型績效 51 4.4 敏感度分析結果 58 4.5 模型穩健性測試結果 62 4.6 動態模型於時變條件下之適應與更新機制 63 4.7 研究結果 65 第五章 結論與未來工作建議 67 5.1 結論 67 5.2 研究限制與反思 69 5.3未來研究方向 69 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 高架軌道運輸系統 | zh_TW |
| dc.subject | 半導體製造 | zh_TW |
| dc.subject | 模擬最佳化 | zh_TW |
| dc.subject | 數位雙生 | zh_TW |
| dc.subject | 強化學習 | zh_TW |
| dc.subject | 自動化物料搬運系統 | zh_TW |
| dc.subject | Simulation-based Optimization | en |
| dc.subject | Overhead Hoist Transport | en |
| dc.subject | Automated Material Handling System | en |
| dc.subject | Reinforcement Learning | en |
| dc.subject | Digital Twin | en |
| dc.subject | Semiconductor Manufacturing | en |
| dc.title | 半導體高架吊運系統之動態適應性調度決策支援模型 | zh_TW |
| dc.title | Dynamic and Adaptive Dispatching Decision-Support Model for Semiconductor Overhead Hoist Transport Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃奎隆;吳漢銘 | zh_TW |
| dc.contributor.oralexamcommittee | Kwei-Long Huang;Han-Ming Wu | en |
| dc.subject.keyword | 高架軌道運輸系統,半導體製造,模擬最佳化,數位雙生,強化學習,自動化物料搬運系統, | zh_TW |
| dc.subject.keyword | Overhead Hoist Transport,Semiconductor Manufacturing,Simulation-based Optimization,Digital Twin,Reinforcement Learning,Automated Material Handling System, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202502797 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-28 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
