請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99453完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳林祈 | zh_TW |
| dc.contributor.advisor | Lin-Chi Chen | en |
| dc.contributor.author | 郭緯綸 | zh_TW |
| dc.contributor.author | Wei-Lun Kuo | en |
| dc.date.accessioned | 2025-09-10T16:20:08Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Ahmed, H. A., Yu-Xin, T., & Qi-Chang, Y. (2020). Optimal control of environmental conditions affecting lettuce plant growth in a controlled environment with artificial lighting: A review. South African Journal of Botany, 130, 75-89.
Amitrano, C., Arena, C., Rouphael, Y., De Pascale, S., & De Micco, V. (2019). Vapour pressure deficit: The hidden driver behind plant morphofunctional traits in controlled environments. Annals of Applied Biology, 175, 313-325. Amitrano, C., Rouphael, Y., De Pascale, S., & De Micco, V. (2021). Modulating Vapor Pressure Deficit in the Plant Micro-Environment May Enhance the Bioactive Value of Lettuce. Horticulturae, 7(2), 32. Bailey, B. J., Haggett, B. G. D., Hunter, A., Albery, W. J., & Svanberg, L. R. (1988). Monitoring Nutrient Film Solutions using Ion-selective Electrodes Journal of Agricultural Engineering Research, 40(2), 129-142. Ban, B., Lee, J., Ryu, D., Lee, M., & Eom, T. D. (2020, 21-23 Oct. 2020). Nutrient Solution Management System for Smart Farms and Plant Factory. 2020 International Conference on Information and Communication Technology Convergence (ICTC), Benlloch-González, M., Romera, J., Cristescu, S., Harren, F., Fournier, J. M., & Benlloch, M. (2010). K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants. Journal of Experimental Botany, 61(4), 1139-1145. Bhandal, I. S., & Malik, C. P. (1988). Potassium Estimation, Uptake, and Its Role in the Physiology and Metabolism of Flowering Plants. In G. H. Bourne, K. W. Jeon, & M. Friedlander (Eds.), International Review of Cytology (Vol. 110, pp. 205-254). Academic Press Bian, Z., Wang, Y., Zhang, X., Li, T., Grundy, S., Yang, Q., & Cheng, R. (2020). A Review of Environment Effects on Nitrate Accumulation in Leafy Vegetables Grown in Controlled Environments. Foods, 9(6), 732. Bian, Z. H., Yang, Q. C., & Liu, W. K. (2015). Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. J Sci Food Agric, 95(5), 869-877. Brunno da Silva Cerozi, & Fitzsimmons, K. (2016). The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology, 219, 778-781. Cakmak, I. (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168(4), 521-530. Cho, W.-J., Kim, H.-J., Jung, D.-H., Kim, D.-W., Ahn, T. I., & Son, J.-E. (2018). On-site ion monitoring system for precision hydroponic nutrient management. Computers and Electronics in Agriculture, 146, 51-58. Cho, W.-J., Kim, H.-j., Jung, D. H., Han, H.-J., & Cho, Y.-Y. (2019). Prediction of NO3, K, Ca, and Mg Ions in Hydroponic Solutions using Neural Network Model with an Array of Ion-Selective Electrodes 2019 ASABE Annual International Meeting, St. Joseph, MI. Cramer, G. R., Läuchli, A., & Epstein, E. (1986). Effects of NaCl and CaCl2 on Ion Activities in Complex Nutrient Solutions and Root Growth of Cotton. Plant Physiology, 81(3), 792-797. del Amor, F. M., & Marcelis, L. F. M. (2006). Differential effect of transpiration and Ca supply on growth and Ca concentration of tomato plants. Scientia Horticulturae, 111(1), 17-23. Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226(6), 1550-1566. Hadi, M. R., & Karimi, N. (2012). The role of calcium in plants' salt tolerance. Journal of Plant Nutrition, 35(13), 2037-2054. Huber, D. M., & Jones, J. B. (2013). The role of magnesium in plant disease. Plant and Soil 368(1), 73-85. Hutchinson, G. K., Ames, Z. R., Nemali, K., & Ferrarezi, R. S. (2025). Arugula and Lettuce Responses to Greenhouse Hydroponic Systems: An Analysis of Yield and Resource Use Efficiencies. HortScience, 60(4), 601-612. Inoue, T., Sunaga, M., Ito, M., Yuchen, Q., Matsushima, Y., Sakoda, K., & Yamori, W. (2021). Minimizing VPD Fluctuations Maintains Higher Stomatal Conductance and Photosynthesis, Resulting in Improvement of Plant Growth in Lettuce. Frontiers in Plant Science, 12. Jiao, X., Yu, X., Ding, J., Du, Q., Zhang, J., Song, X., Bai, P., & Li, J. (2022). Effects of rising VPD on the nutrient uptake, water status and photosynthetic system of tomato plants at different nitrogen applications under low temperature. Scientia Horticulturae, 304, 111335. Jiao, X., Yu, X., Yuan, Y., & Li, J. (2022). Effects of vapor pressure deficit combined with different N levels on tomato seedling anatomy, photosynthetic performance, and N uptake. Plant Science, 324, 111448. Jung, D. H., Kim, H.-j., Choi, G.-L., & Kang, C.-I. (2014). Closed Lettuce Cultivation System Using an Array of Ion-Selective Electrodes 2014 Montreal, Quebec Canada July 13 – July 16, 2014, St. Joseph, MI. Karthika, K. S., Rashmi, I., & Parvathi, M. S. (2018). Biological Functions, Uptake and Transport of Essential Nutrients in Relation to Plant Growth. In M. F. Hasanuzzaman, M.; Oku, H.; Nahar, K.; Hawrylak-Nowak, B. (Ed.), Plant Nutrients and Abiotic Stress Tolerance. Kim, H.-J., Kim, D.-W., Kim, W. K., Cho, W.-J., & Kang, C. I. (2017). PVC membrane-based portable ion analyzer for hydroponic and water monitoring. Computers and Electronics in Agriculture, 140, 374-385. Koverda, P. (2020). VPD Charts in Fahrenheit and Celsius With Leaf Temperature https://pulsegrow.com/blogs/learn/vpd-charts-in-fahrenheit-and-celsius-with-leaf-temperature?srsltid=AfmBOoqotu0JUnQoW6mDdxaQYnPL6rGhu_chmPmshTQpf0RGLK7uPM2q Kugelstadt, T. (2009). Chapter 20 - Active Filter Design Techniques. In R. Mancini & B. Carter (Eds.), Op Amps for Everyone (Third Edition) (pp. 365-438). Newnes Lara, C., & Guerrero, M. G. (1989). The Photosynthetic Assimilation of Nitrate and Its Interactions with CO2 Fixation. In J. Barber & R. Malkin (Eds.), Techniques and New Developments in Photosynthesis Research (pp. 393-411). Springer US Lerner, B. L., Strassburger, A. S., & Schäfer, G. (2024). Cultivation of arugula microgreens: seed densities and electrical conductivity of nutrient solution in two growing seasons. Bragantia, 83. Leuschner, C. (2002). Air humidity as an ecological factor for woodland herbs: leaf water status, nutrient uptake, leaf anatomy, and productivity of eight species grown at low or high vpd levels. Flora - Morphology, Distribution, Functional Ecology of Plants, 197(4), 262-274. Li, Q., Wei, M., Li, Y., Feng, G., Wang, Y., Li, S., & Zhang, D. (2019). Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agricultural Water Management, 226, 105818. Liu, J., Li, S., Yang, X., Wei, Z., & Liu, F. (2022). Effects of soil drought and vapour pressure deficit (VPD) on water use efficiency of tomato plants with contrasting endogenous ABA levels. Scientia Horticulturae, 295, 110797. López, J., Way, D. A., & Sadok, W. (2021). Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Global Change Biology, 27(9), 1704-1720. Lu, T., & Neng, W. (2010, 20-22 Aug. 2010). Future internet: The Internet of Things. 2010 3rd International Conference on Advanced Computer Theory and Engineering(ICACTE), Mengel, K., & Arneke, W.-W. (1982). Effect of potassium on the water potential, the pressure potential, the osmotic potential and cell elongation in leaves of Phaseolus vulgaris. Physiologia Plantarum, 54(4), 402-408. Mengel, K., Viro, M., & Hehl, G. (1976). Effect of potassium on uptake and incorporation of ammonium-nitrogen of rice plants. Plant and Soil 44(3), 547-558. Meselmani, M. A. A. (2022). Recent Research and Advances in Soilless Culture. In S. A. Metin Turan, Ertan Yildirim and Adem Güneş (Ed.), Nutrient Solution for Hydroponics. Morimoto, T., Nishina, H., Hashimoto, Y., & Watake, H. (1992). SENSOR FOR ION-CONTROL - AN APPROACH TO CONTROL OF NUTRIENT SOLUTION IN HYDROPONICS. International Society for Horticultural Science (ISHS), Leuven, Belgium, Nelson, P. V., Kowalczyk, W., Niedziela, C. E., Mingis, N. C., & Swallow, W. H. (2003). Effects of relative humidity, calcium supply, and forcing season on tulip calcium status during hydroponic forcing. Scientia Horticulturae, 98(4), 409-422. Niu, G., Kozai, T., & Sabeh, N. (2020). Chapter 11 - Physical environmental factors and their properties. In T. Kozai, G. Niu, & M. Takagaki (Eds.), Plant Factory (Second Edition) (pp. 185-195). Academic Press Noh, H., & Lee, J. (2022). The Effect of Vapor Pressure Deficit Regulation on the Growth of Tomato Plants Grown in Different Planting Environments. Applied Sciences, 12(7). Novick, K. A., Ficklin, D. L., Grossiord, C., Konings, A. G., Martínez-Vilalta, J., Sadok, W., Trugman, A. T., Williams, A. P., Wright, A. J., Abatzoglou, J. T., Dannenberg, M. P., Gentine, P., Guan, K., Johnston, M. R., Lowman, L. E. L., Moore, D. J. P., & McDowell, N. G. (2024). The impacts of rising vapour pressure deficit in natural and managed ecosystems. Plant, Cell & Environment, 47(9), 3561-3589. Ono, E., Jordan, K. A., & Cuello, J. L. (2001). Dynamic Monitoring of Nutrient Species In Hydroponic Solutions For Advanced Life Support Pier, P. A., & Berkowitz, G. A. (1987). Modulation of Water Stress Effects on Photosynthesis by Altered Leaf K+. Plant Physiology, 85(3), 655-661. Poorter, H., & Nagel, O. (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595-607. Pujos, A., & Morard, P. (1997). Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant and Soil, 189, 189-196. Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., & Cesco, S. (2019). Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective [Review]. Frontiers in Plant Science, 10. Segal, A. W. (2016). NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol, 6(5). Shamshiri, R., Man, H. C., Zakaria, A. J., Beveren, P. J. M. v., Ismail, W. I. W., & Ahmad, D. (2017). Membership function model for defining optimality of vapor pressure deficit in closed-field cultivation of tomato. Shamshiri, R. R., Jones, J. W., Thorp, K. R., Ahmad, D., Man, H. C., & Taheri, S. (2018). Review of optimum temperature, humidity, and vapour pressure deficit for microclimate evaluation and control in greenhouse cultivation of tomato: a review. International Agrophysics, 32, 287 - 302. Shibata, T., Iwao, K., & Takano, T. (1995). EFFECT OF VERTICAL AIR FLOWING ON LETTUCE GROWING IN A PLANT FACTORY. International Society for Horticultural Science (ISHS), Leuven, Belgium, Shrestha, R. K., Engel, K., & Becker, M. (2015). Effect of transpiration on iron uptake and translocation in lowland rice. Journal of Plant Nutrition and Soil Science, 178(3), 365-369. Shrestha, R. K., Lei, P., Shi, D., Hashimi, M. H., Wang, S., Xie, D., Ni, J., & Ni, C. (2021). Response of maize (Zea mays L.) towards vapor pressure deficit. Environmental and Experimental Botany, 181, 104293. Silberbush, M., & Ben-Asher, J. (1989). The effect of NaCl concentration on NO3−, K+ and orthophosphate-P influx to peanut roots. Scientia Horticulturae, 39(4), 279-287. Silva, P. H. S., Reis, I. D. S., Nascimento, C. S., Nascimento, C. S., & Cecílio Filho, A. B. (2021). Characterization of growth and visual symptoms of nitrogen, potassium and magnesium deficiencies in arugula. Emirates Journal of Food and Agriculture, 33(7), 575-582. Tuan, V. N., Dinh, T. D., Zhang, W., Khattak, A. M., Le, A. T., Saeed, I. A., Gao, W., & Wang, M. (2021). A smart diagnostic tool based on deep kernel learning for on-site determination of phosphate, calcium, and magnesium concentration in a hydroponic system. RSC Advances, 11(19), 11177-11191. Vu, D. H., Stuerz, S., & Asch, F. (2020). Nutrient uptake and assimilation under varying day and night root zone temperatures in lowland rice. Journal of Plant Nutrition and Soil Science, 183(5), 602-614. Wdowiak, A., Podgórska, A., & Szal, B. (2024). Calcium in plants: An important element of cell physiology and structure, signaling, and stress responses. Acta Physiologiae Plantarum, 46(12), 108. Wu, Y.-M., Liu, S.-Y., Shi, B.-Y., Peng, J.-Y., Kao, Z.-W., Chen, Y.-Y., Hsieh, T.-Y., Chung, H.-Y., Lin, C.-Y., Fang, W., & Chen, L.-C. (2023). IoT-interfaced solid-contact ion-selective electrodes for cyber-monitoring of element- specific nutrient information in hydroponics. Computers and Electronics in Agriculture, 214, 108266. Wu, Y.-M., Liu, S.-Y., Shi, B.-Y., Peng, J.-Y., Kao, Z.-W., Chung, H.-Y., Lin, C.-Y., Fang, W., & Chen, L.-C. (2024). Field Study Correlating Nutrient Absorption and Transpiration in Lettuce Hydroponics Using an IoT-Interfaced Solid-State Ion Sensor Array. IEEE Sensors Letters, 8(6), 1-4. Yamazaki, H., Tokugawa, R., Osanai, M., Torii, T., Mine, Y., Takayama, S., Higuchi, T., & Obata, E. (2005). Evaluation of the Properties of a Portable Ion Analyzer for Hydroponic Nutrient Solutions. Environment Control in Biology, 43(3), 227-234. Yang, H., Gu, X.-t., Ding, M.-q., Lu, W.-p., & Lu, D.-l. (2020). Weakened carbon and nitrogen metabolisms under post-silking heat stress reduce the yield and dry matter accumulation in waxy maize. Journal of Integrative Agriculture, 19(1), 78-88. Yang, T., Samarakoon, U., Altland, J., & Ling, P. (2021). Photosynthesis, Biomass Production, Nutritional Quality, and Flavor-Related Phytochemical Properties of Hydroponic-Grown Arugula (Eruca sativa Mill.) ‘Standard’ under Different Electrical Conductivities of Nutrient Solution. Agronomy, 11(7). Yu, X., Niu, L., Zhang, Y., & Li, J. (2024). Effects of Vapor Pressure Deficit Changes at Different Growth Periods on Crop Water Productivity, Yield, Quality and Calcium Absorptionin Tomatoes. Yield, Quality and Calcium Absorptionin Tomatoes. Yu, X., Zhang, Y., Zhao, X., & Li, J. (2023). Systemic effects of the vapor pressure deficit on the physiology and productivity of protected vegetables. Vegetable Research, 3(1). Yu, X., Zhao, M., Wang, X., Jiao, X., Song, X., & Li, J. (2022). Reducing vapor pressure deficit improves calcium absorption by optimizing plant structure, stomatal morphology, and aquaporins in tomatoes. Environmental and Experimental Botany, 195, 104786. Zhang, J., Ding, J., Ibrahim, M., Jiao, X., Song, X., Bai, P., & Li, J. (2021). Effects of the interaction between vapor-pressure deficit and potassium on the photosynthesis system of tomato seedlings under low temperature. Scientia Horticulturae, 283, 110089. Zhao, D., Oosterhuis, D. M., & Bednarz, C. W. (2001). Influence of Potassium Deficiency on Photosynthesis, Chlorophyll Content, and Chloroplast Ultrastructure of Cotton Plants. Photosynthetica 39(1), 103-109. 呂奇翰。(2018)。調控聚(3,4-乙烯二氧噻吩)傳導層電鍍製程以提升固態式離子選擇電極長時間電位穩定性。碩士論文。台北市:國立臺灣大學。 施柏佑。(2023)。數位濾波處理於水耕栽培即時離子感測之研究。碩士論文。台北市:國立臺灣大學。 張家豪。(2015)。全固態式陰離子網印選擇電極製備與養液元素感測應用之研究。碩士論文。台北市:國立臺灣大學。 莊帝捷。(2024)。固態接觸離子選擇電極感測性能衰退與改進策略之研究。台北市:國立臺灣大學。 陳顗伊。(2021)。固態離子選擇電極陣列於水耕作物之營養素組成分析。碩士論文。台北市:國立臺灣大學。 黃聖丰。(2020)。以固態接觸式離子選擇電極陣列試片應用於葉菜汁液離子組成分析。碩士論文。台北市:國立臺灣大學。 潘慶育。(2017)。基於離子選擇電極之可攜式水耕巨量營養素感測系統。碩士論文。台北市:國立臺灣大學。 顏敬容。(2017)。固態離子選擇電極陣列試片製程及其應用於水耕栽培中營養離子感測之研究。碩士論文。台北市:國立臺灣大學。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99453 | - |
| dc.description.abstract | 目前水耕栽培產業普遍依據養液的導電度(Electrical Conductivity, EC)來進行養液管理,但單靠導電度無法確認養液中各種離子的濃度。若某些離子濃度不足或過高,不僅可能導致作物出現特定營養缺乏的生理性病害,也可能引發肥傷症狀。為解決此問題,本研究群先前開發出基於固態接觸式離子選擇電極的物聯網養液感測系統(IoT-based Nutrient Sensing System, IoNSS),能夠即時監測養液的離子濃度。然而在商用溫室測試中發現,IoNSS容易受環境雜訊干擾,使系統量測的離子濃度精確度較差。此外,戶外氣候變化也可能造成溫室內部溫濕度驟變,進而導致環境蒸氣壓差(Vapor Pressure Deficit, VPD)改變,間接影響養液中即時離子濃度的變化。透過實驗分析發現環境雜訊主要為60Hz及其諧波頻率,因此本研究首先對IoNSS進行改良。為降低離子選擇電極的電位飄移,將3種類比低通濾波器(RC濾波器、Sallen-Key濾波器與多重回授濾波器)整合至IoNSS中。結果顯示,Sallen-Key濾波器能有效平衡雜訊抑制及安定時間,並提高IoNSS量測濃度的精確度。後續將開發出的物聯網環境模擬系統(IoT-based Environment Simulation System, IoESS)結合IoNSS,設計在適中VPD(0.9 kPa)與高VPD(1.6 kPa)環境同時以低EC(1 mS/cm)及高EC(2.5 mS/cm)養液栽培水耕芝麻菜,並即時監測養液離子濃度變化,探討環境VPD與養液EC對養液濃度及芝麻菜(Eruca sativa)體內離子的影響。結果顯示,在低EC養液中栽培時,高VPD環境使後期養液NO3-濃度下降趨勢減緩,並造成芝麻菜體內NO3-增加。Ca2+吸收量雖未受抑制,但養液Ca2+濃度下降幅度減緩,甚至上升。養液K+濃度波動,容易使濃度突然上升,且芝麻菜K+含量下降,可能影響葉片水分調節,增加失衡風險。然而,若在高VPD環境中提高養液EC,反而降低K+、NO3-、Ca2+吸收量,表示異常環境下,過量提升養液濃度,不但無助離子吸收,反而提高肥傷風險。因此,透過本研究的系統,未來可整合即時離子濃度、環境參數等資訊,並導入人工智慧(Artificial Intelligence, AI)模型,建立一個即時診斷平台,可預測目前環境下預期的養液離子濃度趨勢並提前發出預警,提升作物品質及產量。 | zh_TW |
| dc.description.abstract | Currently, hydroponic cultivation industries commonly manage nutrient solutions based on electrical conductivity (EC). However, EC alone cannot accurately reflect the concentrations of individual ions in the solution. Deficiencies or excesses of specific ions may lead to physiological disorders caused by nutrient imbalances or fertilizer burn symptoms in crops. To address this issue, our research team previously developed an IoT-based Nutrient Sensing System (IoNSS) utilizing solid-contact ion-selective electrodes, enabling real-time monitoring of nutrient solution ion concentrations. However, field tests in commercial greenhouses revealed that the IoNSS is susceptible to environmental noise interference, resulting in reduced accuracy of ion concentration measurements. Additionally, sudden changes in outdoor weather can cause rapid fluctuations in temperature and humidity inside greenhouses, altering the Vapor Pressure Deficit (VPD) and indirectly affecting ion concentrations in the nutrient solution. Experiment analysis identified 60 Hz and its harmonic frequencies as the primary sources of noise. To mitigate this, the IoNSS was enhanced by integrating three types of analog low-pass filters (RC filter, Sallen-Key filter, and multiple feedback filter) to reduce the potential drift of ion-selective electrodes. Among them, the Sallen-Key filter effectively balanced noise suppression and settling time, improving the precision of ion concentration measurements. Subsequently, the developed IoNSS was integrated with an IoT-based Environment Simulation System (IoESS) to investigate the effects of environmental VPD and nutrient solution EC on ion concentrations in the solution and in hydroponically grown arugula (Eruca sativa). The experiment was conducted under moderate (0.9 kPa) and high (1.6 kPa) VPD conditions, using both low (1 mS/cm) and high (2.5 mS/cm) EC nutrient solutions. Results showed that under low EC conditions, high VPD slowed the decline of NO3- concentration in the nutrient solution during the later growth stage, leading to an increase in NO3- content within arugula. Although Ca2+ uptake was not inhibited, the decrease in Ca2+ concentration in the solution slowed or even reversed. K+ concentration in the solution fluctuated, occasionally spiking, while K+ content in the plants decreased, potentially impairing leaf water regulation and increasing the risk of imbalance. Conversely, increasing EC under high VPD conditions reduced the uptake of K+, NO3-, and Ca2+, suggesting that excessive nutrient supply in stressful environments not only fails to promote ion absorption but also elevates the risk of fertilizer burn. In the future, this system could be integrated with real-time ion and environmental data, combined with Artificial Intelligence (AI) models, to establish a real-time diagnostic platform. Such a platform could predict expected ion concentration trends under current conditions and issue early warnings, ultimately improving crop quality and yield. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:20:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:20:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致 謝 i
中文摘要 ii Abstract iv 目 次 vi 圖 次 xi 表 次 xv 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究架構 4 第二章 文獻探討 5 2.1 環境對於植物的生長影響 5 2.2 營養元素對植物栽培的影響 7 2.3 水耕養液營養離子間的拮抗作用 10 2.4 水耕養液pH值對離子吸收之影響 11 2.5 環境蒸氣壓差對植物離子吸收的影響 12 2.6 離子選擇電極系統於水耕養液的應用 19 2.7 物聯網養液感測系統歷年發展回顧 23 第三章 研究方法 27 3.1 實驗材料與儀器 27 3.1.1 實驗藥品 27 3.1.2 實驗儀器 30 3.1.3 實驗軟體 30 3.2 離子選擇電極製作 31 3.3 物聯網養液感測系統建置 33 3.3.1 系統架構 33 3.3.2 雜訊頻率分佈分析 38 3.3.3 低通類比濾波器 39 3.3.4 低通濾波器性能分析 46 3.4 物聯網環境模擬系統建置 48 3.4.1 環境模擬箱設計 48 3.4.2 系統架構 49 3.4.3 通訊方式 49 3.4.4 系統硬體與運行流程 50 3.4.5 物聯網系統架構 50 3.4.6 物聯網環境模擬系統性能分析 55 3.5 環境蒸氣壓差及養液導電度對水耕芝麻葉栽培養液之影響 58 3.5.1 芝麻菜栽培養液離子濃度變化分析 58 3.5.2 芝麻菜鮮重分析 58 3.5.3 芝麻菜葉片菜汁原液樣本製備 58 3.5.4 標準儀器驗證分析 58 3.5.5 不同環境下水耕芝麻菜離子吸收之影響 58 3.6 即時鉀離子濃度變化與環境蒸氣壓差關聯性分析 63 3.6.1 芝麻菜栽培養液離子濃度變化分析 63 3.6.2 鮮重分析 63 3.6.3 階段調整蒸氣壓差對水耕芝麻菜栽培養液之影響 63 第四章 結果與討論 67 4.1 環境雜訊抑制之研究 67 4.1.1 環境雜訊干擾頻譜分布 68 4.1.2 低通類比濾波器對雜訊干擾抑制之研究 70 4.1.3 小結 83 4.2 物聯網環境模擬系統性能分析 84 4.2.1 溫度控制性能 85 4.2.2 濕度控制性能 87 4.2.3 蒸氣壓差控制性能 89 4.2.4 光照強度和光譜分布 90 4.2.5 資料儲存與使用者介面 92 4.2.6 小結 93 4.3 環境蒸氣壓差與養液導電度影響芝麻菜離子吸收之研究 94 4.3.1 水分蒸發模擬實驗 98 4.3.2 高低蒸氣壓差與高低導電度的養液離子趨勢變化 99 4.3.3 水耕芝麻菜鮮重分析 104 4.3.4 小結 106 4.4 環境蒸氣壓差與養液導電度對芝麻菜硝酸與銨離子吸收之影響 107 4.4.1 硝酸根濃度標準儀器驗證分析 108 4.4.2 高蒸氣壓差環境下,提高養液導電度降低硝酸根吸收 111 4.4.3 葉片硝酸根含量分析 114 4.4.4 在低銨配方養液中,蒸氣壓差對芝麻菜銨離子吸收無顯著影響 116 4.4.5 小結 118 4.5 環境蒸氣壓差與養液導電度對芝麻菜鈣離子吸收之影響 119 4.5.1 提高養液中鈣離子濃度未必能提升吸收 120 4.5.2 葉片鈣離子含量分析 123 4.5.3 小結 125 4.6 環境蒸氣壓差與養液導電度對芝麻菜鉀離子吸收之影響 126 4.6.1 高溫、高蒸氣壓差環境,增加葉片水分失衡風險 127 4.6.2 高蒸氣壓差環境,高導電度養液鉀離子濃度快速增加 131 4.6.3 葉片鉀含量分析 134 4.6.4 小結 135 4.7 養液鉀離子即時濃度變化與環境蒸氣壓差之關聯性分析 136 4.7.1 水耕芝麻菜鮮重分析 136 4.7.2 水耕養液離子濃度整體變化趨勢分析 137 4.7.3 高蒸氣壓差環境,栽培後期養液硝酸根濃度下降減緩 140 4.7.4 環境突變至高蒸氣壓差後養液鈣離子濃度上升 143 4.7.5 低導電度養液中鉀離子濃度可作為芝麻菜對環境變異反應之指標 146 4.7.6 小結 150 第五章 結論與展望 151 5.1 結論 151 5.2 未來展望 152 參考文獻 153 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水耕栽培 | zh_TW |
| dc.subject | 物聯網 | zh_TW |
| dc.subject | 固態接觸式離子選擇電極 | zh_TW |
| dc.subject | 蒸氣壓差 | zh_TW |
| dc.subject | 低通濾波 | zh_TW |
| dc.subject | 即時監測養液離子濃度 | zh_TW |
| dc.subject | IoT | en |
| dc.subject | real-time monitoring of nutrient solution ion concentrations | en |
| dc.subject | low-pass filter | en |
| dc.subject | Vapor pressure deficit (VPD) | en |
| dc.subject | solid-contact ion-selective electrode (SCISE) | en |
| dc.subject | Hydroponic cultivation | en |
| dc.title | 物聯網即時離子濃度輪廓技術探討環境蒸氣壓差與養液導電度對芝麻菜水耕栽培之研究 | zh_TW |
| dc.title | Probing the effects of environmental VPD and solution EC on hydroponic arugula cultivation using an IoT real-time ion concentration profiling technique | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 方煒;鄭宗記;林其誼;鍾興穎 | zh_TW |
| dc.contributor.oralexamcommittee | Wei Fang;Tzong-Jih Cheng;Chi-Yi Lin;Hsin-Ying Chung | en |
| dc.subject.keyword | 水耕栽培,物聯網,固態接觸式離子選擇電極,蒸氣壓差,低通濾波,即時監測養液離子濃度, | zh_TW |
| dc.subject.keyword | Hydroponic cultivation,IoT,solid-contact ion-selective electrode (SCISE),Vapor pressure deficit (VPD),low-pass filter,real-time monitoring of nutrient solution ion concentrations, | en |
| dc.relation.page | 162 | - |
| dc.identifier.doi | 10.6342/NTU202502730 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-07-29 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
