Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99452
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳林祈zh_TW
dc.contributor.advisorLin-Chi Chenen
dc.contributor.author林海若zh_TW
dc.contributor.authorHai-Jo Linen
dc.date.accessioned2025-09-10T16:19:57Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-29-
dc.identifier.citation1. 何亭萱。2024。基於指叉狀電極阻抗量測之適體結合動力學與親和力分析研究。碩士論文。台北:國立台灣大學生物機電工程研究所。
2. 林佑承。2021。應用適體感測黏蛋白-1 SEA單元之最佳化研究。碩士論文。台北:國立台灣大學生物機電工程研究所。
3. 邱舒郁。2025。基於核酸適體探針之心肌鈣蛋白與D-二聚體免疫檢測探究。碩士論文。台北:國立台灣大學生物機電工程研究所。
4. 黃惟甄。2020。黏蛋白-1適體篩選與分析。碩士論文。台北:國立台灣大學生物機電工程研究所。
5. 楊登凱。2015。多效價適體篩選、設計與檢驗應用。博士論文。台北:國立台灣大學生物機電工程研究所。

6. António, M., et al., A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta, 2020. 214: p. 120868.
7. AYASS, M. A., Griko, N., LUBAG, A., & ABI MOSLEH, L. (2019, May 16). D-dimer-specific aptamers and methods of use in diagnostics, therapeutic and theranostic purposes - Google Patents.
8. Bansal, S.A., et al., Role of gold nanoparticles in advanced biomedical applications. Nanoscale Advances, 2020. 2(9): p. 3764-3787.
9. Berger, J.S., et al., Prevalence and Outcomes of D-Dimer Elevation in Hospitalized Patients With COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020. 40(10): p. 2539-2547.
10. Carnerero, J.M., et al., Covalent and Non-Covalent DNA–Gold-Nanoparticle Interactions: New Avenues of Research. ChemPhysChem, 2017. 18(1): p. 17-33.
11. Chebil, S., et al., Electrochemical detection of d-dimer as deep vein thrombosis marker using single-chain d-dimer antibody immobilized on functionalized polypyrrole. Biosensors and Bioelectronics, 2010. 26(2): p. 736-742.
12. Cheng, A.K.H., et al., Aptamer-Based Detection of Epithelial Tumor Marker Mucin 1 with Quantum Dot-Based Fluorescence Readout. Analytical Chemistry, 2009. 81(15): p. 6130-6139.
13. Danesh, J., et al., Fibrin D-Dimer and Coronary Heart Disease. Circulation, 2001. 103(19): p. 2323-2327.
14. Darmostuk, M., et al., Current approaches in SELEX: An update to aptamer selection technology. Biotechnology Advances, 2015. 33(6, Part 2): p. 1141-1161.
15. Daruich De Souza, C., B. Ribeiro Nogueira, and M.E.C.M. Rostelato, Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. Journal of Alloys and Compounds, 2019. 798: p. 714-740.
16. Duan, Y., et al., Research progress of whole-cell-SELEX selection and the application of cell-targeting aptamer. Mol Biol Rep, 2022. 49(8): p. 7979-7993.
17. Dykman, L. and N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews, 2012. 41(6): p. 2256-2282.
18. Eichinger, S., et al., D-Dimer Levels and Risk of Recurrent Venous Thromboembolism. JAMA, 2003. 290(8): p. 1071-1074.
19. Elahi, N., M. Kamali, and M.H. Baghersad, Recent biomedical applications of gold nanoparticles: A review. Talanta, 2018. 184: p. 537-556.
20. Fukuzumi, N., et al., Detection of C-reactive protein using single cluster analysis of gold nanoparticle aggregates using a dark-field microscope equipped with a smartphone. Sensors & Diagnostics, 2025. 4(2): p. 159-165.
21. Gamella, M., et al., Amperometric Magnetoimmunosensors for Direct Determination of D-Dimer in Human Serum. Electroanalysis, 2012. 24(12): p. 2235-2243.
22. Gopinath, S.C.B., Methods developed for SELEX. Analytical and Bioanalytical Chemistry, 2007. 387(1): p. 171-182.
23. Hammami, I., et al., Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science, 2021. 33(7): p. 101560.
24. Hu, X.e., et al., A new surface plasmon resonance-based immunoassay for rapid and sensitive quantification of D-dimer in human plasma for thrombus screening. Journal of Chromatography B, 2024. 1238: p. 124102.
25. Kim, T.K., et al., Fluorescence Immunoassay of Human D-dimer in Whole Blood. Journal of Clinical Laboratory Analysis, 2014. 28(4): p. 294-300.
26. Kimling, J., et al., Turkevich Method for Gold Nanoparticle Synthesis Revisited. The Journal of Physical Chemistry B, 2006. 110(32): p. 15700-15707.
27. Koukouvinos, G., et al., Simultaneous determination of CRP and D-dimer in human blood plasma samples with White Light Reflectance Spectroscopy. Biosensors and Bioelectronics, 2016. 84: p. 89-96.
28. Kumar, S., et al., Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega, 2022. 7(26): p. 22073-22088.
29. Kumar, S., K.S. Gandhi, and R. Kumar, Modeling of Formation of Gold Nanoparticles by Citrate Method. Industrial & Engineering Chemistry Research, 2007. 46(10): p. 3128-3136.
30. Kypr, J., et al., Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Research, 2009. 37(6): p. 1713-1725.
31. Lao, Y.-H., K. Peck, and L.-C. Chen, Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect. Analytical Chemistry, 2009. 81(5): p. 1747-1754.
32. Lippi, G. and E.J. Favaloro, D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis. Thromb Haemost, 2020. 120(5): p. 876-878.
33. Liu, X., et al., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 2007. 58(1): p. 3-7.
34. Ma, Y., et al., Glycan-Imprinted Magnetic Nanoparticle-Based SELEX for Efficient Screening of Glycoprotein-Binding Aptamers. ACS Applied Materials & Interfaces, 2018. 10(47): p. 40918-40926.
35. Marques, S.M., et al., Sensitive label-free electron chemical capacitive signal transduction for D-dimer electroanalysis. Electrochimica Acta, 2015. 182: p. 946-952.
36. Mosing, R.K., S.D. Mendonsa, and M.T. Bowser, Capillary Electrophoresis-SELEX Selection of Aptamers with Affinity for HIV-1 Reverse Transcriptase. Analytical Chemistry, 2005. 77(19): p. 6107-6112.
37. Ni, S., et al., Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS Applied Materials & Interfaces, 2021. 13(8): p. 9500-9519.
38. Park, S.Y., et al., Selection of an Antiviral RNA Aptamer Against Hemagglutinin of the Subtype H5 Avian Influenza Virus. Nucleic Acid Therapeutics, 2011. 21(6): p. 395-402.
39. Peng, Y., et al., Aptamer-gold nanoparticle-based colorimetric assay for the sensitive detection of thrombin. Sensors and Actuators B: Chemical, 2013. 177: p. 818-825.
40. Pittet, J.L., et al., VIDAS D-dimer: fast quantitative ELISA for measuring D-dimer in plasma. Clinical Chemistry, 1996. 42(3): p. 410-415.
41. Qin, Y., et al., Based on Unmodified Aptamer-Gold Nanoparticles Colorimetric Detection of Dexamethasone in Food. Biosensors (Basel), 2022. 12(4).
42. Righini, M., et al., D‐Dimer for venous thromboembolism diagnosis: 20 years later. Journal of Thrombosis and Haemostasis, 2008. 6(7): p. 1059-1071.
43. Rostami, M. and H. Mansouritorghabeh, D-dimer level in COVID-19 infection: a systematic review. Expert Review of Hematology, 2020. 13(11): p. 1265-1275.
44. Röthlisberger, P. and M. Hollenstein, Aptamer chemistry. Advanced Drug Delivery Reviews, 2018. 134: p. 3-21.
45. Ruivo, S., A.M. Azevedo, and D.M.F. Prazeres, Colorimetric detection of D-dimer in a paper-based immunodetection device. Analytical Biochemistry, 2017. 538: p. 5-12.
46. Sefah, K., et al., Development of DNA aptamers using Cell-SELEX. Nature Protocols, 2010. 5(6): p. 1169-1185.
47. Sen, A., et al., Accounting for Interaction Kinetics between Gold Nanoparticles and Aptamers Enables High-Performance Colorimetric Sensors. ACS Applied Materials & Interfaces, 2022. 14(29): p. 32813-32822.
48. Song, K.-M., et al., Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Analytical Biochemistry, 2011. 415(2): p. 175-181.
49. Sun, H. and Y. Zu, A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules, 2015. 20(7): p. 11959-11980.
50. Tasić, N., T.R.L.C. Paixão, and L.M. Gonçalves, Biosensing of D-dimer, making the transition from the central hospital laboratory to bedside determination. Talanta, 2020. 207: p. 120270.
51. Tortolini, C., et al. Disposable Voltammetric Immunosensor for D-Dimer Detection as Early Biomarker of Thromboembolic Disease and of COVID-19 Prognosis. Biosensors, 2023. 13, DOI: 10.3390/bios13010043.
52. Vasan, R.S., Biomarkers of Cardiovascular Disease. Circulation, 2006. 113(19): p. 2335-2362.
53. Wang, Q., et al., Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites. Talanta, 2015. 141: p. 247-252.
54. Wei, H., et al., Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun (Camb), 2007(36): p. 3735-7.
55. Weitz Jeffrey, I., C. Fredenburgh James, and W. Eikelboom John, A Test in Context: D-Dimer. Journal of the American College of Cardiology, 2017. 70(19): p. 2411-2420.
56. Wilson, D.B. and K.M. Gard, Evaluation of an Automated, Latex-Enhanced Turbidimetric D-Dimer Test (Advanced D-Dimer) and Usefulness in the Exclusion of Acute Thromboembolic Disease. American Journal of Clinical Pathology, 2003. 120(6): p. 930-937.
57. Yang, D.-K., et al., Selection of aptamers for fluorescent detection of alpha-methylacyl-CoA racemase by single-bead SELEX. Biosensors and Bioelectronics, 2014. 62: p. 106-112.
58. Yildirim-Tirgil, N., Development of aptamer-based ELISA method for d-dimer detection. Biotechnol Appl Biochem, 2023. 70(1): p. 249-256.
59. Yousefi, S. and M. Saraji, Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019. 213: p. 1-5.
60. Zakai, N.A., et al., D-dimer and the Risk of Stroke and Coronary Heart Disease. The REasons for Geographic and Racial Differences in Stroke (REGARDS) Study. Thromb Haemost, 2017. 117(3): p. 618-624.
61. Zhang, J., et al., Aptamer-conjugated gold nanoparticles for bioanalysis. Nanomedicine (Lond), 2013. 8(6): p. 983-93.
62. Zhang, J., T. Lakshmipriya, and S.C.B. Gopinath, Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer–Gold Conjugates. ACS Omega, 2020. 5(40): p. 25899-25905.
63. Zhang, N., et al., A Mass-Spectrometry-Based Antibody-Free Approach Enables the Quantification of D-Dimer in Plasma. Journal of Proteome Research, 2020. 19(8): p. 3143-3152.
64. Zhang, X., M.R. Servos, and J. Liu, Surface Science of DNA Adsorption onto Citrate-Capped Gold Nanoparticles. Langmuir, 2012. 28(8): p. 3896-3902.
65. Zhao, D., Epidemiological Features of Cardiovascular Disease in Asia. JACC: Asia, 2021. 1(1): p. 1-13.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99452-
dc.description.abstractD-二聚體 (D-dimer) 是纖維蛋白的降解產物,在許多血栓患者中D-二聚體的含量都很高,D-二聚體是判定患者是否患有心血管疾病的重要因子,同時是檢驗抗凝血藥物在治療功效上的指標,因此如何精準地定量D-二聚體的含量成為了重要的議題,近年來,短片段的DNA適體 (Aptamer) 對特定蛋白質具有高度親合性與專一性,並且具有製造成本低、穩定性高以及容易修飾上官能基等優勢,逐漸成為替代抗體作為生物感測探針的工具,適體可以透過系統配位子指數增益演繹程序 (SELEX) 的方式篩選出來,此篩選出來的序列經過親和性與專一性的驗證後即可作為感測探針,並應用在基於比色法的感測器上來檢測D-二聚體,結合近年來蓬勃發展的奈米材料,適體-奈米金共軛比色感測法成為了一種新穎的感測方式,以奈米金、適體與其對應的蛋白質在鹽溶液中的交互作用達到感測效果,此方法的感測靈敏度高且偵測下限低,此外透過其溶液的顏色變化即可簡單的判讀蛋白質的含量,因此是非常有潛力作為快速感測D-二聚體的技術。
本研究旨在篩選出一條對於D-二聚體具有高親和性與專一性的適體序列,並應用此條適體作為感測元件應用於實際感測D-二聚體的含量,D-二聚體之適體使用基於玻璃微珠的SELEX從隨機序列庫中以定向演化的方式篩選出來,並經由定量聚合酶連鎖反應 (qPCR) 技術放大該序列於隨機序列庫的濃度,進一步定序後即可得到初步的適體候選序列,適體候選序列先經由表面電漿共振 (SPR) 確認其與D-二聚體之間的親和力與動力學特徵,從候選序列中找出表現最佳的序列作為後續感測用的適體,推算出此適體B5R10-4與D-二聚體的解離常數為18.3 nM,此B5R10-4適體透過高解析度熔解 (HRM) 分析及圓二色性 (CD) 光譜探討適體結構在不同溫度以及與D-二聚體結合作用下其構型的變化,最後,本研究應用自行篩選的B5R10-4適體結合到酶聯寡核苷酸分析法 (ELONA) 的感測平台去確認該適體於不同感測方法上的應用可行性,另一方面本研究試圖將B5R10-4適體推廣到新穎的適體-奈米金共軛比色分析法 (Apt-AuNP conjugates colorimetric assay),並比較調整實驗參數和流程所取得的實驗表現,包含控制鹽類濃度、適體濃度、奈米金共軛適體機制以及奈米金粒徑大小等,綜合最佳的實驗條件顯示最佳的感測方法為使用粒徑小於約30 nm的奈米金粒子且利用結合式手法感測,其線性檢測範圍為0.125 – 10 nM,偵測下限低至0.25 nM,且靈敏度達到0.054,此適體感測裝置能簡易且強效的檢測D-二聚體,並有潛力發展為不須精密儀器即可判讀的快篩裝置或試劑,希望在不久的將來達成定點照護 (POC) 的感測目標。
zh_TW
dc.description.abstractD-dimer is a degradation product of fibrin. Elevated levels of D-dimer are commonly observed in patients with thrombosis. Thus, D-dimer is an important factor in determining whether a patient has cardiovascular disease. Meanwhile, it serves as an indicator of the efficacy of anticoagulant therapies. As a result, precise quantification of D-dimer levels has become a crucial issue. In recent years, short sequences of DNA aptamers have demonstrated high affinity and specificity for target proteins. Besides, they offer several advantages such as low production cost, high stability, and ease of functional modification. These properties have made aptamers a promising alternative to antibodies as biosensing probes. Aptamer can be selected through the systemic evolution of ligands by exponential enrichment (SELEX) process. After screening the affinity and specificity of the selected sequence, it can be used as a sensing probe in colorimetric sensors for detecting D-dimer. Coupled with the recent advancements in nanomaterials, aptamer-gold nanoparticle (Apt-AuNP) conjugates colorimetry has emerged as a novel sensing method. The sensing effect is based on the interactions between AuNPs, aptamers, and their corresponding proteins in saline solution. This method provides high sensitivity and low detection limits. Additionally, the color change in the solution allows for a simple visual readout of protein concentration. In light of this, this method holds great potential as a rapid detection technology for D-dimer.
This study aims to select an aptamer sequence with high affinity and specificity for D-dimer and apply it as a sensing element for the quantification of D-dimer concentrations. The D-dimer aptamer was selected from a random sequence library using glass microbead-based SELEX. The sequence was then amplified through quantitative polymerase chain reaction (qPCR). After sequencing, preliminary aptamer candidates were obtained. The affinity and kinetic characteristics of these candidates were determined via surface plasmon resonance (SPR), and the best performing sequence was selected as the aptamer for sensing applications. The dissociation constant of this aptamer B5R10-4 and D-dimer was estimated to be 18.3 nM. The structural changes of the aptamer B5R10-4 at different temperature and in interaction with D-dimer were further investigated using high resolution melting (HRM) analysis and circular dichroism (CD) spectroscopy. Last but not least, the study applied the selected aptamer B5R10-4 to enzyme-linked oligonucleotide assay (ELONA) sensing platform to verify the applicability of the aptamer in different sensing platforms. On the other hand, this study aims to extend the application of the aptamer B5R10-4 to a novel Apt-AuNP conjugates colorimetric assay by adjusting experimental parameters and processes, including controlling salt concentration, aptamer concentration, Apt–AuNP conjugation mechanisms, and nanoparticle size. From the comprehensive experimental conditions, the colorimetric assay with the best performance involves using gold nanoparticles with a particle size smaller than approximately 30 nm, utilizing association-based approach. This method demonstrates a linear detection range of 0.125 – 10 nM, a detection limit as low as 0.25 nM, and achieves a sensitivity of 0.054. This aptamer-based sensor enables simple and robust detection of D-dimer. Furthermore, it has the potential to be developed into rapid diagnostic devices or kits that do not require sophisticated instruments to measure. The goal is to achieve a point-of-care (POC) sensing capability in the near future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:19:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:19:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 ii
誌謝 iii
摘要 v
Abstract vii
Table of Contents x
List of Figures xiii
List of Tables xvii
List of Abbreviations xviii
List of Symbols xx
Chapter 1 Introduction 1
1.1 Backgrounds 1
1.1.1 D-dimer 1
1.1.2 Aptamer 3
1.1.3 Gold nanoparticles 5
1.2 Motivations 6
1.3 Aims 7
1.4 Framework 8
Chapter 2 Literature Review 10
2.1 Biomarkers of cardiovascular diseases 10
2.2 Biosensors for D-dimer 11
2.2.1 Electrochemical biosensor 12
2.2.2 Immuno-based biosensors 13
2.2.3 Chromatographic and optical biosensors 14
2.3 Aptamer-based biosensors 17
2.4 SELEX techniques 19
2.5 Apt-AuNP conjugates colorimetric biosensors 20
Chapter 3 Materials and Methods 23
3.1 Materials 23
3.2 Instruments 27
3.3 Systematic evolution of ligands by exponential enrichment (SELEX) 29
3.3.1 Fabrication of D-dimer-coated glass microbeads 29
3.3.2 Positive SELEX and counter SELEX 32
3.3.3 Preparation of D-dimer aptamer sequencing 36
3.4 Surface plasmon resonance (SPR) 39
3.5 Aptamer conformational analysis 42
3.5.1 High resolution melting (HRM) 42
3.5.2 Circular dichroism (CD) 44
3.6 Enzyme-linked oligonucleotide assay (ELONA) 45
3.7 Apt-AuNP conjugates colorimetry 47
3.7.1 Synthesis of gold nanoparticles 48
3.7.2 Dynamic light scattering (DLS) 49
3.7.3 Apt-AuNP conjugates colorimetric sensing 49
3.7.4 Zeta potential 51
3.7.5 Transmission electron microscopy (TEM) 52
Chapter 4 Results and Discussion 53
4.1 Selection of D-dimer aptamer 53
4.1.1 Preliminary screening of SELEX by qPCR 55
4.1.2 Motifs analysis of aptamer candidates 60
4.2 Kinetics and affinity analysis of selected aptamer 62
4.2.1 Affinity analysis of B5R10-4 and D-dimer by SPR 62
4.2.2 Specificity assessment of B5R10-4 68
4.3 Study of the structure and binding epitope of B5R10-4 71
4.3.1 Temperature effect on structure by HRM 71
4.3.2 Analysis of the binding epitope by CD 74
4.4 Sensing feasibility of B5R10-4 76
4.4.1 Sensing performance in clear buffer by ELONA 76
4.4.2 Interference test by ELONA 78
4.5 Preparation of Apt-AuNP conjugates 79
4.5.1 Estimation of AuNP size by DLS 79
4.5.2 Conformation of conjugates formation by Zeta potential 80
4.6 Apt-AuNP conjugates colorimetry for D-dimer detection 82
4.6.1 Effect of saline and B5R10-4 concentration on AuNPs 82
4.6.2 Estimation of aptamer capacity on AuNPs 94
4.6.3 Sensing performance comparison of three types of colorimetric assays 96
4.6.4 Sensing performance comparison of different AuNP sizes 106
4.6.5 Specificity and interference tests of Apt-AuNP conjugates colorimetry 110
Chapter 5 Conclusions 117
5.1 Conclusions 117
5.2 Future work 119
References 120
Supporting Information 125
-
dc.language.isoen-
dc.subjectD-二聚體zh_TW
dc.subject適體zh_TW
dc.subject奈米金zh_TW
dc.subject系統配位子指數增益演繹程序zh_TW
dc.subject適體-奈米金共軛比色分析法zh_TW
dc.subjectAuNPsen
dc.subjectD-dimeren
dc.subjectApt-AuNP conjugates colorimetric assayen
dc.subjectSELEXen
dc.subjectAptameren
dc.title基於適體共軛奈米金粒子之D-二聚體比色分析法研究zh_TW
dc.titleStudy of D-Dimer Colorimetric Assays based on Aptamer-Conjugated Gold Nanoparticlesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖尉斯;莊旻傑;魏培坤;謝博全zh_TW
dc.contributor.oralexamcommitteeWei-Ssu Liao;Min-Chieh Chuang;Pei-Kuen Wei;Po-Chuan Hsiehen
dc.subject.keywordD-二聚體,適體,奈米金,系統配位子指數增益演繹程序,適體-奈米金共軛比色分析法,zh_TW
dc.subject.keywordD-dimer,Aptamer,AuNPs,SELEX,Apt-AuNP conjugates colorimetric assay,en
dc.relation.page151-
dc.identifier.doi10.6342/NTU202502561-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-30-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-07-26-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.42 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved