Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊姍樺zh_TW
dc.contributor.advisorShan-Hua Yangen
dc.contributor.author鄭顯祐zh_TW
dc.contributor.authorHsien-Yu Chengen
dc.date.accessioned2025-09-10T16:20:19Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationAbrego, D., Ulstrup, K. E., Willis, B. L., & van Oppen, M. J. (2008). Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc Biol Sci, 275(1648), 2273-2282.

Ainsworth, T., & Hoegh-Guldberg, O. (2009). Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquatic Biology, 4(3), 289-296.

Avila-Magana, V., Kamel, B., DeSalvo, M., Gomez-Campo, K., Enriquez, S., Kitano, H., Rohlfs, R. V., Iglesias-Prieto, R., & Medina, M. (2021). Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress. Nat Commun, 12(1), 5731.

Baird, A. H., Guest, J. R., & Willis, B. L. (2009). Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual review of ecology, evolution, and systematics, 40(1), 551-571.

Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine, Coastal and Shelf Science, 80(4), 435-471.

Baker, A. C., Starger, C. J., McClanahan, T. R., & Glynn, P. W. (2004). Coral reefs: corals' adaptive response to climate change. Nature, 430(7001), 741.

Baker, D. M., Andras, J. P., Jordan-Garza, A. G., & Fogel, M. L. (2013). Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades. ISME J, 7(6), 1248-1251.

Baldassarre, L., Ying, H., Reitzel, A. M., Franzenburg, S., & Fraune, S. (2022). Microbiota mediated plasticity promotes thermal adaptation in the sea anemone Nematostella vectensis. Nature communications, 13(1), 3804.

Banin, E., Israely, T., Fine, M., Loya, Y., & Rosenberg, E. (2001). Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiology letters, 199(1), 33-37.

Baum, G., Januar, H. I., Ferse, S. C., & Kunzmann, A. (2015). Local and Regional Impacts of Pollution on Coral Reefs along the Thousand Islands North of the Megacity Jakarta, Indonesia. PLoS One, 10(9), e0138271.

Bayer, T., Neave, M. J., Alsheikh-Hussain, A., Aranda, M., Yum, L. K., Mincer, T., Hughen, K., Apprill, A., & Voolstra, C. R. (2013). The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Applied and Environmental Microbiology, 79(15), 4759-4762.

Bellantuono, A. J., Dougan, K. E., Granados‐Cifuentes, C., & Rodriguez‐Lanetty, M. (2019). Free‐living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions. Molecular Ecology, 28(24), 5265-5281.

Bellantuono, A. J., Hoegh-Guldberg, O., & Rodriguez-Lanetty, M. (2012). Resistance to thermal stress in corals without changes in symbiont composition. Proceedings of the Royal Society B: Biological Sciences, 279(1731), 1100-1107.

Ben-Haim, Y., Zicherman-Keren, M., & Rosenberg, E. (2003). Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Applied and Environmental Microbiology, 69(7), 4236-4242.

Berger, M., Neumann, A., Schulz, S., Simon, M., & Brinkhoff, T. (2011). Tropodithietic acid production in Phaeobacter gallaeciensis is regulated by N-acyl homoserine lactone-mediated quorum sensing. Journal of bacteriology, 193(23), 6576-6585.

Berkelmans, R., & Van Oppen, M. J. (2006). The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proceedings of the Royal Society B: Biological Sciences, 273(1599), 2305-2312.

Bourne, D., Iida, Y., Uthicke, S., & Smith-Keune, C. (2008). Changes in coral-associated microbial communities during a bleaching event. The ISME journal, 2(4), 350-363.

Brown, B. E. (1997). Coral bleaching: causes and consequences. Coral Reefs, 16(0), S129-S138.

Cantin, N. E., van Oppen, M. J., Willis, B. L., Mieog, J. C., & Negri, A. P. (2009). Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs, 28, 405-414.

Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., Chiriboga, A., Cortes, J., Delbeek, J. C., & DeVantier, L. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321(5888), 560-563.

Carvalho, S., Cúrdia, J., Pereira, F., Guerra-García, J. M., Santos, M. N., & Cunha, M. R. (2014). Biodiversity patterns of epifaunal assemblages associated with the gorgonians Eunicella gazella and Leptogorgia lusitanica in response to host, space and time. Journal of Sea Research, 85, 37-47.

Castillo, I., Lodeiros, C., Nunez, M., & Campos, I. (2001). In vitro evaluation of antibacterial substances produced by bacteria isolated from different marine organisms. Revista de biologia tropical, 49(3-4), 1213-1222.

Cervino, J., Thompson, F., Gomez‐Gil, B., Lorence, E., Goreau, T., Hayes, R., Winiarski‐Cervino, K., Smith, G., Hughen, K., & Bartels, E. (2008). The Vibrio core group induces yellow band disease in Caribbean and Indo‐Pacific reef‐building corals. Journal of applied microbiology, 105(5), 1658-1671.

Chen, W.-t., Li, Y., & Guo, Y.-w. (2012). Terpenoids of Sinularia soft corals: chemistry and bioactivity. Acta Pharmaceutica Sinica B, 2(3), 227-237.

Cui, G., Konciute, M. K., Ling, L., Esau, L., Raina, J.-B., Han, B., Salazar, O. R., Presnell, J. S., Rädecker, N., & Zhong, H. (2023). Molecular insights into the Darwin paradox of coral reefs from the sea anemone Aiptasia. Science Advances, 9(11), eadf7108.

Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A. H., Eguiluz, V. M., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet, 15(6), e1008189.

Cunning, R., Gillette, P., Capo, T., Galvez, K., & Baker, A. (2015). Growth tradeoffs associated with thermotolerant symbionts in the coral Pocillopora damicornis are lost in warmer oceans. Coral Reefs, 34, 155-160.

Cunning, R., Ritson-Williams, R., & Gates, R. D. (2016). Patterns of bleaching and recovery of Montipora capitata in Kāne ‘ohe Bay, Hawai ‘i, USA. Marine Ecology Progress Series, 551, 131-139.

Cziesielski, M. J., Schmidt-Roach, S., & Aranda, M. (2019). The past, present, and future of coral heat stress studies. Ecol Evol, 9(17), 10055-10066.

de O Santos, E., Alves Jr, N., Dias, G. M., Mazotto, A. M., Vermelho, A., Vora, G. J., Wilson, B., Beltran, V. H., Bourne, D. G., & Le Roux, F. (2011). Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. The ISME journal, 5(9), 1471-1483.

De'ath, G., & Fabricius, K. E. (2000). Classification and Regression Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology, 81(11), 3178-3192.

Dungan, A. M., Maire, J., Perez-Gonzalez, A., Blackall, L. L., & van Oppen, M. J. (2022). Lack of evidence for the oxidative stress theory of bleaching in the sea anemone, Exaiptasia diaphana, under elevated temperature. Coral Reefs, 41(4), 1161-1172.

Ellithey, M. S., Lall, N., Hussein, A. A., & Meyer, D. (2013). Cytotoxic, cytostatic and HIV-1 PR inhibitory activities of the soft coral Litophyton arboreum. Mar Drugs, 11(12), 4917-4936.

Epstein, H. E., & Kingsford, M. J. (2019). Are soft coral habitats unfavourable? A closer look at the association between reef fishes and their habitat. Environmental Biology of Fishes, 102(3), 479-497.

Fabricius, K. E., & McCorry, D. (2006). Changes in octocoral communities and benthic cover along a water quality gradient in the reefs of Hong Kong. Mar Pollut Bull, 52(1), 22-33.

Fine, M., Hoegh-Guldberg, O., Meroz-Fine, E., & Dove, S. (2019). Ecological changes over 90 years at Low Isles on the Great Barrier Reef. Nat Commun, 10(1), 4409.

Fisher, R., O'Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Curr Biol, 25(4), 500-505.

Fitt, W., Gates, R., Hoegh-Guldberg, O., Bythell, J., Jatkar, A., Grottoli, A., Gomez, M., Fisher, P., Lajuenesse, T., & Pantos, O. (2009). Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. Journal of Experimental Marine Biology and Ecology, 373(2), 102-110.

Garra, S., Hall, A., & Kingsford, M. J. (2020). The effects of predation on the condition of soft corals. Coral Reefs, 39(5), 1329-1343.

Garren, M., Son, K., Raina, J.-B., Rusconi, R., Menolascina, F., Shapiro, O. H., Tout, J., Bourne, D. G., Seymour, J. R., & Stocker, R. (2014). A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. The ISME journal, 8(5), 999-1007.

Ghavam Mostafavi, P., Fatemi, S. M. R., Shahhosseiny, M. H., Hoegh-Guldberg, O., & Loh, W. K. W. (2007). Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Marine Biology, 153, 25-34.

Gignoux-Wolfsohn, S. A., & Vollmer, S. V. (2015). Identification of candidate coral pathogens on white band disease-infected staghorn coral. PLoS One, 10(8), e0134416.

Goffredo, S., & Dubinsky, Z. (2016). The Cnidaria, past, present and future: The world of medusa and her sisters. Springer.

Goulet, T. L., LaJeunesse, T. C., & Fabricius, K. E. (2008). Symbiont specificity and bleaching susceptibility among soft corals in the 1998 Great Barrier Reef mass coral bleaching event. Marine Biology, 154, 795-804.

Grottoli, A. G., Toonen, R. J., van Woesik, R., Vega Thurber, R., Warner, M. E., McLachlan, R. H., Price, J. T., Bahr, K. D., Baums, I. B., & Castillo, K. (2021). Increasing comparability among coral bleaching experiments. Ecological Applications, 31(4), e02262.

Harvell, D., Aronson, R., Baron, N., Connell, J., Dobson, A., Ellner, S., Gerber, L., Kim, K., Kuris, A., McCallum, H., Lafferty, K., McKay, B., Porter, J., Pascual, M., Smith, G., Sutherland, K., & Ward, J. (2004). The rising tide of ocean diseases: unsolved problems and research priorities. Frontiers in Ecology and the Environment, 2(7), 375-382.

Hoadley, K. D., Pettay, D. T., Lewis, A., Wham, D., Grasso, C., Smith, R., Kemp, D. W., LaJeunesse, T., & Warner, M. E. (2021). Different functional traits among closely related algal symbionts dictate stress endurance for vital Indo‐Pacific reef‐building corals. Global change biology, 27(20), 5295-5309.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., & Caldeira, K. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742.

Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742.

Howells, E. J., Bauman, A. G., Vaughan, G. O., Hume, B. C., Voolstra, C. R., & Burt, J. A. (2020). Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Molecular Ecology, 29(5), 899-911.

Howells, E. J., Beltran, V., Larsen, N., Bay, L., Willis, B., & Van Oppen, M. (2012). Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change, 2(2), 116-120.

Hsu, T.-H. T., Carlu, L., Hsieh, Y. E., Lai, T.-Y. A., Wang, C.-W., Huang, C.-Y., Yang, S.-H., Wang, P.-L., Sturaro, N., & Denis, V. (2020). Stranger things: organismal traits of two octocorals associated with singular Symbiodiniaceae in a high-latitude coral community from Northern Taiwan. Frontiers in Marine Science, 7, 606601.

Huggett, M. J., & Apprill, A. (2019). Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral‐associated microbes. Environmental microbiology reports, 11(3), 372-385.

Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., & Berkelmans, R. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377.

Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., & Liu, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496.

Hume, B. C., D'Angelo, C., Smith, E. G., Stevens, J. R., Burt, J., & Wiedenmann, J. (2015). Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world's hottest sea, the Persian/Arabian Gulf. Scientific reports, 5(1), 8562.

Hume, B. C., Ziegler, M., Poulain, J., Pochon, X., Romac, S., Boissin, E., De Vargas, C., Planes, S., Wincker, P., & Voolstra, C. R. (2018). An improved primer set and amplification protocol with increased specificity and sensitivity targeting the Symbiodinium ITS2 region. PeerJ, 6, e4816.

Inoue, S., Kayanne, H., Yamamoto, S., & Kurihara, H. (2013). Spatial community shift from hard to soft corals in acidified water. Nature Climate Change, 3(7), 683-687.

Jeffrey, S., & Haxo, F. (1968). Photosynthetic pigments of symbiotic dinoflagellates (zooxanthellae) from corals and clams. The Biological Bulletin, 135(1), 149-165.

Jeng, M. S., Huang, H. D., Dai, C. F., Hsiao, Y. C., & Benayahu, Y. (2011). Sclerite calcification and reef-building in the fleshy octocoral genus Sinularia (Octocorallia: Alcyonacea). Coral Reefs, 30(4), 925-933.

Johnston, E. C., Cunning, R., & Burgess, S. C. (2022). Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo′ orea and their symbionts (Symbiodiniaceae). Molecular Ecology, 31(20), 5368-5385.

Jones, A. M., Berkelmans, R., van Oppen, M. J., Mieog, J. C., & Sinclair, W. (2008). A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proceedings of the Royal Society B: Biological Sciences, 275(1641), 1359-1365.

Krueger, T., Hawkins, T. D., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat, W., Fisher, P. L., & Davy, S. K. (2015). Differential coral bleaching—Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 190, 15-25.

LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R., & Santos, S. R. (2018). Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr Biol, 28(16), 2570-2580 e2576.

Lalas, J. A. A., Jamodiong, E. A., & Reimer, J. D. (2024). Spatial patterns of soft coral (Octocorallia) assemblages in the shallow coral reefs of Okinawa Island, Ryukyu Archipelago, Japan: Dominance on highly disturbed reefs. Regional Studies in Marine Science, 71.

Lesser, M. P. (1997). Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs, 16(3), 187-192.

Li, J., Long, L., Zou, Y., & Zhang, S. (2021). Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont. Environmental microbiology, 23(2), 826-843.

Li, J., Shao, Z., Cheng, K., Yang, Q., Ju, H., Tang, X., Zhang, S., & Li, J. (2025). Coral‐associated Symbiodiniaceae exhibit host specificity but lack phylosymbiosis, with Cladocopium and Durusdinium showing different cophylogenetic patterns. New Phytologist.

Li, S., Yu, K., Shi, Q., Chen, T., Zhao, M., & Zhao, J. (2008). Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching. Chinese Science Bulletin, 53(2), 295-303.

Little, A. F., Van Oppen, M. J., & Willis, B. L. (2004). Flexibility in algal endosymbioses shapes growth in reef corals. Science, 304(5676), 1492-1494.

Littman, R. A., Willis, B. L., Pfeffer, C., & Bourne, D. G. (2009). Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS microbiology ecology, 68(2), 152-163.

Liu, G., Strong, A. E., Skirving, W., & Arzayus, L. F. (2006). Overview of NOAA coral reef watch program’s near-real time satellite global coral bleaching monitoring activities. Proceedings of the 10th international coral reef symposium,

Liu, Y., Wu, H., Shu, Y., Hua, Y., & Fu, P. (2024). Symbiodiniaceae and Ruegeria sp. Co-Cultivation to Enhance Nutrient Exchanges in Coral Holobiont. Microorganisms, 12(6), 1217.

Logan, C. A., Dunne, J. P., Ryan, J. S., Baskett, M. L., & Donner, S. D. (2021). Quantifying global potential for coral evolutionary response to climate change. Nature Climate Change, 11(6), 537-542.

Loya, Y., Sakai, K., Yamazato, K., Nakano, Y., Sambali, H., & van Woesik, R. (2001). Coral bleaching: the winners and the losers. Ecology Letters, 4(2), 122-131.

Marangon, E., Laffy, P. W., Bourne, D. G., & Webster, N. S. (2021). Microbiome-mediated mechanisms contributing to the environmental tolerance of reef invertebrate species. Marine Biology, 168(6), 89.

Marangon, E., Rädecker, N., Li, J. Y., Terzin, M., Buerger, P., Webster, N. S., Bourne, D. G., & Laffy, P. W. (2025). Destabilization of mutualistic interactions shapes the early heat stress response of the coral holobiont. Microbiome, 13(1), 31.

Marshall, P., & Baird, A. (2000). Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs, 19, 155-163.

Marzonie, M. R., Nitschke, M. R., Bay, L. K., Bourne, D. G., & Harrison, H. B. (2024). Symbiodiniaceae diversity varies by host and environment across thermally distinct reefs. Molecular Ecology, 33(9), e17342.

Matthews, J. L., Crowder, C. M., Oakley, C. A., Lutz, A., Roessner, U., Meyer, E., Grossman, A. R., Weis, V. M., & Davy, S. K. (2017). Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proceedings of the National Academy of Sciences, 114(50), 13194-13199.

Matz, M. V. (2024). Not-so-mutually beneficial coral symbiosis. Curr Biol, 34(17), R798-R801.

McClanahan, T. R., & Obura, D. (1997). Sedimentation effects on shallow coral communities in Kenya. Journal of Experimental Marine Biology and Ecology, 209(1-2), 103-122.

McDevitt-Irwin, J. M., Baum, J. K., Garren, M., & Vega Thurber, R. L. (2017). Responses of coral-associated bacterial communities to local and global stressors. Frontiers in Marine Science, 4, 262.

McFADDEN, C. S., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A., & France, S. C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. Molecular ecology resources, 11(1), 19-31.

McFadden, C. S., Van Ofwegen, L. P., & Quattrini, A. M. (2022). Revisionary systematics of Octocorallia (Cnidaria: Anthozoa) guided by phylogenomics. Bulletin of the Society of Systematic Biologists, 1(3).

McGinley, M. P., Aschaffenburg, M. D., Pettay, D. T., Smith, R. T., LaJeunesse, T. C., & Warner, M. E. (2012). Symbiodinium spp. in colonies of eastern Pacific Pocillopora spp. are highly stable despite the prevalence of low-abundance background populations. Marine Ecology Progress Series, 462, 1-7.

Meron, D., Atias, E., Iasur Kruh, L., Elifantz, H., Minz, D., Fine, M., & Banin, E. (2011). The impact of reduced pH on the microbial community of the coral Acropora eurystoma. The ISME journal, 5(1), 51-60.

Meron, D., Efrony, R., Johnson, W. R., Schaefer, A. L., Morris, P. J., Rosenberg, E., Greenberg, E. P., & Banin, E. (2009). Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Applied and Environmental Microbiology, 75(17), 5704-5707.

Meron, D., Rodolfo-Metalpa, R., Cunning, R., Baker, A. C., Fine, M., & Banin, E. (2012). Changes in coral microbial communities in response to a natural pH gradient. The ISME journal, 6(9), 1775-1785.

Miller, A. W., & Richardson, L. L. (2014). Emerging coral diseases: a temperature‐driven process? Marine Ecology, 36(3), 278-291.

Miura, N., Motone, K., Takagi, T., Aburaya, S., Watanabe, S., Aoki, W., & Ueda, M. (2019). Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Marine Biotechnology, 21, 1-8.

Moeller, A. H., Shilts, M., Li, Y., Rudicell, R. S., Lonsdorf, E. V., Pusey, A. E., Wilson, M. L., Hahn, B. H., & Ochman, H. (2013). SIV-induced instability of the chimpanzee gut microbiome. Cell host & microbe, 14(3), 340-345.

Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G., & Bay, L. K. (2019). Nutrient Availability and Metabolism Affect the Stability of Coral-Symbiodiniaceae Symbioses. Trends Microbiol, 27(8), 678-689.

Morrow, K. M., Pankey, M. S., & Lesser, M. P. (2022). Community structure of coral microbiomes is dependent on host morphology. Microbiome, 10(1), 113.

Muscatine, L., & Porter, J. W. (1977). Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience, 27(7), 454-460.

Neave, M. J., Michell, C. T., Apprill, A., & Voolstra, C. R. (2017). Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Scientific reports, 7(1), 40579.

Neave, M. J., Rachmawati, R., Xun, L., Michell, C. T., Bourne, D. G., Apprill, A., & Voolstra, C. R. (2017). Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. The ISME journal, 11(1), 186-200.

Nielsen, D. A., Petrou, K., & Gates, R. D. (2018). Coral bleaching from a single cell perspective. The ISME journal, 12(6), 1558-1567.

Nitschke, M. R., Rosset, S. L., Oakley, C. A., Gardner, S. G., Camp, E. F., Suggett, D. J., & Davy, S. K. (2022). The diversity and ecology of Symbiodiniaceae: A traits-based review. Advances in Marine Biology, 92, 55-127.

Norström, A. V., Nyström, M., Lokrantz, J., & Folke, C. (2009). Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Marine Ecology Progress Series, 376, 295-306.

O’Brien, P. A., Tan, S., Yang, C., Frade, P. R., Andreakis, N., Smith, H. A., Miller, D. J., Webster, N. S., Zhang, G., & Bourne, D. G. (2020). Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. The ISME journal, 14(9), 2211-2222.

Ochsenkühn, M. A., Mohamed, A. R., Haydon, T. D., Coe, L. S., Abrego, D., & Amin, S. A. (2023). Endozoicomonas provides corals with steroid hormones during thermal stress. bioRxiv, 2023.2009. 2019.558257.

Ortiz, J. C., González‐Rivero, M., & Mumby, P. J. (2013). Can a thermally tolerant symbiont improve the future of C aribbean coral reefs? Global change biology, 19(1), 273-281.

Oswald, F., Schmitt, F., Leutenegger, A., Ivanchenko, S., D'Angelo, C., Salih, A., Maslakova, S., Bulina, M., Schirmbeck, R., & Nienhaus, G. (2007). Contributions of host and symbiont pigments to the coloration of reef corals. The FEBS journal, 274(4), 1102-1122.

Pernice, M., Meibom, A., Van Den Heuvel, A., Kopp, C., Domart-Coulon, I., Hoegh-Guldberg, O., & Dove, S. (2012). A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. The ISME journal, 6(7), 1314-1324.

Perry, C. T., & Morgan, K. M. (2017). Bleaching drives collapse in reef carbonate budgets and reef growth potential on southern Maldives reefs. Scientific reports, 7(1), 40581.

Pochon, X., Putnam, H. M., & Gates, R. D. (2014). Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ, 2, e394.

Pogoreutz, C., Oakley, C. A., Rädecker, N., Cárdenas, A., Perna, G., Xiang, N., Peng, L., Davy, S. K., Ngugi, D. K., & Voolstra, C. R. (2022). Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle. The ISME journal, 16(8), 1883-1895.

Pollock, F. J., McMinds, R., Smith, S., Bourne, D. G., Willis, B. L., Medina, M., Thurber, R. V., & Zaneveld, J. R. (2018). Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nature communications, 9(1), 4921.

Pootakham, W., Mhuantong, W., Putchim, L., Yoocha, T., Sonthirod, C., Kongkachana, W., Sangsrakru, D., Naktang, C., Jomchai, N., Thongtham, N., & Tangphatsornruang, S. (2018). Dynamics of coral-associated microbiomes during a thermal bleaching event. Microbiologyopen, 7(5), e00604.

Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Jomchai, N., Sonthirod, C., Naktang, C., Kongkachana, W., & Tangphatsornruang, S. (2019). Heat‐induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in Porites lutea. Microbiologyopen, 8(12), e935.

Quigley, K. M., Willis, B. L., & Kenkel, C. D. (2019). Transgenerational inheritance of shuffled symbiont communities in the coral Montipora digitata. Scientific reports, 9(1), 13328.

Radecker, N., Pogoreutz, C., Gegner, H. M., Cardenas, A., Roth, F., Bougoure, J., Guagliardo, P., Wild, C., Pernice, M., Raina, J. B., Meibom, A., & Voolstra, C. R. (2021). Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci U S A, 118(5).

Raina, J.-B., Tapiolas, D., Motti, C. A., Foret, S., Seemann, T., Tebben, J., Willis, B. L., & Bourne, D. G. (2016). Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ, 4, e2275.

Reaka-Kudla, M. L. (1997). The global biodiversity of coral reefs: a comparison with rain forests. Biodiversity II: Understanding and protecting our biological resources, 2, 551.

Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Marine Ecology Progress Series, 322, 1-14.

Robbins, S. J., Singleton, C. M., Chan, C. X., Messer, L. F., Geers, A. U., Ying, H., Baker, A., Bell, S. C., Morrow, K. M., & Ragan, M. A. (2019). A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nature microbiology, 4(12), 2090-2100.

Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series, 243, 1-10.

Rosenberg, E., & Falkovitz, L. (2004). The Vibrio shiloi/Oculina patagonica model system of coral bleaching. Annu. Rev. Microbiol., 58(1), 143-159.

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., & Zilber-Rosenberg, I. (2007). The role of microorganisms in coral health, disease and evolution. Nature Reviews Microbiology, 5(5), 355-362.

Rosenberg, E., & Loya, Y. (2013). Coral Health and Disease. Springer Berlin Heidelberg.

Rutterford, L. A., Simpson, S. D., Jennings, S., Johnson, M. P., Blanchard, J. L., Schön, P.-J., Sims, D. W., Tinker, J., & Genner, M. J. (2015). Future fish distributions constrained by depth in warming seas. Nature Climate Change, 5(6), 569-573.

Sampayo, E., Ridgway, T., Bongaerts, P., & Hoegh-Guldberg, O. (2008). Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proceedings of the National Academy of Sciences, 105(30), 10444-10449.

Santoro, E. P., Borges, R. M., Espinoza, J. L., Freire, M., Messias, C. S., Villela, H. D., Pereira, L. M., Vilela, C. L., Rosado, J. G., & Cardoso, P. M. (2021). Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Science Advances, 7(33), eabg3088.

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671-675.

Shashar, N., Cohen, Y., Loya, Y., & Sar, N. (1994). Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Marine Ecology Progress Series, 259-264.

Shiu, J.-H., Ding, J.-Y., Tseng, C.-H., Lou, S.-P., Mezaki, T., Wu, Y.-T., Wang, H.-I., & Tang, S.-L. (2018). A newly designed primer revealed high phylogenetic diversity of Endozoicomonas in coral reefs. Microbes and environments, 33(2), 172-185.

Shnit-Orland, M., & Kushmaro, A. (2009). Coral mucus-associated bacteria: a possible first line of defense. FEMS microbiology ecology, 67(3), 371-380.

Siebeck, U., Marshall, N., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25, 453-460.

Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global change biology, 21(1), 236-249.

Skirving, W., Marsh, B., De La Cour, J., Liu, G., Harris, A., Maturi, E., Geiger, E., & Eakin, C. M. (2020). CoralTemp and the Coral Reef Watch Coral Bleaching Heat Stress Product Suite Version 3.1. Remote Sensing, 12(23).

Sonnenschein, E. C., Nielsen, K. F., D’Alvise, P., Porsby, C. H., Melchiorsen, J., Heilmann, J., Kalatzis, P. G., López-Pérez, M., Bunk, B., & Spröer, C. (2017). Global occurrence and heterogeneity of the Roseobacter-clade species Ruegeria mobilis. The ISME journal, 11(2), 569-583.

Stanley, G. D., Jr. (2006). Ecology. Photosymbiosis and the evolution of modern coral reefs. Science, 312(5775), 857-858.

Stat, M., Morris, E., & Gates, R. D. (2008). Functional diversity in coral–dinoflagellate symbiosis. Proceedings of the National Academy of Sciences, 105(27), 9256-9261.

Strong, A. E., Liu, G., Meyer, J., Hendee, J. C., & Sasko, D. (2004). Coral reef watch 2002. Bulletin of Marine Science, 75(2), 259-268.

Strychar, K. B., Coates, M., Sammarco, P. W., Piva, T. J., & Scott, P. T. (2005). Loss of Symbiodinium from bleached soft corals Sarcophyton ehrenbergi, Sinularia sp. and Xenia sp. Journal of Experimental Marine Biology and Ecology, 320(2), 159-177.

Sun, F., Yang, H., Shi, Q., & Wang, G. (2022). Changes in coral bacterial communities during a natural bleaching event linked to El Niño in the South China Sea. Regional Studies in Marine Science, 53, 102383.

Sweet, M. J., & Bulling, M. T. (2017). On the importance of the microbiome and pathobiome in coral health and disease. Frontiers in Marine Science, 4, 9.

Sweet, M. J., Croquer, A., & Bythell, J. C. (2014). Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proceedings of the Royal Society B: Biological Sciences, 281(1788), 20140094.

Tandon, K., Lu, C.-Y., Chiang, P.-W., Wada, N., Yang, S.-H., Chan, Y.-F., Chen, P.-Y., Chang, H.-Y., Chiou, Y.-J., & Chou, M.-S. (2020). Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). The ISME journal, 14(5), 1290-1303.

TD, A., & K, W. (2011). Defining the tipping point. A complex cellular life/death balance in corals in response to stress. Scientific reports, 1(1), 160.

Thurber, R. V., Willner‐Hall, D., Rodriguez‐Mueller, B., Desnues, C., Edwards, R. A., Angly, F., Dinsdale, E., Kelly, L., & Rohwer, F. (2009). Metagenomic analysis of stressed coral holobionts. Environmental microbiology, 11(8), 2148-2163.

Tignat-Perrier, R., van de Water, J. A., Guillemain, D., Aurelle, D., Allemand, D., & Ferrier-Pagès, C. (2022). The effect of thermal stress on the physiology and bacterial communities of two key Mediterranean gorgonians. Applied and Environmental Microbiology, 88(6), e02340-02321.

Tolleter, D., Seneca, F. O., DeNofrio, J. C., Krediet, C. J., Palumbi, S. R., Pringle, J. R., & Grossman, A. R. (2013). Coral bleaching independent of photosynthetic activity. Current Biology, 23(18), 1782-1786.

Toren, A., Landau, L., Kushmaro, A., Loya, Y., & Rosenberg, E. (1998). Effect of temperature on adhesion of Vibrio strain AK-1 to Oculina patagonica and on coral bleaching. Applied and Environmental Microbiology, 64(4), 1379-1384.

Tout, J., Siboni, N., Messer, L. F., Garren, M., Stocker, R., Webster, N. S., Ralph, P. J., & Seymour, J. R. (2015). Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Frontiers in microbiology, 6, 432.

Tracy, A. M., Koren, O., Douglas, N., Weil, E., & Harvell, C. D. (2015). Persistent shifts in C aribbean coral microbiota are linked to the 2010 warm thermal anomaly. Environmental microbiology reports, 7(3), 471-479.

Ushijima, B., Smith, A., Aeby, G. S., & Callahan, S. M. (2012). Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata.

van de Water, J., Allemand, D., & Ferrier-Pages, C. (2018). Host-microbe interactions in octocoral holobionts - recent advances and perspectives. Microbiome, 6(1), 64.

van der Voort, M., Kempenaar, M., van Driel, M., Raaijmakers, J. M., & Mendes, R. (2016). Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 19(4), 375-382.

Van Oppen, M., Mieog, J. C., Sanchez, C., & Fabricius, K. (2005). Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Molecular Ecology, 14(8), 2403-2417.

Vercelloni, J., Liquet, B., Kennedy, E. V., Gonzalez-Rivero, M., Caley, M. J., Peterson, E. E., Puotinen, M., Hoegh-Guldberg, O., & Mengersen, K. (2020). Forecasting intensifying disturbance effects on coral reefs. Glob Chang Biol, 26(5), 2785-2797.

Vezzulli, L., Pezzati, E., Huete-Stauffer, C., Pruzzo, C., & Cerrano, C. (2013). 16SrDNA pyrosequencing of the Mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS One, 8(6), e67745.

Voolstra, C. R., Suggett, D. J., Peixoto, R. S., Parkinson, J. E., Quigley, K. M., Silveira, C. B., Sweet, M., Muller, E. M., Barshis, D. J., Bourne, D. G., & Aranda, M. (2021). Extending the natural adaptive capacity of coral holobionts. Nature Reviews Earth & Environment, 2(11), 747-762.

Voolstra, C. R., & Ziegler, M. (2020). Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays, 42(7), 2000004.

Wada, N., Hsu, M.-T., Tandon, K., Hsiao, S. S.-Y., Chen, H.-J., Chen, Y.-H., Chiang, P.-W., Yu, S.-P., Lu, C.-Y., & Chiou, Y.-J. (2022). High-resolution spatial and genomic characterization of coral-associated microbial aggregates in the coral Stylophora pistillata. Science Advances, 8(27), eabo2431.

Wakefield, T. S., & Kempf, S. C. (2001). Development of host-and symbiont-specific monoclonal antibodies and confirmation of the origin of the symbiosome membrane in a cnidarian–dinoflagellate symbiosis. The Biological Bulletin, 200(2), 127-143.

Warner, M., Fitt, W., & Schmidt, G. (1996). The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant, Cell & Environment, 19(3), 291-299.

Weil, E., Smith, G., & Gil-Agudelo, D. L. (2006). Status and progress in coral reef disease research. Dis Aquat Organ, 69(1), 1-7.

Weis, V. M. (2008). Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol, 211(Pt 19), 3059-3066.

Welsh, R. M., Rosales, S. M., Zaneveld, J. R., Payet, J. P., McMinds, R., Hubbs, S. L., & Thurber, R. L. V. (2015). Alien vs. predator: pathogens open niche space for opportunists, unless controlled by predators (2167-9843).

Wong, J.-W. M., Liu, A.-C., Lin, H.-T., Shinzato, C., Yang, S.-Y., & Yang, S.-H. (2025). An Improved RNA Extraction Method for Octocorals and Its Application in Transcriptome Analysis of Dark-Induced Bleaching Octocoral. Marine Biotechnology, 27(1), 8.

Wooldridge, S. A. (2014). Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs, 33(1), 15-27.

Xiang, T., Lehnert, E., Jinkerson, R. E., Clowez, S., Kim, R. G., DeNofrio, J. C., Pringle, J. R., & Grossman, A. R. (2020). Symbiont population control by host-symbiont metabolic interaction in Symbiodiniaceae-cnidarian associations. Nat Commun, 11(1), 108.

Xu, L., Yu, K., Li, S., Liu, G., Tao, S., Shi, Q., Chen, T., & Zhang, H. (2017). Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea. Coral Reefs, 36, 477-487.

Xu, M., Cheng, K., Xiao, B., Tong, M., Cai, Z., Jong, M.-C., Chen, G., & Zhou, J. (2023). Bacterial communities vary from different scleractinian coral species and between bleached and non-bleached corals. Microbiology Spectrum, 11(3), e04910-04922.

Yang, S.-H., Chiang, P.-W., Hsu, T.-C., Kao, S.-J., & Tang, S.-L. (2016). Bacterial community associated with organs of shallow hydrothermal vent crab Xenograpsus testudinatus near Kuishan Island, Taiwan. PLoS One, 11(3), e0150597.

Yang, S.-H., Tseng, C.-H., Lo, H.-P., Chiang, P.-W., Chen, H.-J., Shiu, J.-H., Lai, H.-C., Tandon, K., Isomura, N., & Mezaki, T. (2020). Locality effect of coral-associated bacterial community in the Kuroshio Current from Taiwan to Japan. Frontiers in Ecology and Evolution, 8, 569107.

Zaneveld, J. R., McMinds, R., & Vega Thurber, R. (2017). Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nature microbiology, 2(9), 1-8.

Zawada, K. J., Madin, J. S., Baird, A. H., Bridge, T. C., & Dornelas, M. (2019). Morphological traits can track coral reef responses to the Anthropocene. Functional Ecology, 33(6), 962-975.

Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R., & Voolstra, C. R. (2017). Bacterial community dynamics are linked to patterns of coral heat tolerance. Nature communications, 8(1), 14213.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99454-
dc.description.abstract隨著氣候變遷加劇,海洋熱浪日益頻繁,對珊瑚礁生態系造成衝擊。過去研究多集中於石珊瑚,近年研究指出,軟珊瑚在白化事件中可能具有更高的耐受性,甚至可能取代石珊瑚成為優勢族群。過往於野外調查發現,四屬常見軟珊瑚,Sarcophyton、Lobophytum、Sclerophytum 以及 Litophyton 表現出不同的敏感性,其中以Litophyton 最為敏感,Sarcophyton 則相對穩定。珊瑚的共生體組成,特別是共生藻與共生細菌,可能與此密切相關。本研究以此為基礎,針對四屬軟珊瑚進行熱壓力水缸實驗,結合生理指標(顏色分數與光合作用效率)、共生藻 ITS2 與細菌 16S rRNA V6–V8 區域之高通量定序資料,評估其在熱處理下的敏感性差異,並進一步探討共生體群落與宿主反應之潛在關聯。結果顯示,四屬軟珊瑚在共生藻與細菌群落組成上皆呈現明顯的物種特異性,且與宿主間的親緣關係趨於一致。整體而言,Litophyton 為對熱壓力反應最敏感,在宿主生理、共生藻量及細菌群落組成皆出現明顯變動,突顯其共生體系統在熱擾動下的不穩定性,有助於理解珊瑚共生體的熱反應機制。相較之下,其餘三屬則表現出較高的穩定性與耐受性,此差異可能與物種型態特徵有關。核心菌群分析指出,Ruegeria 屬細菌穩定存在於 Sarcophyton、Lobophytum 與 Sclerophytum 中,卻在 Litophyton 中幾乎完全缺失。Ruegeria 為已知具抗氧化與抗病原潛力之潛在珊瑚益生菌,其缺乏可能削弱 Litophyton 面對熱壓力時的微生物緩衝能力,亦可能與其微生物共生關係的演化歷程有關。另一方面,Litophyton 中的Endozoicomonas 可區分為兩個類群,且這兩群在熱壓力反應下展現出不同的動態變化,顯示其內部可能具有演化上的分化與功能上的異質性。zh_TW
dc.description.abstractAs climate change intensifies, marine heatwaves are becoming increasingly frequent, posing serious threats to coral reef ecosystems. While previous studies have largely focused on hard corals, recent research suggests that soft corals may exhibit greater tolerance to bleaching events and could potentially replace hard corals as dominant reef builders. Field surveys have revealed varying thermal sensitivities among four common genera of soft corals, Sarcophyton, Lobophytum, Sclerophytum, and Litophyton, with Litophyton being the most sensitive and Sarcophyton relatively stable. The composition of coral symbionts, particularly Symbiodiniaceae and associated bacteria, may be closely related to this variation. Based on these observations, this study conducted tank experiments on four genera of soft corals under heat stress. By integrating physiological indicators (color score and photosynthetic efficiency) with high-throughput sequencing data of the Symbiodiniaceae ITS2 region and the bacterial 16S rRNA V6–V8 region, we assessed their sensitivity to thermal stress and further explored potential associations between symbiotic community dynamics and host responses. Results showed strong species-specific patterns in both Symbiodiniaceae and bacterial community composition, largely consistent with host phylogeny. Litophyton exhibited the strongest response to thermal stress, with pronounced changes in host physiology, symbiont abundance, and bacterial community structure, indicating instability of its symbiotic system under thermal disturbance. In contrast, the other three genera showed higher levels of stability and tolerance, possibly associated with morphological traits.Core microbiome analysis revealed that Ruegeria, a genus known for its antioxidant and antimicrobial potential, was consistently present in Sarcophyton, Lobophytum, and Sclerophytum, but nearly absent in Litophyton. Its absence may reduce microbial buffering capacity under stress and reflect evolutionary differences in symbiotic partnerships. Notably, Endozoicomonas associated with Litophyton can be categorized into two groups that respond differently to thermal stress, indicating possible evolutionary divergence and functional heterogeneity within the genus.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:20:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:20:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝辭 ii
摘要 iii
Abstract iv
目次 vi
圖次 xi
表次 xiv
壹、緒論 1
1.1 軟珊瑚與珊瑚礁生態系 1
1.1.1 珊瑚礁生態系 1
1.1.2 珊瑚分類與軟珊瑚簡介 1
1.1.3 軟珊瑚分布與適應能力 2
1.1.4 常見及目標珊瑚簡介 3
1.1.5 軟珊瑚逐漸取代石珊瑚 4
1.2 珊瑚共生體 5
1.2.1 珊瑚共生體 5
1.2.2 珊瑚共生藻 5
1.2.2.1 功能與生態角色 5
1.2.2.2 共生藻分類架構與屬級特性簡介 6
1.2.3 珊瑚共棲菌 8
1.2.3.1 功能與生態角色 8
1.2.3.2 常見分類群與潛在功能 8
1.2.3.3 共棲菌群的宿主與地理專一性 9
1.3 珊瑚共生體與熱壓力 10
1.3.1 熱壓力與珊瑚白化 10
1.3.1.1 氣候變遷與珊瑚白化背景 10
1.3.1.2 共生關係的調控與失衡機制 10
1.3.1.3 監測方法與DHW指標 11
1.3.2 珊瑚宿主與熱壓力 12
1.3.2.1 白化敏感性與珊瑚形態的關聯 12
1.3.2.2 白化事件對不同軟珊瑚與軟珊瑚群落組成的影響 13
1.3.3 珊瑚共生藻與熱壓力 14
1.3.3.1 共生藻組成與珊瑚耐熱性的關聯 14
1.3.3.2 共生藻轉換與不同藻屬生理表現的比較 15
1.3.4 珊瑚共棲菌與熱壓力 16
1.3.4.1 熱壓力對共棲細菌之組成與穩定性影響 16
1.3.4.2 微生物群落結構與優勢菌類群的改變 17
1.3.4.3 特定菌群反應 18
1.4 研究動機與目的 20
貳、材料方法: 21
2.1 樣本採集與實驗設計 21
2.1.1 研究地點與珊瑚採集 21
2.1.2 水缸實驗設計 21
2.1.3 珊瑚分割與水缸配置 22
2.1.4 珊瑚樣本採集與生理狀態評估實驗設計 23
2.2 珊瑚生理分析 24
2.2.1 熱壓力評估 24
2.2.2 顏色分數 25
2.2.3 最大光亮子產率 26
2.2.4 共生藻半定量 27
2.3 珊瑚共生體分析 28
2.3.1 核酸萃取 28
2.3.2 去氧核糖核酸萃取 29
2.3.3 聚合酶鏈鎖反應 29
2.3.3.1 物種鑑定 29
2.3.3.2 共棲菌群分析 30
2.3.3.3 共生藻群分析 31
2.3.4 純化 32
2.3.5 條碼序列及二次純化 32
2.3.6 擴增子混合、純化與次世代定序流程 33
2.3.7 共生體資料序列前處理 34
2.3.8 共生體資料分析 35
2.3.8.1 群落組成與多樣性分析 35
2.3.8.2 功能預測分析 36
2.3.8.3 核心菌群分析 37
參、結果 38
3.1 基於粒線體 COI 的物種鑑定與親緣關係探討 38
3.2 水缸實驗設計與珊瑚存活概況 38
3.3 熱壓力下之珊瑚生理反應 39
3.3.1 顏色分數變化 39
3.3.2 光合作用效率 40
3.4 珊瑚轉錄體分析 40
3.5 珊瑚共生藻群落分析 41
3.5.1 共生藻群落組成與物種間差異 41
3.5.2 共生藻 α 多樣性分析 42
3.5.3 熱壓力對共生藻組成的影響 42
3.5.4 共生藻數量之半定量分析 43
3.6 珊瑚共棲細菌群落分析 44
3.6.1 細菌群落組成與物種間差異 44
3.6.2 細菌 α 多樣性分析 45
3.6.3 熱壓力對細菌群落的影響 46
3.6.4 熱壓力下珊瑚優勢菌群之變化趨勢 47
3.6.5 共棲菌菌群功能預測分析 48
3.6.6 相對耐熱三屬珊瑚之共享核心共棲菌菌群分析 49
3.6.7 Ruegeria 屬細菌 50
3.6.8 Endozoicomonas 屬細菌 51
肆、討論 53
4.1 實驗設計與操作限制 53
4.2 共生體組成與宿主演化關係 54
4.3 不同軟珊瑚物種於熱壓力下之共生體組成變動反應 56
4.4 軟珊瑚形態特徵與熱敏感性的潛在關聯性 60
4.5 Litophyton 共生體特異性 61
4.6 四屬珊瑚之菌相組成變動 63
伍、結論 67
陸、圖與表 68
柒、參考文獻 122
附錄 138
-
dc.language.isozh_TW-
dc.subject軟珊瑚zh_TW
dc.subject熱壓力水缸實驗zh_TW
dc.subject珊瑚共棲菌zh_TW
dc.subject共生藻zh_TW
dc.subject光化學效率zh_TW
dc.subject顏色分數zh_TW
dc.subjectPhotochemical efficiencyen
dc.subjectSoft coralen
dc.subjectThermal stress tank experimenten
dc.subjectCoral-associated bacteriaen
dc.subjectCoral health charten
dc.subjectSymbiodiniaceaeen
dc.title四屬軟珊瑚於熱壓力下之共生體變動研究zh_TW
dc.titleHolobiont Shifts in Four Genera of Soft Corals Under Thermal Stressen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王亮鈞;林哲宏;楊松穎;塗子萱zh_TW
dc.contributor.oralexamcommitteeLiang-Chun Wang;Che-Hung Lin;Sung-Yin Yang;Tzu-Hsuan Tuen
dc.subject.keyword軟珊瑚,熱壓力水缸實驗,珊瑚共棲菌,共生藻,光化學效率,顏色分數,zh_TW
dc.subject.keywordSoft coral,Thermal stress tank experiment,Coral-associated bacteria,Symbiodiniaceae,Photochemical efficiency,Coral health chart,en
dc.relation.page172-
dc.identifier.doi10.6342/NTU202503177-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
dc.date.embargo-lift2027-08-01-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2027-08-01
46.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved