請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99464完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪英超 | zh_TW |
| dc.contributor.advisor | Ying-Chao Hung | en |
| dc.contributor.author | 陳潤民 | zh_TW |
| dc.contributor.author | Jun-Min Chen | en |
| dc.date.accessioned | 2025-09-10T16:22:10Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | [1] Lewis PW, Shedler GS. Simulation of nonhomogeneous Poisson processes by thinning. Naval research logistics quarterly. 1979;26:403-13.
[2] Fishman G. Monte Carlo: concepts, algorithms, and applications: Springer Science & Business Media; 2013. [3] Seeger M. Gaussian processes for machine learning. International journal of neural systems. 2004;14:69-106. [4] Daley DJ, Vere-Jones D. An introduction to the theory of point processes: volume I: elementary theory and methods: Springer Science & Business Media; 2006. [5] Ogata Y. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical association. 1988;83:9-27. [6] Reinsch CH. Smoothing by spline functions. Numerische mathematik. 1967;10:177-83. [7] Wahba G. Spline models for observational data: SIAM; 1990. [8] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature methods. 2020;17:261-72. [9] Ramsay JO, Silverman BW. Principal components analysis for functional data. Functional data analysis. 2005:147-72. [10] Parzen E. On estimation of a probability density function and mode. The annals of mathematical statistics. 1962;33:1065-76. [11] Davis RA, Lii K-S, Politis DN. Remarks on some nonparametric estimates of a density function. Selected Works of Murray Rosenblatt: Springer; 2011. p. 95-100. [12] Silverman BW. Density estimation for statistics and data analysis: Routledge; 2018. [13] Rubinstein RY, Kroese DP. Simulation and the Monte Carlo method: John Wiley & Sons; 2016. [14] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning research. 2011;12:2825-30. [15] Williams CK, Rasmussen CE. Gaussian processes for machine learning: MIT press Cambridge, MA; 2006. [16] Kuleshov V, Fenner N, Ermon S. Accurate uncertainties for deep learning using calibrated regression. International conference on machine learning: PMLR; 2018. p. 2796-804. [17] Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585:357-62. [18] Hunter JD. Matplotlib: A 2D graphics environment. Computing in science & engineering. 2007;9:90-5. [19] Ross SM. Simulation: academic press; 2022. [20] Massey Jr FJ. The Kolmogorov-Smirnov test for goodness of fit. Journal of the American statistical Association. 1951;46:68-78. [21] Cox DR, Lewis PA. The statistical analysis of series of events. 1966. [22] Wald A, Wolfowitz J. On a test whether two samples are from the same population. The Annals of Mathematical Statistics. 1940;11:147-62. [23] Ljung GM, Box GE. On a measure of lack of fit in time series models. Biometrika. 1978;65:297-303. [24] Norris JR. Markov chains: Cambridge university press; 1998. [25] 鍾智林, 簡佑勳. 公共自行車時空分析法之構建與營運策略改善-以台北微笑自行車為例. 2014. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99464 | - |
| dc.description.abstract | 公共共享單車系統經常面臨租借與歸還效率不彰的問題,導致整體營運效能低落並影響服務品質。此問題主要來自兩種極端情況:空站(無可租車輛)與滿站(無可歸還空位)。本研究提出一套離散時間的建模框架,將「租借」與「歸還」視為兩個獨立的隨機過程,並據以建構站點的無邊界車輛庫存變化過程,使得後續可對各站在不同容量情境下進行服務效能模擬與損失量化分析。
本研究的核心價值,在於發展出一套創新的模組化隨機過程:加註伽瑪抽薄複合過程(Marked Compound Gamma-Thinned Process),並結合自歷史資料中學習出的非齊次隨機強度函數(Non-Homogeneous Stochastic Intensity Function),用以刻劃單車事件發生的時間與數量之雙重不確定性。該模型兼具靈活性與可解釋性,能有效模擬現實中的租還行為變化。進一步地,本研究設定兩項優化目標:最小化系統停機時間與最小化流量損失,並透過蒙地卡羅模擬探索最佳容量配置,以減少服務中斷與未滿足需求,提升整體營運績效。透過臺北市兩個 YouBike 站點的實證案例驗證,本研究提出之方法可顯著降低總體服務損失,展現出良好的實用性與應用潛力。 | zh_TW |
| dc.description.abstract | Public bike-sharing systems often encounter operational inefficiencies, primarily due to two conditions: empty stations (no bikes available for rental) and full stations (no available docks for returns). These disruptions negatively impact service quality and overall system performance. This study introduces a discrete-time modeling framework that treats rental and return events as two separate stochastic processes, enabling the construction of an unbounded inventory trajectory for each station. This formulation allows for comprehensive performance analysis under varying capacity configurations.
The key contribution of this work lies in the development of a novel stochastic modeling approach—the Marked Compound Gamma-Thinned Process—which is integrated with a non-homogeneous stochastic intensity function estimated from historical bike usage data. This compound process captures both the timing and magnitude uncertainty of rental and return events, offering a flexible and interpretable framework for simulating realistic user behavior. Two optimization objectives are considered: minimizing system downtime (periods when rentals or returns are unavailable) and minimizing flow loss (unfulfilled demand due to capacity limits). Monte Carlo simulations are employed to identify the optimal station-wise capacity allocation that reduces service interruptions and unmet demand. The proposed method is validated using empirical data from two YouBike stations in Taipei City, provided by the open platform of Transport Data eXchange (TDX), and demonstrates significant improvements in reducing total service loss and enhancing operational efficiency. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:22:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:22:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
口試委員會審定書 # 誌謝 i 摘要 ii Abstract iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Research Background and Motivation 1 1.2 Research Objectives 2 1.3 Research Methodology and Procedure 3 Chapter 2 Modeling of Bike Inventory Process 5 2.1 Data Acquisition and Preprocessing 5 2.1.1 Overview of Bike Inventory Data 5 2.1.2 Data Preprocessing 6 2.1.3 Recovering Data Using Smoothing Spline 7 2.1.4 Estimation of Daily Intensity Function Using Kernel Smoothing 10 2.2 Modeling the Unbounded Bike Inventory Process 14 2.2.1 Model Construction 14 2.2.2 Modeling Daily Intensity Functions as a Gaussian Process 15 2.2.3 Sampling Using Gamma-based Thinning Method 19 2.2.4 Choosing the Best Gamma Modulating Distribution 20 2.2.5 Simulating Rental and Return Events 28 2.3 Comparison of Two Simulation Strategies 32 2.4 Simulation Flowchart 34 Chapter 3 Optimization Problems 36 3.1 Optimization of Station Deployment 36 3.2 Objective 1: Minimizing Downtime 37 3.3 Objective 2: Minimizing Flow Loss 39 Chapter 4 Simulation Analysis 42 4.1 Bounded Bike Inventory Process Data 42 4.2 Model Validation and Simulation Results 44 4.3 Optimal Capacity Allocation 53 4.3.1 Comparison of Total Rental and Return Downtime 53 4.3.2 Comparison of Flow Loss Caused by Limited Capacity 57 Chapter 5 Conclusions and Future Research 64 5.1 Conclusions 64 5.2 Future Research 66 REFERENCE 68 | - |
| dc.language.iso | en | - |
| dc.subject | 共享單車系統 | zh_TW |
| dc.subject | 容量配置 | zh_TW |
| dc.subject | 加註伽瑪抽薄複合過程 | zh_TW |
| dc.subject | 隨機強度函數 | zh_TW |
| dc.subject | 停機時間 | zh_TW |
| dc.subject | 流量損失 | zh_TW |
| dc.subject | Marked Compound Gamma-Thinned Process | en |
| dc.subject | Bike-sharing System | en |
| dc.subject | Flow Loss | en |
| dc.subject | Downtime | en |
| dc.subject | Stochastic Intensity Function | en |
| dc.subject | Capacity Allocation | en |
| dc.title | 利用資料驅動方法優化共享單車站點之容量規劃策略 | zh_TW |
| dc.title | A Data-Driven Approach to Capacity Planning for Public Bike-Sharing Stations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃道宏;喻奉天 | zh_TW |
| dc.contributor.oralexamcommittee | Dow-Hon Huang;Vincent F. Yu | en |
| dc.subject.keyword | 共享單車系統,容量配置,加註伽瑪抽薄複合過程,隨機強度函數,停機時間,流量損失, | zh_TW |
| dc.subject.keyword | Bike-sharing System,Capacity Allocation,Marked Compound Gamma-Thinned Process,Stochastic Intensity Function,Downtime,Flow Loss, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202502837 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
