請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99450完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳靚 | zh_TW |
| dc.contributor.advisor | Chia-Ching Chou | en |
| dc.contributor.author | 邱唯媛 | zh_TW |
| dc.contributor.author | Wei-Yuan Chiu | en |
| dc.date.accessioned | 2025-09-10T16:19:35Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 1. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research, 2015. 6(2): p. 105-121.
2. Ho, T.-C., et al., Hydrogels: properties and applications in biomedicine. Molecules, 2022. 27(9): p. 2902. 3. Sánchez-Cid, P., et al., Novel trends in hydrogel development for biomedical applications: A review. Polymers, 2022. 14(15): p. 3023. 4. Bashir, S., et al., Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers, 2020. 12(11): p. 2702. 5. Pan, Z., H. Ye, and D. Wu, Recent advances on polymeric hydrogels as wound dressings. APL bioengineering, 2021. 5(1). 6. Zhang, E., et al., Advances in chitosan-based nanoparticles for oncotherapy. Carbohydrate polymers, 2019. 222: p. 115004. 7. Osi, A.R., et al., Three-dimensional-printable thermo/photo-cross-linked methacrylated chitosan–gelatin hydrogel composites for tissue engineering. ACS applied materials & interfaces, 2021. 13(19): p. 22902-22913. 8. Yu, K.-F., et al., Design and synthesis of stem cell-laden keratin/glycol chitosan methacrylate bioinks for 3D bioprinting. Biomacromolecules, 2022. 23(7): p. 2814-2826. 9. Osmałek, T., A. Froelich, and S. Tasarek, Application of gellan gum in pharmacy and medicine. International journal of pharmaceutics, 2014. 466(1-2): p. 328-340. 10. Muthukumar, T., J.E. Song, and G. Khang, Biological role of gellan gum in improving scaffold drug delivery, cell adhesion properties for tissue engineering applications. Molecules, 2019. 24(24): p. 4514. 11. Saha, D. and S. Bhattacharya, Characteristics of gellan gum based food gels. Journal of texture studies, 2010. 41(4): p. 459-471. 12. Prajapati, V.D., et al., An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydrate polymers, 2013. 93(2): p. 670-678. 13. Bacelar, A.H., et al., Recent progress in gellan gum hydrogels provided by functionalization strategies. Journal of Materials Chemistry B, 2016. 4(37): p. 6164-6174. 14. Lee, H., et al., Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 98(2): p. 238-245. 15. Agibayeva, L.E., et al., Gellan gum and its methacrylated derivatives as in situ gelling mucoadhesive formulations of pilocarpine: In vitro and in vivo studies. International journal of pharmaceutics, 2020. 577: p. 119093. 16. Palumbo, F.S., et al., Gellan gum-based delivery systems of therapeutic agents and cells. Carbohydrate polymers, 2020. 229: p. 115430. 17. Feketshane, Z., S. Alven, and B.A. Aderibigbe, Gellan gum in wound dressing scaffolds. Polymers, 2022. 14(19): p. 4098. 18. Ng, J.Y., et al., Pristine gellan gum–collagen interpenetrating network hydrogels as mechanically enhanced anti-inflammatory biologic wound dressings for burn wound therapy. ACS Applied Bio Materials, 2021. 4(2): p. 1470-1482. 19. Mouser, V.H., et al., Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication, 2016. 8(3): p. 035003. 20. Jongprasitkul, H., et al., Two-step crosslinking to enhance the printability of methacrylated gellan gum biomaterial ink for extrusion-based 3D bioprinting. Bioprinting, 2022. 25: p. e00185. 21. Cernencu, A.I. and M. Ioniță, The current state of the art in gellan-based printing inks in tissue engineering. Carbohydrate Polymers, 2023. 309: p. 120676. 22. Additives, E.P.o.F., et al., Re‐evaluation of gellan gum (E 418) as food additive. EFSA Journal, 2018. 16(6): p. e05296. 23. Kennedy, L. and I.W. Sutherland, Gellan lyases-novel polysaccharide lyases. Microbiology, 1994. 140(11): p. 3007-3013. 24. Xu, Z., et al., Chemically modified gellan gum hydrogels with tunable properties for use as tissue engineering scaffolds. ACS omega, 2018. 3(6): p. 6998-7007. 25. Coutinho, D.F., et al., Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials, 2010. 31(29): p. 7494-7502. 26. Severini, L., et al., Methacrylated gellan gum hydrogel: a smart tool to face complex problems in the cleaning of paper materials. Cellulose, 2023. 30(16): p. 10469-10485. 27. Ferruzzi, G.G., N. Pan, and W.H. Casey, Mechanical properties of gellan and polyacrylamide gels with implications for soil stabilization. Soil science, 2000. 165(10): p. 778-792. 28. Di Napoli, B., et al., Gellan gum microgels as effective agents for a rapid cleaning of paper. ACS applied polymer materials, 2020. 2(7): p. 2791-2801. 29. D’Amora, U., et al., Bioactive composite methacrylated gellan gum for 3D-printed bone tissue-engineered scaffolds. Nanomaterials, 2023. 13(4): p. 772. 30. Tsaryk, R., et al., Biological performance of cell‐encapsulated methacrylated gellan gum‐based hydrogels for nucleus pulposus regeneration. Journal of tissue engineering and regenerative medicine, 2017. 11(3): p. 637-648. 31. Lin, C.-W., et al., Synergistic potential of gellan gum methacrylate and keratin hydrogel for visceral hemostasis and skin tissue regeneration. Materials Today Bio, 2024. 27: p. 101146. 32. Franco, S., et al., Gellan-based hydrogels and microgels: A rheological perspective. Carbohydrate Polymers, 2025: p. 123329. 33. Bartnikowski, M., et al., Tailoring hydrogel viscoelasticity with physical and chemical crosslinking. Polymers, 2015. 7(12): p. 2650-2669. 34. Xu, X.-J., et al., Effects of low acyl and high acyl gellan gum on the thermal stability of purple sweet potato anthocyanins in the presence of ascorbic acid. Food Hydrocolloids, 2019. 86: p. 116-123. 35. Yan, B., et al., Conformation and hydration property of low-acetyl gellan gum under microwave irradiation: Experiments and molecular dynamics simulations. Food Hydrocolloids, 2023. 145: p. 109140. 36. Tavagnacco, L., et al., Molecular origin of the two-step mechanism of gellan aggregation. Science Advances, 2023. 9(10): p. eadg4392. 37. Allen, M.P., Introduction to molecular dynamics simulation. Computational soft matter: from synthetic polymers to proteins, 2004. 23(1): p. 1-28. 38. Lindahl, E.R., Molecular dynamics simulations, in Molecular modeling of proteins. 2008, Humana Press Totowa, NJ. p. 3-23. 39. McCammon, J.A., B.R. Gelin, and M. Karplus, Dynamics of folded proteins. nature, 1977. 267(5612): p. 585-590. 40. Hollingsworth, S.A. and R.O. Dror, Molecular dynamics simulation for all. Neuron, 2018. 99(6): p. 1129-1143. 41. Zeng, X., et al., Molecular dynamics modeling of crack propagation in titanium alloys by using an experiment-based Monte Carlo model. Engineering Fracture Mechanics, 2018. 190: p. 120-133. 42. NOSÉ, S.I., A molecular dynamics method for simulations in the canonical ensemble. Molecular physics, 2002. 100(1): p. 191-198. 43. Lippert, R.A., et al., Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure. The Journal of chemical physics, 2013. 139(16). 44. Rizzuti, B., Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2022. 1870(3): p. 140757. 45. Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. Journal of computational chemistry, 1983. 4(2): p. 187-217. 46. Brooks, B.R., et al., CHARMM: the biomolecular simulation program. Journal of computational chemistry, 2009. 30(10): p. 1545-1614. 47. Zhu, X., P.E. Lopes, and A.D. MacKerell Jr, Recent developments and applications of the CHARMM force fields. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012. 2(1): p. 167-185. 48. Meinhold, L., Crystalline Protein Dynamics: A Simulation Analysis of Staphylococcal Nuclease. 2005. 49. Jo, S., et al., CHARMM‐GUI: a web‐based graphical user interface for CHARMM. Journal of computational chemistry, 2008. 29(11): p. 1859-1865. 50. Jo, S., et al., CHARMM‐GUI 10 years for biomolecular modeling and simulation. Journal of computational chemistry, 2017. 38(15): p. 1114-1124. 51. Kim, S., et al., CHARMM‐GUI ligand reader and modeler for CHARMM force field generation of small molecules. 2017, Wiley Online Library. 52. Meunier, M. and S. Robertson, Materials studio 20th anniversary. 2021, Taylor & Francis. p. 537-539. 53. Ong, E.E. and J.-L. Liow, The temperature-dependent structure, hydrogen bonding and other related dynamic properties of the standard TIP3P and CHARMM-modified TIP3P water models. Fluid Phase Equilibria, 2019. 481: p. 55-65. 54. Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38. 55. Hsin, J., et al., Using VMD: an introductory tutorial. Current protocols in bioinformatics, 2008. 24(1): p. 5.7. 1-5.7. 48. 56. Phillips, J.C., et al., Scalable molecular dynamics with NAMD. Journal of computational chemistry, 2005. 26(16): p. 1781-1802. 57. Phillips, J.C., et al., Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of chemical physics, 2020. 153(4). 58. Thompson, A.P., et al., LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer physics communications, 2022. 271: p. 108171. 59. Gowthaman, S., A review on mechanical and material characterisation through molecular dynamics using large-scale atomic/molecular massively parallel simulator (LAMMPS). Functional Composites and Structures, 2023. 5(1): p. 012005. 60. Li, Z., et al., 3D bioprinted gelatin/gellan gum-based scaffold with double-crosslinking network for vascularized bone regeneration. Carbohydrate Polymers, 2022. 290: p. 119469. 61. Xu, S.-Q., et al., Gel properties and interactions of hydrogels constructed with low acyl gellan gum and puerarin. Carbohydrate Polymers, 2024. 326: p. 121594. 62. Abbott, L.J., K.E. Hart, and C.M. Colina, Polymatic: a generalized simulated polymerization algorithm for amorphous polymers. Theoretical Chemistry Accounts, 2013. 132: p. 1-19. 63. Rukmani, S.J., et al., Molecular modeling of complex cross-linked networks of PEGDA nanogels. The Journal of Physical Chemistry B, 2019. 123(18): p. 4129-4138. 64. Schreiner, W., et al., Relaxation estimation of RMSD in molecular dynamics immunosimulations. Computational and mathematical methods in medicine, 2012. 2012(1): p. 173521. 65. Sharma, R.D., et al., High temperature unfolding of Bacillus anthracis amidase-03 by molecular dynamics simulations. Bioinformation, 2009. 3(10): p. 430. 66. Gong, T.-Y., et al., Effects of the Degree of Phenol Substitution on Molecular Structures and Properties of Chitosan-Phenol-Based Self-Healing Hydrogels. ACS Biomaterials Science & Engineering, 2023. 9(11): p. 6146-6155. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99450 | - |
| dc.description.abstract | 結冷膠具有優異的生物相容性、生物可降解性與可調控之機械性質,為組織工程應用中常用之材料。為進一步提升其機械與生物性質,透過甲基丙烯酸酐與結冷膠結合進行改質,可獲得具有光交聯能力之甲基丙烯酸酯改質結冷膠。經紫外線照射與交聯作用後,其機械性質與生物相關特性可進一步增強。本研究以分子動力學模擬方式,探討不同分子濃度與甲基丙烯酸酯取代度對結冷膠與其改質系統之分子結構、分子間作用與機械性質的影響。模擬結果顯示,濃度增加有助於強化分子間作用力,促進分子鏈之聚集與纏繞,並提升機械強度;而取代度提升則使甲基丙烯酸酯基團加強分子內作用力,抑制分子間以及與水的交互作用,導致材料疏水性提升。交聯模擬結果顯示,交聯主要發生於不同分子鏈間之甲基丙烯酸酯基團,交聯鍵數隨濃度與取代度上升而增加。交聯後,分子結構與交互作用與交聯前趨勢相似,且各系統之分子內氫鍵以及與水形成之氫鍵均顯著下降,在低取代度系統中更為明顯,並伴隨聚合物鏈更加蜷曲及分子間氫鍵數量減少。在機械性質方面,高濃度與中等取代度之交聯甲基丙烯酸酯改質結冷膠系統則展現出最佳之抗壓縮性能,剪切強度亦隨濃度提升而上升,且隨著取代度的提升於中、高取代度條件下有明顯上升,而低取代度則略有下降。黏度亦隨濃度上升而增加,且大致隨著取代度的提升而增加。綜合而言,本研究由微觀尺度出發,深入探討結冷膠與其甲基丙烯酸酯改質系統在不同濃度與取代度條件下之分子結構、交互作用以及機械性質間的關係,為未來結冷膠水凝膠於生醫領域之應用提供重要理論依據。 | zh_TW |
| dc.description.abstract | Gellan gum exhibits excellent biocompatibility, biodegradability, and tunable mechanical properties, and serves as a fundamental material for tissue engineering applications. By modifying gellan gum with methacrylic anhydride, methacrylated gellan gum can be obtained. Upon UV exposure and cross-linking, along with increases in concentration and methacrylate degree of substitution, its mechanical performance and biological characteristics can be further enhanced. In this study, we employed molecular dynamics simulation to analyze the molecular structure, intermolecular interactions, mechanical properties, and the effects of molecular concentration and methacrylate degree of substitution on gellan gum. Our results show that increasing concentration strengthens intermolecular interactions, promotes chain aggregation and coiling, and improves tensile strength. As the methacrylate degree of substitution increases, intramolecular interactions are enhanced, while both intermolecular interactions and interactions with water are reduced, due to the presence of methacrylate groups. Furthermore, we investigated the structural and interaction changes following crosslinking. Crosslinking primarily occurred between methacrylate groups on different chains, and the number of crosslinks increased with both concentration and degree of substitution. After crosslinking, molecular structures and interactions remained similar to those observed before crosslinking. Intramolecular hydrogen bonding and hydrogen bonding with water decreased across all systems. These effects were more prominent in low-substitution systems, which showed more coiled chains and fewer intermolecular hydrogen bonds. In terms of mechanical properties, crosslinked methacrylated gellan gum exhibited improved compressive resistance at higher concentrations and moderate substitution. In addition, shear strength increased with concentration and improved with substitution, except at low substitution. Viscosity increased with concentration and generally with substitution. This study provides a microscopic perspective to elucidate the structure-interaction-mechanical property relationships of gellan gum and methacrylated gellan gum, offering valuable insights into the rational design of gellan-based hydrogels for biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:19:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:19:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 ix 表次 xx 第1章、 緒論 1 1.1 文獻回顧 1 1.1.1 水凝膠 1 1.1.2 結冷膠 1 1.1.3 甲基丙烯酸酯結冷膠 4 1.2 研究動機與目的 9 1.3 論文架構 13 第2章、 研究方法 15 2.1 分子動力學模擬 15 2.1.1 Verlet積分 19 2.1.2 系綜(Ensemble) 21 2.1.3 週期性邊界(Periodic Boundary Condition)與截斷距離(Cutoff) 26 2.1.4 能量最小化(Energy Minimization) 29 2.1.5 CHARMM力場 31 2.1.6 CHARMM 力場修改 34 2.2 模型設計與系統參數 37 2.2.1 初始模型 38 2.2.2 系統設定 44 2.3 交聯方法 45 2.4 體積模數測試方法(Bulk Modulus Test) 47 2.5 剪切測試方法(Shearing Test) 48 2.6 黏度測試方法(Viscosity Test) 49 2.7 分析方法 50 2.7.1 均方根偏差(Root Mean Square Deviation,簡稱RMSD) 50 2.7.2 頭尾端距(End-to-End Distance) 51 2.7.3 迴轉半徑(Radius of Gyration,簡稱RG) 51 2.7.4 氫鍵(Hydrogen Bond) 52 2.7.5 徑向分佈函數(Radial Distribution Function) 54 2.7.6 周圍原子數 54 2.7.7 分析流程 55 第3章、 在不同濃度與取代度下對於分子結構的影響 57 3.1 GG與GGMA之平衡 57 3.2 對於頭尾端距的影響 60 3.3 對於迴轉半徑的影響 62 3.4 對於徑向分布函數的影響 66 3.5 MA基團之間的交互作用 68 3.6 GGMA交聯的數量 71 第4章、 在不同濃度與取代度下對於交互作用的影響 74 4.1 對於分子內氫鍵的影響 74 4.2 對於分子間氫鍵的影響 80 4.3 對於總氫鍵的影響 88 4.4 對於與水分子的分子間氫鍵的影響 90 第5章、 交聯後GGMA的力學性質 95 5.1 在不同濃度與取代度下對於體積模數的影響 95 5.2 在不同濃度與取代度下對於剪切強度的影響 102 5.3 在不同濃度與取代度下對於黏滯係數的影響 103 第6章、 結論與未來展望 105 6.1 結論 105 6.2 未來展望 106 參考文獻 107 附錄:GG與GGMA修改之力場參數 111 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 分子動力學 | zh_TW |
| dc.subject | 結冷膠 | zh_TW |
| dc.subject | 甲基丙烯酸酯改質 | zh_TW |
| dc.subject | Methacrylate Modified | en |
| dc.subject | Molecular Dynamics | en |
| dc.subject | Gellan Gum | en |
| dc.title | 以分子動力模擬探討甲基丙烯酸酯改質結冷膠在不同濃度與取代度下之分子結構、交互作用與機械性質 | zh_TW |
| dc.title | A Study of the Molecular Structure, Interaction, and Mechanical Properties of Methacrylate-Modified Gellan Gum at Various Concentrations and Degrees of Substitution using Molecular Dynamics Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐善慧;張書瑋;游佳欣 | zh_TW |
| dc.contributor.oralexamcommittee | Shan-hui Hsu;Shu-Wei Chang;Jiashing Yu | en |
| dc.subject.keyword | 分子動力學,結冷膠,甲基丙烯酸酯改質, | zh_TW |
| dc.subject.keyword | Molecular Dynamics,Gellan Gum,Methacrylate Modified, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202502672 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
