Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣zh_TW
dc.contributor.advisorChao-Hsin Wuen
dc.contributor.author涂佑宇zh_TW
dc.contributor.authorYou-Yu Tuen
dc.date.accessioned2025-09-10T16:19:24Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] You Li and Javier Ibanez-Guzman. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4):50–61, 2020.
[2] Naoki Yamaguchi. A study on low-cost and high-precision fmcw lidar employing digital signal processing and vcsel. Master’s thesis, THE UNIVERSITY OF TOKYO, 2021.
[3] Behnam Behroozpour, Phillip AM Sandborn, Ming C Wu, and Bernhard E Boser. Lidar system architectures and circuits. IEEE Communications Magazine, 55(10):135–142, 2017.
[4] Xiaochen Sun, Lingxuan Zhang, Qihao Zhang, and Wenfu Zhang. Si photonics for practical lidar solutions. Applied Sciences, 9(20):4225, 2019.
[5] Inki Kim, Renato Juliano Martins, Jaehyuck Jang, Trevon Badloe, Samira Khadir, Ho-Youl Jung, Hyeongdo Kim, Jongun Kim, Patrice Genevet, and Junsuk Rho. Nanophotonics for light detection and ranging technology. Nature nanotechnology, 16(5):508–524, 2021.
[6] Daniel Nordin. Optical frequency modulated continuous wave (FMCW) range and velocity measurements. PhD thesis, Luleå tekniska universitet, 2004.
[7] Te-Hua Liu, You-Yu Tu, and Chao-Hsin Wu. High-power c-band dfb lasers with sub-50 khz linewidth for precise fmcw lidar. In Conference on Lasers and Electro-Optics/Pacific Rim. Optica Publishing Group, 2024.
[8] S Ayotte, K Bédard, M Morin, S Boudreau, A Desbiens, P Chrétien, A Babin, F Costin, É Girard-Deschênes, and G Paré-Olivier. Narrow linewidth semiconductor dfb laser with linear frequency modulation for fmcw lidar. In Photonic Instrumentation Engineering VIII, volume 11693, pages 23–32. SPIE, 2021.
[9] M. Asghari. 1550-nm photonics promise eye-safe, cost-effective autonomous machines. Report, 2019.
[10] Te-Hua Liu, You-Yu Tu, Yi-Hsuan Lu, and Chao-Hsin Wu. High-efficiency 1.55-μm dfb laser with a 600-μm short cavity and sub-20-khz linewidth. Optics Letters, 50(9):3018–3021, 2025.
[11] Janis Alnis, Arthur Matveev, Nikolai Kolachevsky, Th Udem, and TW Hänsch. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass fabry-pérot cavities. Physical Review A—Atomic, Molecular, and Optical Physics, 77(5):053809, 2008.
[12] George B Venus, Armen Sevian, Vadim I Smirnov, and Leonid B Glebov. Highbrightness narrow-line laser diode source with volume bragg-grating feedback. In High-Power Diode Laser Technology and Applications III, volume 5711, pages 166–176. SPIE, 2005.
[13] Yongrui Guo, Minzhi Xu, Weina Peng, Jing Su, Huadong Lu, and Kunchi Peng. Realization of a 101 w single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction. Optics letters, 43(24):6017–6020, 2018.
[14] Jörg Heller. A primer on solid-state lasers. https://www.techbriefs.com/component/content/article/tb/supplements/bt/features/articles/46791, 2002. SAE Media Group, Retrieved 7 August 2022.
[15] Yanhua Lu, Lei Zhang, Xiafei Xu, Huaijin Ren, Xiaoming Chen, Xingbin Wei, Bin Wei, Yuan Liao, Jingliang Gu, and Fang Liu. 208 w all-solid-state sodium guide star laser operated at modulated-longitudinal mode. Optics Express, 27(15):20282–20289, 2019.
[16] Zhenxu Bai, ongan Zhao, Menghan Tian, Duo Jin, Yajun Pang, Sensen Li, Xiusheng Yan, Yulei Wang, and Zhiwei Lu. A comprehensive review on the development and applications of narrow‐linewidth lasers. Microwave and Optical Technology Letters, 64(12):2244–2255, 2022.
[17] Zhenxu Bai, Hang Yuan, Zhaohong Liu, Pengbai Xu, Qilin Gao, Robert J. Williams, Ondrej Kitzler, Richard P. Mildren, Yulei Wang, and Zhiwei Lu. Stimulated brillouin scattering materials, experimental design and applications: A review. Optical Materials, 75:626–645, 2018.
[18] MJ Damzen, V Vlad, Anca Mocofanescu, and V Babin. Stimulated Brillouin scattering: fundamentals and applications. CRC press, 2003.
[19] SP Smith, F Zarinetchi, and S Ezekiel. Narrow-linewidth stimulated brillouin fiber laser and applications. Optics letters, 16(6):393–395, 1991.
[20] Xingkai Lang, Peng Jia, Yongyi Chen, Li Qin, Lei Liang, Chao Chen, Yubing Wang, Xiaonan Shan, Yongqiang Ning, and Lijun Wang. Advances in narrow linewidth diode lasers. Science China Information Sciences, 62:1–13, 2019.
[21] Albert Einstein. Zur quantentheorie der strahlung. Phys Zeit, 18:121, 1917.
[22] Arthur L Schawlow and Charles H Townes. Infrared and optical masers. Physical review, 112(6):1940, 1958.
[23] Theodore H Maiman. Stimulated optical radiation in ruby. nature, 187(4736):493–494, 1960.
[24] Robert N Hall, Gunther E Fenner, JD Kingsley, TJ Soltys, and RO Carlson. Coherent light emission from gaas junctions. Physical Review Letters, 9(9):366, 1962.
[25] ZhI Alferov, VM Andreev, VI Korolkov, EL Portnoi, and DN TREFIAKOV. Injection properties of n-al sub x ga sub 1 minus x as-p-gaas heterojunctions (injection characteristics of n-aluminum gallium arsenides-p-gaas heterojunctions from recombination radiation spectra). Fizika i Tekhnika Poluprovodnikov, 2:1016, 1968.
[26] Christopher W Coldren. Group III-arsenide-nitride long wavelength laser diodes. Stanford University, 2005.
[27] Chaoyuan Jin. GaAs-based long-wavelength semiconductor diode lasers for optical fibre communication. Thesis, University of Sheffield, Department of Electronic and Electrical Engineering, 2008.
[28] Hideaki Horikawa and Atsuo Ishii. Semiconductor pump laser technology. Journal of lightwave technology, 11(1):167–175, 1993.
[29] John E Carroll, James Whiteaway, and Dick Plumb. Distributed feedback semiconductor lasers. IET, 1998.
[30] H Kogelnik and CV Shank. Stimulated emission in a periodic structure. Applied Physics Letters, 18(4):152–154, 1971.
[31] CV Shank, JE Bjorkholm, and H Kogelnik. Tunable distributed‐feedback dye laser. Applied Physics Letters, 18(9):395–396, 1971.
[32] H Kogelnik and C Vo Shank. Coupled-wave theory of distributed feedback lasers. Journal of applied physics, 43(5):2327–2335, 1972.
[33] K. Utaka, S. Akiba, K. Sakai, and Y. Matsushima. Room-temperature cw operation of distributed-feedback buried-heterostructure ingaasp/inp lasers emitting at 1.57 μm. Electronics Letters, 17(25-26):961–963, 1981.
[34] H A Haus and C V Shank. Antisymmetric taper of distributed feedback lasers. IEEE J. Quant. Electron.; (United States), QE-12:9:Medium: X; Size: Pages: 532–539,1976.
[35] K Sekartedjo, N Eda, K Furuya, Y Suematsu, F Koyama, and T Tanbun-Ek. 1.5 μm phase-shifted dfb lasers for single-mode operation. Electronics Letters, 20(2):80–81,1984.
[36] Wen Feng, Ying Ding, Jiaoqing Pan, Lingjuan Zhao, H. Zhu, and W. Wang. Unselective regrowth of 1.5-μmingaasp multiple-quantum-well distributed-feedback buried heterostructure lasers. Optical Engineering - OPT ENG, 45, 2006.
[37] Mark W Fleming and Aram Mooradian. Fundamental line broadening of singlemode (gaal) as diode lasers. Applied Physics Letters, 38(7):511–513, 1981.
[38] Charles Henry. Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 18(2):259–264, 1982.
[39] Xiaopei Chen. Ultra-narrow laser linewidth measurement. Thesis, Virginia Polytechnic Institute and State University, 2003.
[40] C. Henry. Theory of spontaneous emission noise in open resonators and its application to lasers and optical amplifiers. Journal of Lightwave Technology, 4(3):288–297, 1986.
[41] J Wang, N Schunk, and K Petermann. Linewidth enhancement for dfb lasers due to longitudinal field dependence in the laser cavity. Electronics Letters, 23(14):715–717, 1987.
[42] B Daino, P Spano, M Tamburrini, and S Piazzolla. Phase noise and spectral lineshape in semiconductor lasers. IEEE Journal of Quantum Electronics, 19(3):266–270, 1983.
[43] Takahiro Numai and Takahiro Numai. Fundamentals of semiconductor lasers. Springer, 2015.
[44] Takanori Okoshi, Kazuro Kikuchi, and Akira Nakayama. Novel method for high-resolution measurement of laser output spectrum. Electronics letters, 16(16):630–631, 1980.
[45] Leon Cohen. The generalization of the wiener-khinchin theorem. In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), volume 3, pages 1577–1580. IEEE,1998.
[46] Mo Chen, Zhou Meng, Jianfei Wang, and Wei Chen. Ultra-narrow linewidth measurement based on voigt profile fitting. Optics express, 23(5):6803–6808, 2015.
[47] Linden B Mercer. 1/f frequency noise effects on self-heterodyne linewidth measurements. Journal of lightwave technology, 9(4):485–493, 2002.
[48] John J Olivero and RL Longbothum. Empirical fits to the voigt line width: A brief review. Journal of Quantitative Spectroscopy and Radiative Transfer, 17(2):233–236, 1977.
[49] Shihong Huang, Tao Zhu, Zhenzhou Cao, Min Liu, Ming Deng, Jianguo Liu, and Xiong Li. Laser linewidth measurement based on amplitude difference comparison of coherent envelope. IEEE Photonics Technology Letters, 28(7):759–762, 2016.
[50] Yixiong He, Shuling Hu, Shuang Liang, and Yiyue Li. High-precision narrow laser linewidth measurement based on coherent envelope demodulation. Optical Fiber Technology, 50:200–205, 2019.
[51] Stefan Spießberger. Compact semiconductor-based laser sources with narrow linewidth and high output power, volume 24. Cuvillier Verlag, 2012.
[52] Kais Dridi, Ramón Maldonado-Basilio, Abdessamad Benhsaien, Xia Zhang, and Trevor J Hall. Low-threshold and narrow linewidth two-electrode mqw laterally coupled distributed feedback lasers at 1550 nm. In European Conference and Exhibition on Optical Communication, page Mo. 1. E. 4. Optica Publishing Group, 2012.
[53] High-power laser-diode family series. Report, EXCELITAS and Editor., 2019.
[54] K. Takaki, T. Kise, K. Maruyama, N. Yamanaka, M. Funabashi, and A. Kasukawa. Reduced linewidth re-broadening by suppressing longitudinal spatial hole burning in high-power 1.55-μm continuous-wave distributed-feedback (cw-dfb) laser diodes. IEEE Journal of Quantum Electronics, 39(9):1060–1065, 2003.
[55] Kamran S. Mobarhan. No. test and characterization of laser diodes: Determination of principal parameters. 2000.
[56] Polina Sergeevna Gavrina, Aleksandr Aleksandrovich Podoskin, Ilya Vasil’evich Shushkanov, Ilya Sergeevich Shashkin, Vladislav Artemovich Kryuchkov, Sergey Olegovich Slipchenko, Nikita Alexandrovich Pikhtin, Timur Anatol’evich Bagaev, Maksim Anatol’evich Ladugin, and Aleksandr Anatol’evich Marmalyuk. The effect of the cavity length on the output optical power of semiconductor laser-thyristors based on algaas/gaas/ingaas heterostructures. Fizika i Tekhnika Poluprovodnikov, 58(2):96–105, 2024.
[57] Qingyun Xian, Hui Lv, Yucheng Yao, Sihang Wei, and Zhiqiang Zhou. High power 1.55 μm buried heterojunction distributed feedback laser with a linewidth less than 200 khz. Applied Optics, 61(36):10633–10636, 2022.
[58] Nobuhiro Nunoya, Monir Morshed, Shigeo Tamura, and Shigehisa Arai. High performance operation of gain-matched dfb lasers. Japan: Tokyo Institute of Technology, 2000.
[59] Ming‐Chiang Wu, Yu‐hwa Lo, and Shyh Wang. Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser. Applied physics letters, 52(14):1119–1121, 1988.
[60] Heikki Virtanen, Topi Uusitalo, and Mihail Dumitrescu. Simulation studies of dfb laser longitudinal structures for narrow linewidth emission. Optical and Quantum Electronics, 49(4):160, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99449-
dc.description.abstract在自動駕駛應用的驅動下,能同時提供距離與速度資訊、並具高抗擾性的FMCW LiDAR技術備受矚目,而其性能實現的關鍵為具備窄線寬之雷射光源。本論文以短腔長、窄線寬之1550奈米分佈式回饋(Distributed Feedback, DFB)雷射為主題,探討腔長對雷射性能之影響。我們比較600與900微米腔長的DFB雷射,兩顆雷射皆具備相同磊晶結構與製程條件。透過分析兩種腔長之DFB雷射在直流方面的特性,驗證此短腔長設計是否具備性能上的優勢。
為了確保線寬量測準確性,我們架設了延遲自外差干涉儀(Delayed self-heterodyne interferometer, DSHI)線寬量測平台,同時開發Python擬合工具,分析經由長延遲光纖與短延遲光纖的功率譜密度,從而精確地提取雷射的本質線寬。實驗結果明確指出,腔體長度為600微米的雷射各項性能均優於900微米的雷射。在25°C的環境溫度下,短腔長雷射展現出更低的閾值電流(8.7 mA)、更高的斜率效率(0.39 W/A)與更大的最大輸出光功率(61.5 mW),最關鍵的是實現了更窄的本質線寬,其最小值為18.04 kHz,顯著優於長腔長雷射的25.8 kHz。此外,研究也發現雷射的最小線寬會出現在其PCE達到峰值的偏壓電流點。
綜合上述,本論文成功證明,透過精心的磊晶與結構設計,短腔長DFB雷射達成更佳的輸出功率,更大的調頻範圍,更高的斜率效率,更小的閾值電流,與更窄的本質線寬。
zh_TW
dc.description.abstractDriven by autonomous driving applications, FMCW LiDAR technology has garnered significant attention for its ability to provide both distance and velocity information with high immunity to interference. The key to its performance is a laser source with a narrow linewidth. The thesis focuses on a compact size, narrow-linewidth 1550 nm DFB laser, investigating the impact of cavity length on its performance. We conducted a comparative analysis of DFB lasers with cavity lengths of 600 µm and 900 µm, both fabricated using the same epitaxial structure and process, by examining their DC characteristics to evaluate whether the compact size design offers any performance advantages.
To ensure accurate linewidth measurement, we established a DSHI platform. We also developed a Python fitting tool to precisely analyze the power spectral density from both long and short delayed fibers, enabling the accurate extraction of the DFB laser's intrinsic linewidth. The experimental results clearly show that the 600 µm laser outperforms the 900 µm design in key aspects. Specifically, at 25°C, the 600 µm laser exhibits a lower threshold current of 8.7 mA, a higher slope efficiency of 0.39 W/A, and a greater maximum output power of 61.5 mW. Most critically, the 600 µm laser achieved a narrower intrinsic linewidth, with a minimum value of 18.04 kHz, which is significantly better than the 25.8 kHz from the 900 µm laser. Furthermore, the study found that the minimum linewidth occurs at the bias current where the PCE peaks.
In summary, this thesis successfully demonstrates that with careful epitaxial and structural design, a short-cavity DFB laser can achieve higher output power, wider frequency tuning range, greater slope efficiency, a lower threshold current, and a narrower intrinsic linewidth.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:19:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:19:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements ii
摘要 iv
Abstract vi
Contents viii
List of Figures xii
List of Tables xvi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Outline 5
Chapter 2 Mechanism and Design of the Distributed Feedback Laser 7
2.1 Brief Introduction of Light Sources with Narrow Linewidth Feature 8
2.2 Mechanism of Semiconductor Lasers 10
2.2.1 The Development and Basic Conceptual Model of Semiconductor Lasers 10
2.2.2 Emission Mechanism of Semiconductor Lasers 13
2.3 Principle of DFB Lasers 18
2.3.1 Fabry-Perot Lasers 18
2.3.2 DFB Lasers 20
2.3.3 Structure of DFB Lasers 24
2.4 Design of 1550 nm Narrow Linewidth DFB Lasers 25
Chapter 3 Linewidth Measurement Methods and Setup for DFB Lasers 29
3.1 Characterization of Semiconductor Lasers Linewidth 29
3.1.1 Principles of Semiconductor Laser Linewidth 29
3.1.2 Linewidth Broadening Mechanisms in DFB Lasers 31
3.2 Laser Linewidth Measurement Methods 35
3.2.1 Introduction of Laser Linewidth Measurement Technology 35
3.2.2 Laser Linewidth Measurement Using DSHI With Long and Short-Delayed Fiber 40
3.2.2.1 Long-Delayed DSHI Method 41
3.2.2.2 Short-Delayed DSHI Method 45
3.2.3 Key Instruments Used in the DSHI Measurement Platform 48
3.3 Linewidth Measurement Results Based on Long and Short-Delayed DSHI 51
3.3.1 Discussion of Laser Linewidth Measurement Results Based on Long and Short-Delayed DSHI 51
3.3.2 Challenges in Our DSHI Linewidth Measurement Platform 53
Chapter 4 Results and Discussion on DFB Laser Measurements 55
4.1 Bonding and Basic Measurement Setup for DFB Lasers 55
4.1.1 Bonding and Packaging for DFB Lasers 56
4.1.2 Experimental Setup for L-I-V Measurement 57
4.1.3 Experimental Setup for Optical Spectrum Measurement 59
4.2 Measurement Results of 1550 nm DFB Lasers with a 600 μm Cavity Length 60
4.2.1 L-I-V Characteristics 60
4.2.2 Spectrum Characteristics 64
4.2.3 Junction Temperature 67
4.2.4 Linewidth Characteristics 71
4.3 Measurement Results of 1550 nm DFB Lasers with a 900 μm Cavity Length 75
4.3.1 L-I-V Characteristics 75
4.3.2 Spectrum Characteristics 78
4.3.3 Junction Temperature 81
4.3.4 Linewidth Characteristics 83
4.4 Impact of Cavity Length on DFB Laser Performance 86
4.4.1 Analysis of L-I-V characteristics 86
4.4.2 Analysis of Spectrum and Junction Temperature 92
4.4.3 Analysis of Linewidth Performance 95
4.4.4 Conclusion on the Impact of Cavity Length in DFB Lasers 98
Chapter 5 Conclusion 101
References 103
-
dc.language.isoen-
dc.subject分佈式回饋雷射zh_TW
dc.subject短腔長zh_TW
dc.subject窄線寬zh_TW
dc.subjectCompact Sizeen
dc.subjectDFB Laseren
dc.subjectNarrow Linewidthen
dc.title開發短腔長窄線寬之1550奈米分佈式回饋雷射zh_TW
dc.titleDevelopment of a Compact Size Narrow-Linewidth 1550 nm Distributed Feedback Laseren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳育任;張子璿;黃建璋zh_TW
dc.contributor.oralexamcommitteeYuh-Renn Wu;Tzu-Hsuan Chang;Jian-Jang Huangen
dc.subject.keyword分佈式回饋雷射,短腔長,窄線寬,zh_TW
dc.subject.keywordDFB Laser,Compact Size,Narrow Linewidth,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202500903-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved