Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭逸澤zh_TW
dc.contributor.advisorYi-Tse Hsiaoen
dc.contributor.author饒孝辰zh_TW
dc.contributor.authorHsiao-Chen Rauen
dc.date.accessioned2025-09-10T16:21:38Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationAdamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K., & de Lecea, L. (2007). Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 450(7168), 420–424. https://doi.org/10.1038/nature06310
Anthony, T. E., Dee, N., Bernard, A., Lerchner, W., Heintz, N., & Anderson, D. J. (2014). Control of stress-induced persistent anxiety by an extra-amygdala septohypothalamic circuit. Cell, 156(3), 522–536. https://doi.org/10.1016/j.cell.2013.12.040
Basta, M., Chrousos, G. P., Vela-Bueno, A., & Vgontzas, A. N. (2007). Chronic insomnia and stress system. Sleep Med Clin, 2(2), 279–291. https://doi.org/10.1016/j.jsmc.2007.04.002
Gerasimov, E., Pchitskaya, E., Vlasova, O., & Bezprozvanny, I. (2024). Dynamic changes in the hippocampal neuronal circuits activity following acute stress revealed by miniature fluorescence microscopy imaging. Molecular Brain, 17(1), 92. https://doi.org/10.1186/s13041-024-01168-5
Gomez, J. L., Bonaventura, J., Lesniak, W., Mathews, W. B., Sysa-Shah, P., Rodriguez, L. A., Ellis, R. J., Richie, C. T., Harvey, B. K., Dannals, R. F., Pomper, M. G., Bonci, A., & Michaelides, M. (2017). Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science, 357(6350), 503–507. https://doi.org/10.1126/science.aan2475
Guenthner, Casey J., Miyamichi, K., Yang, Helen H., Heller, H. C., & Luo, L. (2013). Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron, 78(5), 773–784. https://doi.org/10.1016/j.neuron.2013.03.025
Heiss, J. E., Yamanaka, A., & Kilduff, T. S. (2018). Parallel arousal pathways in the lateral hypothalamus. eNeuro, 5(4). https://doi.org/10.1523/eneuro.0228-18.2018
Jendryka, M., Palchaudhuri, M., Ursu, D., van der Veen, B., Liss, B., Kätzel, D., Nissen, W., & Pekcec, A. (2019). Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Scientific Reports, 9(1), 4522. https://doi.org/10.1038/s41598-019-41088-2
Jimenez, J. C., Su, K., Goldberg, A. R., Luna, V. M., Biane, J. S., Ordek, G., Zhou, P., Ong, S. K., Wright, M. A., Zweifel, L., Paninski, L., Hen, R., & Kheirbek, M. A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron, 97(3), 670–683.e676. https://doi.org/https://doi.org/10.1016/j.neuron.2018.01.016
Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H.-A., Murison, R., Moser, E. I., & Moser, M.-B. (2002). Reduced fear expression after lesions of the ventral hippocampus. Proceedings of the National Academy of Sciences, 99(16), 10825–10830. https://doi.org/10.1073/pnas.152112399
Komagata, N., Latifi, B., Rusterholz, T., Bassetti, C. L. A., Adamantidis, A., & Schmidt, M. H. (2019). Dynamic REM sleep modulation by ambient temperature and the critical role of the melanin-concentrating hormone system. Current Biology, 29(12), 1976–1987.e1974. https://doi.org/10.1016/j.cub.2019.05.009
Li, S. B., Borniger, J. C., Yamaguchi, H., Hédou, J., Gaudilliere, B., & de Lecea, L. (2020). Hypothalamic circuitry underlying stress-induced insomnia and peripheral immunosuppression. Sci Adv, 6(37). https://doi.org/10.1126/sciadv.abc2590
Okamura, H., Abitbol, M., Julien, J. F., Dumas, S., Bérod, A., Geffard, M., Kitahama, K., Bobillier, P., Mallet, J., & Wiklund, L. (1990). Neurons containing messenger RNA encoding glutamate decarboxylase in rat hypothalamus demonstrated by in situ hybridization, with special emphasis on cell groups in medial preoptic area, anterior hypothalamic area and dorsomedial hypothalamic nucleus. Neuroscience, 39(3), 675–699. https://doi.org/https://doi.org/10.1016/0306-4522(90)90252-Y
Onishi, T., Hirose, K., & Sakaba, T. (2024). Molecular tools to capture active neural circuits [Mini Review]. Frontiers in Neural Circuits, Volume 18 - 2024.
Pennington, Z. T., LaBanca, A. R., Abdel-Raheim, S. D., Bacon, M. E., Mahmoud, A. N., Sompolpong, P., Baggetta, A. M., Zaki, Y., Ko, B., Dong, Z., Smith, A. C. W., Kenny, P. J., & Cai, D. J. (2024). An anterior hypothalamic circuit gates stress vulnerability. bioRxiv, 2024.2010.2028.620614. https://doi.org/10.1101/2024.10.28.620614
Rizzi-Wise, C. A., & Wang, D. V. (2021). Putting together pieces of the lateral septum: multifaceted functions and Its neural pathways. eNeuro, 8(6). https://doi.org/10.1523/eneuro.0315-21.2021
Sakurai, T. (2007). The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nature Reviews Neuroscience, 8(3), 171–181. https://doi.org/10.1038/nrn2092
Singewald, G. M., Rjabokon, A., Singewald, N., & Ebner, K. (2011). The modulatory role of the lateral septum on neuroendocrine and behavioral stress responses. Neuropsychopharmacology, 36(4), 793–804. https://doi.org/10.1038/npp.2010.213
Van Someren, E. J. W. (2021). Brain mechanisms of insomnia: new perspectives on causes and consequences. Physiol Rev, 101(3), 995–1046. https://doi.org/10.1152/physrev.00046.2019
Vgontzas, A. N., Bixler, E. O., Lin, H.-M., Prolo, P., Mastorakos, G., Vela-Bueno, A., Kales, A., & Chrousos, G. P. (2001). Chronic Insomnia Is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. The Journal of Clinical Endocrinology & Metabolism, 86(8), 3787–3794. https://doi.org/10.1210/jcem.86.8.7778
Werner, G. G., Riemann, D., & Ehring, T. (2021). Fear of sleep and trauma-induced insomnia: a review and conceptual model. Sleep Medicine Reviews, 55, 101383. https://doi.org/https://doi.org/10.1016/j.smrv.2020.101383
Winsky-Sommerer, R., Yamanaka, A., Diano, S., Borok, E., Roberts, A. J., Sakurai, T., Kilduff, T. S., Horvath, T. L., & de Lecea, L. (2004). Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci, 24(50), 11439–11448. https://doi.org/10.1523/jneurosci.3459-04.2004
Zingg, B., Peng, B., Huang, J., Tao, H. W., & Zhang, L. I. (2020). Synaptic specificity and application of anterograde transsynaptic AAV for probing neural circuitry. The Journal of Neuroscience, 40(16), 3250. https://doi.org/10.1523/JNEUROSCI.2158-19.2020
Teng Kai-Hang (2022). Excitation of the footshock activated neurons in lateral hypothalamus affects sleep. Unpublished doctoral dissertation, National Taiwan University, College of Veterinary Medicine, Graduate School of Veterinary Medicine, Taipei.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99461-
dc.description.abstract失眠為常見且嚴重影響健康的精神疾病,急性恐懼壓力事件常被認為可誘發急性覺醒維持,進一步演變為慢性失眠。過去多著重整體大腦網絡的過度覺醒現象。本研究聚焦於外側下視丘(lateral hypothalamus, LH)及其不同細胞亞群,結合TRAP2活動依賴性標記、化學遺傳學(DREADD)、基因工程細胞凋亡、光遺傳學與鈣離子影像技術,系統性探討恐懼壓力相關神經元對覺醒維持的功能角色。
本研究以小鼠為模型,首先利用TRAP2技術標記急性恐懼壓力下被活化的LH細胞,並於安全環境中僅以DREADD再活化,發現刺激這群細胞可誘發顯著且長時間的清醒狀態。此外,進一步以Caspase-3系統剔除LH內CRF神經元後,發現原恐懼壓力標定細胞失去長效覺醒能力,顯示CRF亞群對於持續覺醒維持反應具有必要性。對照實驗顯示,單獨活化LH-hypocretin神經元僅引發短暫覺醒,顯著弱於CRF神經元。進一步利用交叉標記與操控上游腦區,發現來自AHN(前下丘腦區)投射且於恐懼壓力下被動員的LH細胞,同樣可誘發長時間清醒,而vCA1(腹側海馬CA1)相關細胞則僅產生輕微影響。直接刺激AHN→LH-CRF神經迴路同樣可誘發長效覺醒。此外,鈣離子影像實驗則顯示AHN內GABA能神經元可作為調控恐懼壓力訊號傳遞至LH-CRF細胞的關鍵閘門。
綜合而言,本研究從細胞、迴路與行為層面建立恐懼壓力、LH-CRF神經元與覺醒維持之因果模型,證實LH-CRF神經元為恐懼壓力誘發長效覺醒的關鍵,並揭示上游腦區動態調控LH-CRF細胞活性的神經機制。這些發現有助於理解恐懼壓力相關長期失眠的神經生物學基礎,並為未來針對神經迴路的失眠精準治療提供新方向。
zh_TW
dc.description.abstractInsomnia is a common mental disorder with significant impacts on health. Acute fear-related stress events are often considered triggers for acute maintenance of wakefulness, which may further develop into chronic insomnia. Previous studies have mostly focused on global brain network hyperarousal phenomena. This study focused on the lateral hypothalamus (LH) and its different neuronal subpopulations, systematically investigating the functional roles of fear-related neurons in wakefulness maintenance by combining TRAP2 activity-dependent labeling, chemogenetics (DREADD), genetic cell ablation, and optogenetics.
Using a mouse model, we first employed the TRAP2 system to label LH neurons recruited during acute fear stress, and then selectively reactivated these cells in a safe environment with DREADD. We found that stimulation of these cells induced significant and prolonged wakefulness. Furthermore, after ablation of CRF neurons in the LH using a Caspase-3 system, the original fear-stress-labeled cells lost their ability to induce long-lasting wakefulness, indicating that the CRF subpopulation is necessary for sustained arousal responses. Another experiment showed that activation of LH-orexinergic neurons alone only induced transient arousal, which was markedly weaker than that induced by CRF neurons. Through intersectional labeling and manipulation of upstream brain regions, we found that LH cells receiving inputs from the anterior hypothalamic nucleus (AHN) and recruited during fear stress could also induce prolonged wakefulness, whereas vCA1 (ventral hippocampal CA1)-related cells produced only minor effects. Direct stimulation of the AHN→LH-CRF neural circuit similarly induced long-lasting arousal. Calcium imaging experiment further showed that GABAergic neurons in the AHN serve as a key gate controlling the transmission of fear stress signals to LH-CRF cells.
In summary, this study establishes a causal model linking fear stress, LH-CRF neurons, and maintenance of wakefulness at the cellular, circuit, and behavioral levels. We demonstrate that LH-CRF neurons are the key mediators of fear-induced prolonged wakefulness and reveal the neural mechanisms by which upstream regions dynamically regulate the activity of LH-CRF cells. These findings enhance our understanding of the neurobiological basis of long-term insomnia associated with fear-related stress and provide new directions for precise circuit-based interventions for insomnia.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:21:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:21:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
研究概念架構 vi
目次 vii
第一章 緒論 1
1.1 研究背景與臨床意涵 1
1.2 聚焦外側下丘腦CRF神經元的潛在角色 2
1.3 本研究之主要技術與核心發現 3
1.4 四腦區聚焦:vCA1、LS、AHN、LH-CRF之功能與連結 4
1.5 研究目的與假說 6
1.6 結論與展望 6
第二章 材料與方法 8
2.1 實驗動物 8
2.2 定位手術 8
2.3 光遺傳學刺激與鈣離子影像訊號記錄 9
2.4 恐懼制約 10
2.5 神經元活化標記實驗(TRAP2系統) 10
2.6 氯氮平鹽酸鹽(CLO)施打 11
2.7 腦電圖記錄與睡眠狀態分析 12
2.8 統計分析 13
2.9 組織學與螢光顯微鏡觀察 14
第三章 實驗結果 15
3.1 LH-Hypocretin細胞活化僅觸發急性短效清醒,無法維持長效覺醒 15
3.2 專一性活化LH-CRF神經元可誘發持續12小時顯著覺醒 16
3.3 移除LH-CRF細胞後恐懼標定細胞僅出現約3–4小時的覺醒維持─證實CRF為覺醒維持的必要條件 18
3.4 受vCA1細胞投射且恐懼壓力標定的LH神經細胞再活化無法驅動長效覺醒維持 20
3.5 受AHN細胞投射且恐懼壓力標定的LH神經細胞再活化可驅動約9小時長效覺醒維持 21
3.6 無恐懼壓力下標定之AHN→LH-CRF細胞活化亦能誘發約9小時持續性覺醒維持 23
3.7 vCA1–LS–AHN–LH-CRF光遺傳學與鈣離子影像訊號示範:AHN-GABA啟動可即時關閉LH去抑制 25
第四章 討論 27
4.1 總述七項實驗結果–LH-CRF是恐懼壓力性覺醒維持的關鍵 27
4.2 Hypocretin與CRF對覺醒持續性的差異–促醒因子vs.壓力激素 27
4.3 LH-CRF是覺醒維持不可或缺的條件–因果證據 29
4.4 恐懼網絡上游來源:海馬體vs.下視丘前區–何者參與長效覺醒維持? 30
4.5 整合模型:從恐懼壓力到覺醒維持–LH-CRF細胞在神經環路的中心地位 31
4.6 研究反思與實驗設計價值 32
附錄 實驗圖集 34
圖1 34
圖2 36
圖3 38
圖4 40
圖5 41
圖6 42
圖7 44
圖8 46
圖9 48
圖10 49
圖11 50
圖12 52
圖13 54
圖14 56
圖15 57
圖16 58
圖17 60
圖18 62
圖19 64
圖20 65
圖21 66
圖22 68
圖23 70
圖24 72
圖25 74
圖26 76
圖27 78
圖28 79
圖29 80
圖30 82
圖31 84
圖32 86
圖33 87
圖34 88
圖35 90
參考文獻 91
-
dc.language.isozh_TW-
dc.subject外側下視丘zh_TW
dc.subject覺醒維持zh_TW
dc.subjectCRF神經元zh_TW
dc.subject恐懼壓力zh_TW
dc.subjectTRAP2標記zh_TW
dc.subject化學遺傳學(DREADD)zh_TW
dc.subject神經迴路調控zh_TW
dc.subjectMaintenance of wakefulnessen
dc.subjectNeural circuit regulationen
dc.subjectChemogenetics (DREADD)en
dc.subjectTRAP2 labelingen
dc.subjectFear stressen
dc.subjectCRF neuronsen
dc.subjectLateral hypothalamus (LH)en
dc.title探討側下視丘引起失眠的相關神經以及其可能的控制迴路zh_TW
dc.titleInvestigating Neural Populations in the Lateral Hypothalamus and Their Potential Regulatory Circuits Underlying Insomniaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張芳嘉;李信謙zh_TW
dc.contributor.oralexamcommitteeFang-Chia Chang;Hsin-Chien Leeen
dc.subject.keyword外側下視丘,覺醒維持,CRF神經元,恐懼壓力,TRAP2標記,化學遺傳學(DREADD),神經迴路調控,zh_TW
dc.subject.keywordLateral hypothalamus (LH),Maintenance of wakefulness,CRF neurons,Fear stress,TRAP2 labeling,Chemogenetics (DREADD),Neural circuit regulation,en
dc.relation.page93-
dc.identifier.doi10.6342/NTU202502960-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept獸醫學系-
dc.date.embargo-lift2030-07-30-
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
11.4 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved