請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉雅瑄 | zh_TW |
| dc.contributor.advisor | Sofia Ya-Hsuan Liou | en |
| dc.contributor.author | 吳翊寧 | zh_TW |
| dc.contributor.author | I-Ning Wu | en |
| dc.date.accessioned | 2025-09-10T16:21:15Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | Abuelnoor, N., AlHajaj, A., Khaleel, M., Vega, L. F., & Abu-Zahra, M. R. (2021). Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 282, 131111. https://doi.org/10.1016/j.chemosphere.2021.131111
Ahn, D., Stevens, L. M., Zhou, K., & Page, Z. A. (2020). Rapid High-Resolution Visible Light 3D Printing. ACS Central Science, 6(9), 1555-1563. https://doi.org/10.1021/acscentsci.0c00929 Alves, B. A. d. S., Kontziampasis, D., & Soliman, A.-H. (2025). Aging dynamics in polymer powder bed fusion systems: The case of selective laser sintering. Additive Manufacturing Frontiers, 4(2), 200211. https://doi.org/10.1016/j.amf.2025.200211 Arrhenius, S. (1896). XXXI. On the influence of carbonic acid in the air upon the temperature of the ground. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 41(251), 237-276. Azmi, A., & Aziz, M. (2019). Mesoporous adsorbent for CO2 capture application under mild condition: a review. Journal of Environmental Chemical Engineering, 7(2), 103022. https://doi.org/10.1016/j.jece.2019.103022 Bartlett, M., Anacreonte, A., Iasiello, M., Peracchio, A. A., Mauro, G. M., Bianco, N., & Chiu, W. (2024). An Introduction to Triply Periodic Minimal Surfaces in Thermal Applications. In Thermopedia. Begel House Inc. https://dx.doi.org/10.1615/thermopedia.010389 Berner, R. A. (1999). Atmospheric oxygen over Phanerozoic time. Proceedings of the National Academy of Sciences, 96(20), 10955-10957. https://doi.org/10.1073/pnas.96.20.10955 Beuttler, C., Charles, L., & Wurzbacher, J. (2019). The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions [Perspective]. Frontiers in Climate, Volume 1 - 2019. https://www.frontiersin.org/journals/climate/articles/10.3389/fclim.2019.00010 Boer, D. G., Langerak, J., & Pescarmona, P. P. (2023). Zeolites as selective adsorbents for CO2 separation. ACS Applied Energy Materials, 6(5), 2634-2656. Borrello, J., Nasser, P., Iatridis, J. C., & Costa, K. D. (2018). 3D printing a mechanically-tunable acrylate resin on a commercial DLP-SLA printer. Additive manufacturing, 23, 374-380. https://doi.org/10.1016/j.addma.2018.08.019 Bose, S., Sarkar, N., & Jo, Y. (2024). Natural medicine delivery from 3D printed bone substitutes. Journal of Controlled Release, 365, 848-875. https://doi.org/10.1016/j.jconrel.2023.09.025 Bravo, L. M., Meunier, F. C., & Kopyscinski, J. (2025). Rare earth oxide promoted Ru/Al2O3 dual function materials for CO2 capture and methanation: An operando DRIFTS and TGA study. Applied Catalysis B: Environment and Energy, 361, 124591. https://doi.org/10.1016/j.apcatb.2024.124591 Celzard, A., Marêché, J. F., Payot, F., & Furdin, G. (2002). Electrical conductivity of carbonaceous powders. Carbon, 40(15), 2801-2815. https://doi.org/10.1016/S0008-6223(02)00196-3 Cheadle, A. M. G., Maier, E., Palin, W. M., Tomson, P. L., Poologasundarampillai, G., & Hadis, M. A. (2025). The impact of modifying 3D printing parameters on mechanical strength and physical properties in vat photopolymerisation. Scientific Reports, 15(1), 12592. https://doi.org/10.1038/s41598-025-97294-8 Cheah, W. Y., Show, P. L., Chang, J.-S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource technology, 184, 190-201. https://doi.org/10.1016/j.biortech.2014.11.026 Chen, J., Tang, H., Lu, W., Zhang, Y., Ye, H., Shen, R., Wang, M., Li, Y., Wang, Z., & Qian, B. (2025). Regulating surficial oxygen vacancies in Cu/Ca composites to enhance CO2 capture via CeO2 and Al2O3 co-doping in combined Cu/Ca technology. Separation and Purification Technology, 376, 134106. https://doi.org/https://doi.org/10.1016/j.seppur.2025.134106 Chen, X., Quan, H., Zhang, X., & Huang, Z. (2024). Polyamine functionalized cage hollow mesoporous SiO2 microspheres for CO2 capture over a wide temperature range. Ceramics International, 50(12), 20958-20972. https://doi.org/10.1016/j.ceramint.2024.03.175 Choe, J. H., Kim, H., Yun, H., Kurisingal, J. F., Kim, N., Lee, D., Lee, Y. H., & Hong, C. S. (2024). Extended MOF-74-Type Variant with an Azine Linkage: Efficient Direct Air Capture and One-Pot Synthesis. Journal of the American Chemical Society, 146(28), 19337-19349. https://doi.org/10.1021/jacs.4c05318 Chowdhury, S., Parshetti, G. K., & Balasubramanian, R. (2015). Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chemical Engineering Journal, 263, 374-384. https://doi.org/10.1016/j.cej.2014.11.037 D'Alessandro, D. M., Smit, B., & Long, J. R. (2010). Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 49(35), 6058-6082. https://doi.org/10.1002/anie.201000431 Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry & Engineering, 4(10), 5761-5768. https://doi.org/10.1021/acssuschemeng.6b01692 Deokar, S., Kumar, N., & Singh, R. P. (2025). A comprehensive review on smart manufacturing using machine learning applicable to fused deposition modeling. Results in Engineering, 26, 104941. https://doi.org/10.1016/j.rineng.2025.104941 Divakaran, N., Das, J. P., P V, A. K., Mohanty, S., Ramadoss, A., & Nayak, S. K. (2022). Comprehensive review on various additive manufacturing techniques and its implementation in electronic devices. Journal of Manufacturing Systems, 62, 477-502. https://doi.org/10.1016/j.jmsy.2022.01.002 Dusselier, M., & Davis, M. E. (2018). Small-pore zeolites: synthesis and catalysis. Chemical reviews, 118(11), 5265-5329. https://doi.org/10.1021/acs.chemrev.7b00738 Dutta, T., Kim, T., Vellingiri, K., Tsang, D. C., Shon, J., Kim, K.-H., & Kumar, S. (2019). Recycling and regeneration of carbonaceous and porous materials through thermal or solvent treatment. Chemical Engineering Journal, 364, 514-529. https://doi.org/10.1016/j.cej.2019.01.049 Dwivedi, K., Joshi, S., Nair, R., Sapre, M. S., & Jatti, V. (2024). Optimizing 3D printed diamond lattice structure and investigating the influence of process parameters on their mechanical integrity using nature-inspired machine learning algorithms. Materials Today Communications, 38, 108233. https://doi.org/10.1016/j.mtcomm.2024.108233 Ebnesajjad, S., & Khaladkar, P. (2018). Manufacturing parts from melt-processible fluoropolymers. Fluoropolymer Applications in the Chemical Processing Industries, 219-277. Elsayed, M., Hall, P., & Heslop, M. (2007). Preparation and structure characterization of carbons prepared from resorcinol-formaldehyde resin by CO 2 activation. Adsorption, 13, 299-306. https://doi.org/10.1007/s10450-007-9065-x Faisal Elmobarak, W., Almomani, F., Tawalbeh, M., Al-Othman, A., Martis, R., & Rasool, K. (2023). Current status of CO2 capture with ionic liquids: Development and progress. Fuel, 344, 128102. https://doi.org/10.1016/j.fuel.2023.128102 Feng, P., Li, J., Wang, H., & Xu, Z. (2020). Biomass-based activated carbon and activators: preparation of activated carbon from corncob by chemical activation with biomass pyrolysis liquids. ACS omega, 5(37), 24064-24072. Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. chem, 57(385471), 1100-1107. Fu, D., & Davis, M. E. (2023). Toward the feasible direct air capture of carbon dioxide with molecular sieves by water management. Cell Reports Physical Science, 4(5), 101389. https://doi.org/10.1016/j.xcrp.2023.101389 Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O’Keeffe, M., & Kim, J. (2010). Ultrahigh porosity in metal-organic frameworks. Science, 329(5990), 424-428. https://doi.org/10.1126/science.1192160 Gao, X., Yang, S., Hu, L., Cai, S., Wu, L., & Kawi, S. (2022). Carbonaceous materials as adsorbents for CO2 capture: synthesis and modification. Carbon Capture Science & Technology, 3, 100039. https://doi.org/10.1016/j.ccst.2022.100039 Gao, Y., Yue, Q., Gao, B., & Li, A. (2020). Insight into activated carbon from different kinds of chemical activating agents: A review. Science of the Total Environment, 746, 141094. https://doi.org/10.1016/j.scitotenv.2020.141094 Gibson, I., Rosen, D., Stucker, B., & Khorasani, M. (2021). Directed Energy Deposition. In I. Gibson, D. Rosen, B. Stucker, & M. Khorasani (Eds.), Additive Manufacturing Technologies (pp. 285-318). Springer International Publishing. https://doi.org/10.1007/978-3-030-56127-7_10 Guo, C., Sun, Y., Ren, H., Li, J., Wang, B., Li, C., Ma, Z., Wu, J., Peng, W., & Tong, X. (2025). SiO2-assisted constructing narrow micropore-enriched carbon derived from millet husk for enhanced CO2 capture and supercapacitor performance. Separation and Purification Technology, 376, 133933. https://doi.org/10.1016/j.seppur.2025.133933 Hao, G.-P., Li, W.-C., Qian, D., Wang, G.-H., Zhang, W.-P., Zhang, T., Wang, A.-Q., Schüth, F., Bongard, H.-J., & Lu, A.-H. (2011). Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society, 133(29), 11378-11388. https://doi.org/10.1021/ja203857g Ho, Y.-S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124. Hong, W. (2022). A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci Technol 3: 100044. In. https://doi.org/10.1016/j.ccst.2022.100044 Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., & Araki, T. (2002). Natural gas storage in activated carbon pellets without a binder. Carbon, 40(1), 87-93. https://doi.org/10.1016/S0008-6223(01)00084-7 Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—A review. Renewable and sustainable energy reviews, 11(9), 1966-2005. https://doi.org/10.1016/j.rser.2006.03.013 Iwuozor, K. O., Ighalo, J. O., Emenike, E. C., Igwegbe, C. A., & Adeniyi, A. G. (2021). Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? Journal of Chemistry Letters, 2(4), 188-198. https://doi.org/10.22034/jchemlett.2022.327407.1048 Jabari, E., Ahmed, F., Liravi, F., Secor, E. B., Lin, L., & Toyserkani, E. (2019). 2D printing of graphene: a review. 2D Materials, 6(4), 042004. https://doi.org/10.1088/2053-1583/ab29b2 Jain, A., Michalska, M., Zaszczyńska, A., & Denis, P. (2022). Surface modification of activated carbon with silver nanoparticles for electrochemical double layer capacitors. Journal of Energy Storage, 54, 105367. https://doi.org/10.1016/j.est.2022.105367 Jansen, D., Gazzani, M., Manzolini, G., van Dijk, E., & Carbo, M. (2015). Pre-combustion CO2 capture. International Journal of Greenhouse Gas Control, 40, 167-187. https://doi.org/10.1016/j.ijggc.2015.05.028 Jiang, B., Wang, X., Gray, M. L., Duan, Y., Luebke, D., & Li, B. (2013). Development of amino acid and amino acid-complex based solid sorbents for CO2 capture. Applied Energy, 109, 112-118. https://doi.org/10.1016/j.apenergy.2013.03.070 Jiang, L., Roskilly, A. P., & Wang, R. Z. (2018). Performance exploration of temperature swing adsorption technology for carbon dioxide capture. Energy Conversion and Management, 165, 396-404. https://doi.org/https://doi.org/10.1016/j.enconman.2018.03.077 Jivrakh, K. B., Kuppireddy, S., Taher, S. E., Polychronopoulou, K., Al-Rub, R. A., Alamoodi, N., & Karanikolos, G. N. (2024). Zeolite-coated 3D-printed gyroid scaffolds for carbon dioxide adsorption. Separation and Purification Technology, 346, 127523. https://doi.org/10.1016/j.seppur.2024.127523 Jorio, A., & Saito, R. (2021). Raman spectroscopy for carbon nanotube applications. Journal of Applied Physics, 129(2), 021102. https://doi.org/10.1063/5.0030809 Kather, A., & Scheffknecht, G. (2009). The oxycoal process with cryogenic oxygen supply. Naturwissenschaften, 96(9), 993-1010. https://doi.org/10.1007/s00114-009-0557-2 Keith, D. W., Holmes, G., St. Angelo, D., & Heidel, K. (2018). A Process for Capturing CO2 from the Atmosphere. Joule, 2(8), 1573-1594. https://doi.org/10.1016/j.joule.2018.05.006 Khosrowshahi, M. S., Abdol, M. A., Mashhadimoslem, H., Khakpour, E., Emrooz, H. B. M., Sadeghzadeh, S., & Ghaemi, A. (2022). The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Scientific Reports, 12(1), 8917. https://doi.org/10.1038/s41598-022-12596-5 Kim, C. K., Park, G., Cho, D. W., Oh, C.-y., Oh, D.-j., Jeong, S., Cho, Y. T., Kim, S., Seo, B. W., Kim, C. J., & Song, S. W. (2025). 3D weaving path optimization for enhanced surface quality in wire arc-based directed energy deposition. Journal of Materials Processing Technology, 340, 118838. https://doi.org/10.1016/j.jmatprotec.2025.118838 Kim, D. Y., Bae, W. B., Min, H., Ryu, K.-H., Kweon, S., Tran, L. M., Kim, Y. J., Park, M. B., & Kang, S. B. (2025). Sodium cation exchanged zeolites for direct air capture of CO2. Applied Surface Science Advances, 25, 100664. https://doi.org/10.1016/j.apsadv.2024.100664 Kim, I.-H., Jung, Y.-I., Kim, H.-G., & Jang, J.-I. (2021). Oxidation-resistant coating of FeCrAl on Zr-alloy tubes using 3D printing direct energy deposition. Surface and Coatings Technology, 411, 126915. https://doi.org/10.1016/j.surfcoat.2021.126915 Koo-amornpattana, W., Jonglertjunya, W., Phadungbut, P., Ratchahat, S., Kunthakudee, N., Chalermsinsuwan, B., & Hunsom, M. (2022). Valorization of spent disposable wooden chopstick as the CO2 adsorbent for a CO2/H2 mixed gas purification. Scientific Reports, 12(1), 6250. https://doi.org/10.1038/s41598-022-10197-w Korah, M. M., Culp, K., Lackner, K. S., & Green, M. D. (2025). Activated Carbon Fiber Felt Composites for the Direct Air Capture of Carbon Dioxide. ChemSusChem, 18(3), e202401188. https://doi.org/10.1002/cssc.202401188 Kovarik, L., Bowden, M., Khivantsev, K., Kwak, J. H., & Szanyi, J. (2024). Structural complexity of γ-Al2O3: The nature of vacancy ordering and the structure of complex antiphase boundaries. Acta Materialia, 266, 119639. https://doi.org/10.1016/j.actamat.2023.119639 Kumar, S., Srivastava, R., & Koh, J. (2020). Utilization of zeolites as CO2 capturing agents: Advances and future perspectives. Journal of CO2 Utilization, 41, 101251. https://doi.org/10.1016/j.jcou.2020.101251 Kury, M., Ehrmann, K., Harakály, G. A., Gorsche, C., & Liska, R. (2021). Low volatile monofunctional reactive diluents for radiation curable formulations. Journal of Polymer Science, 59(19), 2154-2169. https://doi.org/10.1002/pol.20210171 Lackner, K., Ziock, H.-J., & Grimes, P. (1999, 01). Carbon Dioxide Extraction from Air: Is It An Option? United States. Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221-2295. Lee, S.-M., Lee, S.-H., & Roh, J.-S. (2021). Analysis of Activation Process of Carbon Black Based on Structural Parameters Obtained by XRD Analysis. Crystals, 11(2). https://doi.org/10.3390/cryst11020153 Leeson, D., Mac Dowell, N., Shah, N., Petit, C., & Fennell, P. S. (2017). A Techno-economic analysis and systematic review of carbon capture and storage (CCS) applied to the iron and steel, cement, oil refining and pulp and paper industries, as well as other high purity sources. International Journal of Greenhouse Gas Control, 61, 71-84. https://doi.org/10.1016/j.ijggc.2017.03.020 Li, G., Iakunkov, A., Boulanger, N., Lazar, O. A., Enachescu, M., Grimm, A., & Talyzin, A. V. (2023). Activated carbons with extremely high surface area produced from cones, bark and wood using the same procedure. RSC advances, 13(21), 14543-14553. https://doi.org/10.1039/D3RA00820G Li, L., Wen, X., Fu, X., Wang, F., Zhao, N., Xiao, F., Wei, W., & Sun, Y. (2010). MgO/Al2O3 sorbent for CO2 capture. energy & fuels, 24(10), 5773-5780. https://doi.org/10.1021/ef100817f Li, W.-K., & Liao, C.-C. (2025). Numerical study on the enhancement of melting performance in a pneumatic-based extrusion system for fused deposition modeling 3D printing. International Journal of Heat and Mass Transfer, 236, 126279. https://doi.org/10.1016/j.ijheatmasstransfer.2024.126279 Li, W., Wang, M., Ma, H., Chapa-Villarreal, F. A., Lobo, A. O., & Zhang, Y. S. (2023). Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. Iscience, 26(2). https://doi.org/10.1016/j.isci.2023.106039 Li, Z., Liu, P., Ou, C., & Dong, X. (2020). Porous metal–organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustainable Chemistry & Engineering, 8(41), 15378-15404. https://doi.org/10.1021/acssuschemeng.0c05155 Liang, J., Francoeur, M., Williams, C. B., & Raeymaekers, B. (2023). Curing characteristics of a photopolymer resin with dispersed glass microspheres in vat polymerization 3D printing. ACS Applied Polymer Materials, 5(11), 9017-9026. https://doi.org/10.1021/acsapm.3c01479 Llamas-Unzueta, R., Montes-Moran, M. A., Ramírez-Montoya, L. A., Concheso, A., & Menendez, J. A. (2022). Whey as a sustainable binder for the production of extruded activated carbon. Journal of Environmental Chemical Engineering, 10(3), 107590. https://doi.org/10.1016/j.jece.2022.107590 Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination, 380, 93-99. https://doi.org/10.1016/j.desal.2015.08.004 Mazinani, S., Samsami, A., Jahanmiri, A., & Sardarian, A. (2011). Solubility (at low partial pressures), density, viscosity, and corrosion rate of carbon dioxide in blend solutions of monoethanolamine (MEA) and sodium glycinate (SG). Journal of Chemical & Engineering Data, 56(7), 3163-3168. https://doi.org/10.1021/je2002418 Menya, E., Olupot, P. W., Storz, H., Lubwama, M., & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chemical Engineering Research and Design, 129, 271-296. https://doi.org/10.1016/j.cherd.2017.11.008 Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press. Moro, C., Francioso, V., & Velay-Lizancos, M. (2021). Modification of CO2 capture and pore structure of hardened cement paste made with nano-TiO2 addition: Influence of water-to-cement ratio and CO2 exposure age. Construction and Building Materials, 275, 122131. https://doi.org/10.1016/j.conbuildmat.2020.122131 Neamah, H. A., & Tandio, J. (2024). Towards the development of foods 3D printer: Trends and technologies for foods printing. Heliyon. Nikulshina, V., Ayesa, N., Gálvez, M. E., & Steinfeld, A. (2008). Feasibility of Na-based thermochemical cycles for the capture of CO2 from air—Thermodynamic and thermogravimetric analyses. Chemical Engineering Journal, 140(1), 62-70. https://doi.org/10.1016/j.cej.2007.09.007 Ninpetch, P., Kowitwarangkul, P., Mahathanabodee, S., Chalermkarnnon, P., & Ratanadecho, P. (2020). A review of computer simulations of metal 3D printing. AIP Conference Proceedings, https://doi.org/10.1063/5.0022974 Njewa, J. B., Vunain, E., & Biswick, T. (2022). Synthesis and Characterization of Activated Carbons Prepared from Agro‐Wastes by Chemical Activation. Journal of Chemistry, 2022(1), 9975444. https://doi.org/10.1155/2022/9975444 O’Dea, C. J., Isokuortti, J., Comer, E. E., Roberts, S. T., & Page, Z. A. (2024). Triplet Upconversion under Ambient Conditions Enables Digital Light Processing 3D Printing. ACS Central Science, 10(2), 272-282. https://doi.org/10.1021/acscentsci.3c01263 Okoro, F., Chapoy, A., Ahmadi, P., & Burgass, R. (2024). Effects of non-condensable CCUS impurities (CH4, O2, Ar and N2) on the saturation properties (bubble points) of CO2-rich binary systems at low temperatures (228.15–273.15 K). Greenhouse Gases: Science and Technology, 14(1), 62-94. https://doi.org/10.1002/ghg.2252 Ozkan, M., Nayak, S. P., Ruiz, A. D., & Jiang, W. (2022). Current status and pillars of direct air capture technologies. Iscience, 25(4), 103990. https://doi.org/10.1016/j.isci.2022.103990 Palaszkó, D., Németh, A., Török, G., Vecsei, B., Vánkos, B., Dinya, E., Borbély, J., Marada, G., Hermann, P., & Kispélyi, B. (2024). Trueness of five different 3D printing systems including budget-and professional-grade printers: An In vitro study. Heliyon, 10(5). https://doi.org/10.1016/j.heliyon.2024.e26874 Pallarés, J., González-Cencerrado, A., & Arauzo, I. (2018). Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and bioenergy, 115, 64-73. https://doi.org/10.1016/j.biombioe.2018.04.015 Raganati, F., & Ammendola, P. (2024). CO2 post-combustion capture: a critical review of Current technologies and future directions. energy & fuels, 38(15), 13858-13905. https://doi.org/10.1021/acs.energyfuels.4c02513 Raganati, F., Ammendola, P., & Chirone, R. (2014). CO2 adsorption on fine activated carbon in a sound assisted fluidized bed: Effect of sound intensity and frequency, CO2 partial pressure and fluidization velocity. Applied Energy, 113, 1269-1282. https://doi.org/10.1016/j.apenergy.2013.08.073 Raganati, F., Chirone, R., & Ammendola, P. (2020). CO2 capture by temperature swing adsorption: working capacity as affected by temperature and CO2 partial pressure. Industrial & Engineering Chemistry Research, 59(8), 3593-3605. https://doi.org/10.1021/acs.iecr.9b04901 Raganati, F., Miccio, F., & Ammendola, P. (2021). Adsorption of carbon dioxide for post-combustion capture: a review. energy & fuels, 35(16), 12845-12868. https://doi.org/10.1021/acs.energyfuels.1c01618 Ravichandran, P., Sugumaran, P., Seshadri, S., & Basta, A. H. (2018). Optimizing the route for production of activated carbon from Casuarina equisetifolia fruit waste. Royal Society open science, 5(7), 171578. https://doi.org/10.1098/rsos.171578 Ren, H., Qian, H., Hou, Q., Li, W., & Ju, M. (2023). Removal of ionic liquid in water environment: A review of fundamentals and applications. Separation and Purification Technology, 310, 123112. https://doi.org/10.1016/j.seppur.2023.123112 Rodgers, B., & Waddell, W. (2013). Chapter 14 - Tire Engineering. In J. E. Mark, B. Erman, & C. M. Roland (Eds.), The Science and Technology of Rubber (Fourth Edition) (pp. 653-695). Academic Press. https://doi.org/10.1016/B978-0-12-394584-6.00014-5 Salas, A., Zanatta, M., Sans, V., & Roppolo, I. (2023). Chemistry in light-induced 3D printing. ChemTexts, 9(1), 4. https://doi.org/10.1007/s40828-022-00176-z Sánchez-Zambrano, K. S., Lima Duarte, L., Soares Maia, D. A., Vilarrasa-García, E., Bastos-Neto, M., Rodríguez-Castellón, E., & Silva de Azevedo, D. C. (2018). CO2 capture with mesoporous silicas modified with amines by double functionalization: Assessment of adsorption/desorption cycles. Materials, 11(6), 887. https://doi.org/10.3390/ma11060887 Sangermano, M., Razza, N., & Crivello, J. V. (2014). Cationic UV‐curing: Technology and applications. Macromolecular Materials and Engineering, 299(7), 775-793. https://doi.org/10.1002/mame.201300349 Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct Capture of CO2 from Ambient Air. Chemical reviews, 116(19), 11840-11876. https://doi.org/10.1021/acs.chemrev.6b00173 Sciences, N. A. o., Medicine, Earth, D. o., Studies, L., Board, O. S., Sciences, B. o. C., Sciences, B. o. E., Resources, Energy, B. o., & Systems, E. (2019). Negative emissions technologies and reliable sequestration: A research agenda. Serafin, J., & Dziejarski, B. (2024). Activated carbons—Preparation, characterization and their application in CO2 capture: A review. Environmental Science and Pollution Research, 31(28), 40008-40062. https://doi.org/10.1007/s11356-023-28023-9 Sevilla, M., & Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 7(4), 1250-1280. https://doi.org/10.1039/C3EE43525C Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia manufacturing, 35, 1286-1296. Sharma, S. D. (2009). FUELS – HYDROGEN PRODUCTION | Gas Cleaning: Pressure Swing Adsorption. In J. Garche (Ed.), Encyclopedia of Electrochemical Power Sources (pp. 335-349). Elsevier. https://doi.org/10.1016/j.promfg.2019.06.089 Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619. Singh, B., Kemell, M., Heikkilä, M. J., & Repo, T. (2025). Indoor direct air capture using amorphous MOF pellets from blast furnace slag: Waste to porous functional materials. Chemical Engineering Journal, 505, 159416. https://doi.org/10.1016/j.cej.2025.159416 Singh, M. K., & Mehata, M. S. (2019). Phase-dependent optical and photocatalytic performance of synthesized titanium dioxide (TiO2) nanoparticles. Optik, 193, 163011. https://doi.org/10.1016/j.ijleo.2019.163011 Sluijter, S., Boon, J., James, J., Krishnamurthy, S., Lind, A., Blom, R., Andreassen, K., Cormos, A. M., Sandu, V., & de Boer, R. (2021). 3D-printing of adsorbents for increased productivity in carbon capture applications (3D-CAPS). International Journal of Greenhouse Gas Control, 112, 103512. https://doi.org/10.1016/j.ijggc.2021.103512 Spencer, W., Senanayake, G., Altarawneh, M., Ibana, D., & Nikoloski, A. N. (2024). Review of the effects of coal properties and activation parameters on activated carbon production and quality. Minerals engineering, 212, 108712. https://doi.org/10.1016/j.mineng.2024.108712 Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H., & Long, J. R. (2012). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical reviews, 112(2), 724-781. https://doi.org/10.1021/cr2003272 Than-ardna, B., Hiranphinyophat, S., Matsumoto, M., Meeyoo, V., & Kitiyanan, B. (2025). Synthesized structure of Mg-MOF-74 decorated on ZIF-8 as solid adsorbent for CO2 capture. Resources Chemicals and Materials, 4(3), 100116. https://doi.org/10.1016/j.recm.2025.100116 Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and applied chemistry, 87(9-10), 1051-1069. https://doi.org/10.1515/pac-2014-1117 Tian, Z., Wang, Y., Zhen, X., & Liu, Z. (2022). The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel, 320, 123902. https://doi.org/10.1016/j.fuel.2022.123902 Trunec, M., & Maca, K. (2014). Chapter 7 - Advanced Ceramic Processes. In J. Z. Shen & T. Kosmač (Eds.), Advanced Ceramics for Dentistry (pp. 123-150). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-394619-5.00007-9 Verougstraete, B., Martín-Calvo, A., Van der Perre, S., Baron, G., Finsy, V., & Denayer, J. F. M. (2020). A new honeycomb carbon monolith for CO2 capture by rapid temperature swing adsorption using steam regeneration. Chemical Engineering Journal, 383, 123075. https://doi.org/10.1016/j.cej.2019.123075 Vorokhta, M., Morávková, J., Dopita, M., Zhigunov, A., Šlouf, M., Pilař, R., & Sazama, P. (2021). Effect of micropores on CO2 capture in ordered mesoporous CMK-3 carbon at atmospheric pressure. Adsorption, 27(8), 1221-1236. https://doi.org/10.1007/s10450-021-00322-y Wahby, A., Ramos‐Fernández, J. M., Martínez‐Escandell, M., Sepúlveda‐Escribano, A., Silvestre‐Albero, J., & Rodríguez‐Reinoso, F. (2010). High‐surface‐area carbon molecular sieves for selective CO2 adsorption. ChemSusChem, 3(8), 974-981. https://doi.org/10.1002/cssc.201000083 Wang, L., & Yang, R. T. (2012). Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. The Journal of Physical Chemistry C, 116(1), 1099-1106. https://doi.org/10.1021/jp2100446 Wang, Q., Ma, H., Chen, J., Du, Z., & Mi, J. (2017). Interfacial control of polyHIPE with nano-TiO2 particles and polyethylenimine toward actual application in CO2 capture. Journal of Environmental Chemical Engineering, 5(3), 2807-2814. https://doi.org/10.1016/j.jece.2017.05.034 Wang, S., Wang, S., & Zhuo, Y. (2025). Rapid post-combustion CO2 capture by thermostatic concentration swing adsorption for amine-functionalized Al2O3. Fuel, 402, 136003. https://doi.org/10.1016/j.fuel.2025.136003 Wang, T., Lackner, K. S., & Wright, A. (2011). Moisture Swing Sorbent for Carbon Dioxide Capture from Ambient Air. Environmental Science & Technology, 45(15), 6670-6675. https://doi.org/10.1021/es201180v Wickramaratne, N. P., & Jaroniec, M. (2013). Importance of small micropores in CO 2 capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 1(1), 112-116. https://doi.org/10.1039/C2TA00388K Wu, Q., Gao, J., Feng, J., Liu, Q., Zhou, Y., Zhang, S., Nie, M., Liu, Y., Zhao, J., Liu, F., Zhong, J., & Kang, Z. (2020). A CO2 adsorption dominated carbon defect-based electrocatalyst for efficient carbon dioxide reduction [10.1039/C9TA11473D]. Journal of Materials Chemistry A, 8(3), 1205-1211. https://doi.org/10.1039/C9TA11473D Wurzbacher, J. A., Gebald, C., Brunner, S., & Steinfeld, A. (2016). Heat and mass transfer of temperature–vacuum swing desorption for CO2 capture from air. Chemical Engineering Journal, 283, 1329-1338. https://doi.org/10.1016/j.cej.2015.08.035 Xiang, X., Guo, T., Yin, Y., Gao, Z., Wang, Y., Wang, R., An, M., Guo, Q., & Hu, X. (2023). High Adsorption Capacity Fe@13X Zeolite for Direct Air CO2 Capture. Industrial & Engineering Chemistry Research, 62(12), 5420-5429. https://doi.org/10.1021/acs.iecr.2c04458 Xu, H., Yu, L., Chong, C., & Wang, F. (2024). A comprehensive review on direct air carbon capture (DAC) technology by adsorption: From fundamentals to applications. Energy Conversion and Management, 322, 119119. https://doi.org/10.1016/j.enconman.2024.119119 Yang, G., Xie, Y., Zhao, S., Qin, L., Wang, X., & Wu, B. (2022). Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-powder-melt Pool Interaction: A Review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(3), 100037. https://doi.org/10.1016/j.cjmeam.2022.100037 Yates, M., Blanco, J., Avila, P., & Martin, M. P. (2000). Honeycomb monoliths of activated carbons for effluent gas purification. Microporous and Mesoporous Materials, 37(1), 201-208. https://doi.org/10.1016/S1387-1811(99)00266-8 Yulia, F., Sofianita, R., Prayogo, K., & Nasruddin, N. (2021). Optimization of post combustion CO2 absorption system monoethanolamine (MEA) based for 320 MW coal-fired power plant application – Exergy and exergoenvironmental analysis. Case Studies in Thermal Engineering, 26, 101093. https://doi.org/10.1016/j.csite.2021.101093 Yusuf, V. F., Malek, N. I., & Kailasa, S. K. (2022). Review on metal–organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS omega, 7(49), 44507-44531. Zeman, F. (2007). Energy and Material Balance of CO2 Capture from Ambient Air. Environmental Science & Technology, 41(21), 7558-7563. https://doi.org/10.1021/es070874m Zentou, H., Hoque, B., Abdalla, M. A., Saber, A. F., Abdelaziz, O. Y., Aliyu, M., Alkhedhair, A. M., Alabduly, A. J., & Abdelnaby, M. M. (2025). Recent advances and challenges in solid sorbents for CO2 capture. Carbon Capture Science & Technology, 15, 100386. https://doi.org/10.1016/j.ccst.2025.100386 Zhang, C., Ji, Y., Li, C., Zhang, Y., Sun, S., Xu, Y., Jiang, L., & Wu, C. (2023). The application of biochar for CO2 capture: influence of biochar preparation and CO2 capture reactors. Industrial & Engineering Chemistry Research, 62(42), 17168-17181. https://doi.org/10.1021/acs.iecr.3c00445 Zhang, X., Wang, J., & Liu, T. (2021). 3D printing of polycaprolactone-based composites with diversely tunable mechanical gradients via multi-material fused deposition modeling. Composites Communications, 23, 100600. https://doi.org/10.1016/j.coco.2020.100600 Zhang, Y., Han, H., Zhu, N., Che, Y., Zhang, X., Xue, Y., Deng, J., Wu, C., Wang, H., Chen, Y., & Yi, S. (2025). Chemical Looping Combustion for Coupling with Efficient CO2 Capture and Utilization: Stable Oxygen Carriers and Carbon Cycle. Industrial & Engineering Chemistry Research, 64(4), 1933-1967. https://doi.org/10.1021/acs.iecr.4c03713 Zhu, J., Chen, J., An, Z., Kankala, R. K., Chen, A.-Z., Wang, S.-B., & Li, Y. (2023). Photocuring 3D printable self-healing polymers. European Polymer Journal, 199, 112471. https://doi.org/10.1016/j.eurpolymj.2023.112471 Zieliński, B., Miądlicki, P., & Przepiórski, J. (2022). Development of activated carbon for removal of pesticides from water: case study. Scientific Reports, 12(1), 20869. https://doi.org/10.1038/s41598-022-25247-6 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99459 | - |
| dc.description.abstract | 人為排放的二氧化碳對氣候變遷造成關鍵影響,而直接空氣捕捉 (Direct Air Capture, DAC) 是目前少數能從大氣中移除低濃度二氧化碳的關鍵技術,能有效彌補難以去碳化產業的排放,以及其他碳捕捉系統所遺漏的逸散二氧化碳。此外,其不受地點限制,適合模組化與規模化部署,有助於實現碳中和目標。因此本研究針對所需的吸附劑進行優化,利用間苯二酚-甲醛樹脂丙烯酸脂 (Methacrylate Resorcinol Phenolic Polycondensate, MRPP) 作為預聚物,並結合3D列印數位光處理技術 (Digital Light Processing, DLP) 製備高精度、高產率及低能耗之選擇性吸附活性碳 M-CX-Y,X為活化時間3、6、9小時,Y為氣體流速100、200 ml/min。
透過MSLattice程式設計形狀、結構、尺寸、晶胞大小及密度,以符合商用吸附管柱需求,最終選用具高比表面積、不間斷光滑曲線與低壓降的 Cylindrical Gyroid 結構。列印過程採用4K高解析度光固化設備,實現材料的高度可控性與精細結構。經不同碳化與活化條件處理後,製得M-CX-Y具備高比表面積 (>1,000 m2/g) 和高微孔率 (>90%)。在1atm、30℃、100% CO2條件下M-C6-200之二氧化碳吸附容量可高達2.44 mmol/g。於模擬煙道氣環境 (15% CO2/85% N2) 中觀察到M-C3-100具備優異的選擇性吸附能力,二氧化碳吸附量為1.393 mmol/g。在實際大氣環境中 (25~30℃,環境條件之CO2濃度,RH=90%) 下暴露24小時,M-C3-200模擬除濕機濾網可吸附達0.521 mmol- CO2/g。 本研究研發之M-C3-200擁有自動化及規模化生產能力,在原有抽氣設備中同時兼具選擇性吸附及分離大氣中二氧化碳之應用潛力,能減少建造成本及能耗,具備應用於DAC系統的前景,有望協助達成我國2050淨零碳排的目標。 | zh_TW |
| dc.description.abstract | Anthropogenic emissions of carbon dioxide (CO2) have a critical impact on climate change. Among various mitigation strategies, Direct Air Capture (DAC) is one of the few key technologies capable of removing low-concentration CO2 directly from the atmosphere. DAC can effectively compensate for emissions from hard-to-decarbonize industries and for fugitive CO2 not captured by other carbon capture systems. Furthermore, its location-independent nature allows for modular and scalable deployment, contributing significantly to achieving carbon neutrality. Therefore, this study focuses on optimizing the required adsorbent by employing methacrylate resorcinol phenolic polycondensate (MRPP) as a prepolymer. A high-precision, high-yield, and energy-efficient selective activated carbon adsorbent, denoted as M-CX-Y, was fabricated using digital light processing (DLP)-based 3D printing technology. In this nomenclature, X represents the activation time (3, 6, or 9 hours), and Y corresponds to the gas flow rate (100 or 200 mL/min).
Structural modeling was conducted using the MSLattice program to design suitable shapes, structures, dimensions, unit cell sizes, and densities for commercial adsorption columns. A cylindrical gyroid geometry was selected for its high surface area per unit volume, continuous smooth curvature, and minimal pressure drop.The printing process utilized a 4K-resolution light-curing system with a 405 nm light source to achieve excellent structural control and fine resolution. After undergoing different carbonization and activation conditions, the resulting M-CX-Y materials exhibited high specific surface areas (>1,000 m2/g) and high microporosity (>90%). Under conditions of 1 atm, 30°C, and 100% CO2, the M-C6-200 sample achieved a CO2 adsorption capacity of up to 2.44 mmol/g. In a simulated flue gas environment (15% CO2/85% N2), M-C3-100 demonstrated outstanding CO2 selectivity with an adsorption capacity of 1.393 mmol/g. When exposed to real atmospheric conditions (25~30°C, Ambient CO2, RH = 90%) for 24 hours, M-C3-200, serving as a dehumidifier filter analog, was able to adsorb 0.521 mmol CO2/g. The M-C3-200 developed in this study demonstrates potential for automated and scalable production. It integrates selective CO2 adsorption and separation into existing vacuum systems, thereby reducing construction costs and energy consumption. This system shows strong promise for application in DAC technologies and may contribute to achieving Taiwan's 2050 net-zero carbon emissions target. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:21:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:21:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 x 表次 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的與內容 3 第二章 文獻回顧 4 2.1 二氧化碳捕捉程序之技術 4 2.1.1 燃燒後捕捉 5 2.1.2 燃燒前捕捉 6 2.1.3 富氧燃燒 6 2.1.4 工業製程 7 2.1.5 直接空氣捕捉 7 2.2 直接空氣捕捉技術 9 2.2.1 捕捉劑種類 9 2.2.2 改良的直接空氣捕捉技術 12 2.3 固體吸附劑 14 2.3.1 碳基吸附劑 14 2.3.2 沸石 15 2.3.3 金屬有機框架 15 2.3.4 二氧化矽 15 2.3.5 氧化鋁 16 2.3.6 二氧化鈦 16 2.4 活性碳傳統塑形技術 16 2.4.1 活化過程 17 2.4.2 擠壓 18 2.4.3 壓縮 19 2.4.4 燒結 20 2.5 3D列印技術 21 2.5.1 3D列印方式 22 2.5.2 光敏樹脂 25 2.5.3 結構型態 26 2.6 二氧化碳吸附機制 27 2.6.1 比表面積與孔隙率 27 2.6.2 吸附溫度及壓力 28 第三章 實驗設備及方法 33 3.1 實驗架構及內容 33 3.2 實驗藥品與設備 35 3.3 實驗材料製備 37 3.3.1 MRPP光敏樹脂配製 37 3.3.2 DLP列印 37 3.3.3 多孔聚合物碳化及活化 38 3.4 材料物化特性分析 39 3.4.1 比表面積與孔隙度分析儀 39 3.4.2 熱重分析儀 44 3.4.3 X-光繞射儀 44 3.4.4 拉曼光譜儀 45 3.5 二氧化碳氣體吸附及分離測試 46 3.5.1 動態平衡重量法 46 3.5.2 靜態體積法 47 3.5.3 流體化床吸附 47 3.6 吸附模型 48 3.6.1 動力吸附模型 48 3.6.2 等溫吸附模型 49 第四章 結果與討論 51 4.1 列印程序 51 4.2 材料特徵分析 52 4.2.1 比表面積及孔洞結構 52 4.2.2 熱重分析 54 4.2.3 晶相分析 55 4.2.4 拉曼光譜分析 56 4.3 二氧化碳動態平衡吸附研究 58 4.3.1 吸附動力學 58 4.3.2 吸附溫度的影響 65 4.4 二氧化碳靜態體積吸附研究 67 4.4.1 等溫吸附曲線 67 4.4.2 CO2/N2選擇性 72 4.5 二氧化碳流體化床吸附研究 73 4.5.1 突破曲線 73 4.5.2 模擬活性碳濾網 76 第五章 結論與建議 78 5.1 結論 78 5.2 建議 79 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二氧化碳選擇性吸附 | zh_TW |
| dc.subject | 微孔材料 | zh_TW |
| dc.subject | 3D列印技術導入 | zh_TW |
| dc.subject | 量化生產 | zh_TW |
| dc.subject | Microporous materials | en |
| dc.subject | Integration of 3D printing technology | en |
| dc.subject | Selective CO2 adsorption | en |
| dc.subject | Scalable production | en |
| dc.title | 以3D列印技術製備規模化高比表面積活性碳直接空氣捕捉二氧化碳之研究 | zh_TW |
| dc.title | Preparation of Large Scale and High Specific Surface Area Activated Carbon via 3D Printing for Direct Air Captur | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林逸彬;楊汶達;高立誠 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Pin Lin ;Wen-Ta Yang;Li-Cheng Kao | en |
| dc.subject.keyword | 二氧化碳選擇性吸附,微孔材料,3D列印技術導入,量化生產, | zh_TW |
| dc.subject.keyword | Selective CO2 adsorption,Microporous materials,Integration of 3D printing technology,Scalable production, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202502463 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
