Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99442
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉雅瑄zh_TW
dc.contributor.advisorSofia Ya-Hsuan Liouen
dc.contributor.author廖庭渝zh_TW
dc.contributor.authorTing-Yu Liaoen
dc.date.accessioned2025-09-10T16:18:04Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAllis, R. (2014). Formation Pressure as a Potential Indicator of High Stratigraphic Permeability.
Al-Yaseri, A., Ali, M., Ali, M., Taheri, R., & Wolff-Boenisch, D. (2021). Western Australia basalt-CO2-brine wettability at geo-storage conditions. Journal of Colloid and Interface Science, 603, 165–171. https://doi.org/10.1016/j.jcis.2021.06.078
Bachu, S., Gunter, W. D., & Perkins, E. H. (1994). Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Conversion and Management, 35(4), 269–279. https://doi.org/10.1016/0196-8904(94)90060-4
Beaufort, L., Probert, I., de Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & de Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83. https://doi.org/10.1038/nature10295
Cao, X., Li, Q., Xu, L., & Tan, Y. (2024). A review of in situ carbon mineralization in basalt. Journal of Rock Mechanics and Geotechnical Engineering, 16(4), 1467–1485.https://doi.org/10.1016/j.jrmge.2023.11.010
Chandra, J., Upadhyay, D., Patel, A. K., & Mishra, B. (2024). Involvement of syn–, para– and post–magmatic hydrothermal fluids in the alteration of the Kamthai carbonatite complex (India): Insights from in-situ measured 87Sr/86Sr isotope and trace element composition of calcite. Geochemistry, 84(4), 126216. https://doi.org/10.1016/j.chemer.2024.126216
Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Aradóttir, E. S., & Gíslason, S. R. (2020). CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 °C. Geochimica et Cosmochimica Acta, 279, 45–66. https://doi.org/10.1016/j.gca.2020.03.039
Crippa, M., Guizzardi, D., Pagani, F., Banja, M., Muntean, M., Schaaf, E., Becker, W., Monforti, F., Quadrelli, R., A., R., P., T.-M., J., koykka, Grassi, G., Rossi, S., melo, brandao, Oom, D., Branco, A., San-Miguel-Ayanz, J., & Vignati, E. (2023). GHG emissions of all world countries. https://doi.org/10.2760/953332
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., & Allègre, C. J. (2003). Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology, 202(3), 257–273. https://doi.org/10.1016/j.chemgeo.2002.10.001
Drake, H., Kooijman, E., & Kielman-Schmitt, M. (2020). Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures. Geosciences, 10(9), Article 9. https://doi.org/10.3390/geosciences10090345
European Commission. (2024). Commission to invest €865 million under CEF [Text]. European Commission - European Commission. https://ec.europa.eu/commission/presscorner/detail/en/ip_24_5203
François M. M. Morel, Janet G. Hering. (1993). Principles and Applications of Aquatic Chemistry | Wiley. Wiley.Com. https://www.wiley.com/en-us/Principles+and+Applications+of+Aquatic+Chemistry-p-9780471548966
Frape, S. K., Blyth, A., Blomqvist, R., McNutt, R. H., & Gascoyne, M. (2003). Deep Fluids in the Continents: II. Crystalline Rocks. Treatise on Geochemistry, 5, 605. https://doi.org/10.1016/B0-08-043751-6/05086-6
Giammar, D. E., Bruant, R. G., & Peters, C. A. (2005). Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chemical Geology, 217(3), 257–276. https://doi.org/10.1016/j.chemgeo.2004.12.013
Gislason, S. R., Broecker, W. S., Gunnlaugsson, E., Snæbjörnsdóttir, S., Mesfin, K. G., Alfredsson, H. A., Aradottir, E. S., Sigfusson, B., Gunnarsson, I., Stute, M., Matter, J. M., Arnarson, M. Th., Galeczka, I. M., Gudbrandsson, S., Stockman, G., Boenisch, D. W.-, Stefansson, A., Ragnheidardottir, E., Flaathen, T., … Oelkers, E. H. (2014). Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia, 63, 4561–4574. https://doi.org/10.1016/j.egypro.2014.11.489
Gíslason, S. R., Sigurdardóttir, H., Aradóttir, E. S., & Oelkers, E. H. (2018). A brief history of CarbFix: Challenges and victories of the project’s pilot phase. Energy Procedia, 146, 103–114. https://doi.org/10.1016/j.egypro.2018.07.014
Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2011). An experimental study of crystalline basalt dissolution from 2 ⩽ pH ⩽ 11 and temperatures from 5 to 75 °C. Geochimica et Cosmochimica Acta, 75(19), 5496–5509. https://doi.org/10.1016/j.gca.2011.06.035
Gunnarsson, I., Aradóttir, E. S., Oelkers, E. H., Clark, D. E., Arnarson, M. Þ., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Matter, J. M., Stute, M., Júlíusson, B. M., & Gíslason, S. R. (2018). The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site. International Journal of Greenhouse Gas Control, 79, 117–126. https://doi.org/10.1016/j.ijggc.2018.08.014
Gysi, A. P., & Stefánsson, A. (2012). CO2-water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochimica et Cosmochimica Acta, 81, 129–152. https://doi.org/10.1016/j.gca.2011.12.012
Han, Y. S., Hadiko, G., Fuji, M., & Takahashi, M. (2005). Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method. Journal of Crystal Growth, 276(3), 541–548. https://doi.org/10.1016/j.jcrysgro.2004.11.408
Hosseini, T., Selomulya, C., Haque, N., & Zhang, L. (2015). Investigating the Effect of Mg2+/Ca2+ Molar Ratio on the Carbonate Speciation during the Mild Mineral Carbonation Process at Atmospheric Pressure. Energy & Fuels, 29. https://doi.org/10.1021/acs.energyfuels.5b01609
Iacovino, K., & Gouard, C. (2021). TAS Diagram Plotter (Version 3.0) [Computer software]. Zenodo. https://doi.org/10.5281/zenodo.5907859
Institute, G. C. (2023). Global Status of CCS 2023—Scaling Up Through 2030. https://status23.globalccsinstitute.com/
Intergovernmental Panel on Climate Change (IPCC). (2005). Carbon Dioxide Capture and Storage—IPCC. B. Metz, O. Davidson, H. de Coninck, M. Loos, & L. Meyer (Eds.). Cambridge University Press.
Irvine, T. N., & Baragar, W. R. A. (1971, May 10). A Guide to the Chemical Classification of the Common Volcanic Rocks. https://cdnsciencepub.com/doi/10.1139/e71-055
Jagniecki, E. A., Jenkins, D. M., Lowenstein, T. K., & Carroll, A. R. (2013). Experimental study of shortite (Na2Ca2(CO3)3) formation and application to the burial history of the Wilkins Peak Member, Green River Basin, Wyoming, USA. Geochimica et Cosmochimica Acta, 115, 31–45. https://doi.org/10.1016/j.gca.2013.04.005
Juanes, R., Spiteri, E. J., Orr Jr., F. M., & Blunt, M. J. (2006). Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 42(12). https://doi.org/10.1029/2005WR004806
Kikuchi, S., Wang, J., Dandar, O., Uno, M., Watanabe, N., Hirano, N., & Tsuchiya, N. (2023). NaHCO3 as a carrier of CO2 and its enhancement effect on mineralization during hydrothermal alteration of basalt. Frontiers in Environmental Science, 11. https://www.frontiersin.org/articles/10.3389/fenvs.2023.1138007
Kim, K., Kim, D., Na, Y., Song, Y., & Wang, J. (2023). A review of carbon mineralization mechanism during geological CO2 storage. Heliyon, 9(12), e23135. https://doi.org/10.1016/j.heliyon.2023.e23135
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., & Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), 1153–1170. https://doi.org/10.1016/0360-5442(95)00071-N
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B., & Bateman, P. (Eds.). (2002). Igneous Rocks: A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511535581
Li, Q., Liu, G., Li, X., & Chen, Z. (2022). Intergenerational Evolution and Presupposition of CCUS Technology from a Multidimensional Perspective. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 54(1), 157–166. Scopus. https://doi.org/10.15961/j.jsuese.202100765
Lu, P., Apps, J., Zhang, G., Gysi, A., & Zhu, C. (2024). Knowledge gaps and research needs for modeling CO2 mineralization in the basalt-CO2-water system: A review of laboratory experiments. Earth-Science Reviews, 104813. https://doi.org/10.1016/j.earscirev.2024.104813
Luo, J., Xie, Y., Hou, M. Z., Xiong, Y., Wu, X., Lüddeke, C., & Huang, L. (2023). Advances in subsea carbon dioxide utilization and storage. Energy Reviews, 2, 100016. https://doi.org/10.1016/j.enrev.2023.100016
Marieni, C., Matter, J. M., & Teagle, D. A. H. (2020). Experimental study on mafic rock dissolution rates within CO2-seawater-rock systems. Geochimica et Cosmochimica Acta, 272, 259–275. https://doi.org/10.1016/j.gca.2020.01.004
Matter, J., Stute, M., Snæbjörnsdóttir, S. Ó., Oelkers, E., Gislason, S., Aradottir, E., Sigfusson, B., Gunnarsson, I., Sigurdardottir, H., Gunnlaugsson, E., Axelsson, G., Alfredsson, H., Wolff-Boenisch, D., Mesfin, K., F. Reguera, D., Hall, J., Dideriksen, K., & Broecker, W. (2016). Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352. https://doi.org/10.1126/science.aad8132
McGrail, B. P., Schaef, H. T., Spane, F. A., Horner, J. A., Owen, A. T., Cliff, J. B., Qafoku, O., Thompson, C. J., & Sullivan, E. C. (2017). Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions. Energy Procedia, 114, 5783–5790. https://doi.org/10.1016/j.egypro.2017.03.1716
McGrail, B. P., Spane, F. A., Amonette, J. E., Thompson, C. R., & Brown, C. F. (2014). Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63, 2939–2948. https://doi.org/10.1016/j.egypro.2014.11.316
Meiyuchang, K. M. de svg: U. / derivative work: (2010). Carbonate system of seawater [Graphic]. Karbonatsystem Meerwasser de.svg. https://commons.wikimedia.org/wiki/File:Carbonate_system_of_seawater.svg#metadata
Mougoyannis, P. (2016). Reactive CaCO3 Nucleation and Nanoparticles Growth in Non-Aqueous Phase. https://doi.org/10.13140/RG.2.2.30457.16488
Oelkers, E. H., & Cole, D. R. (2008). Carbon Dioxide Sequestration A Solution to a Global Problem. Elements, 4(5), 305–310. https://doi.org/10.2113/gselements.4.5.305
Oelkers, E. H., & Gislason, S. R. (2001). The mechanism, rates and consequences of basaltic glass dissolution: I. An experimental study of the dissolution rates of basaltic glass as a function of aqueous Al, Si and oxalic acid concentration at 25°C and pH = 3 and 11. Geochimica et Cosmochimica Acta, 65(21), 3671–3681. https://doi.org/10.1016/S0016-7037(01)00664-0
Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral carbonation of CO2. Elements, 4(5), Article 5. https://doi.org/10.2113/gselements.4.5.333
Pan, Y., Liu, Y., Hou, Z., Sun, Q., Jiao, N., Dong, G., Liu, J., Yang, G., Zhang, H., Jia, H., & Huang, H. (2025). Laboratory experiments of carbon mineralization potential of the main terrestrial basalt reservoirs in China. Geoscience Frontiers, 16(1), 101961. https://doi.org/10.1016/j.gsf.2024.101961
Rimstidt, J. D., Brantley, S. L., & Olsen, A. A. (2012). Systematic review of forsterite dissolution rate data. Geochimica et Cosmochimica Acta, 99, 159–178. https://doi.org/10.1016/j.gca.2012.09.019
Shibuya, T., Yoshizaki, M., Masaki, Y., Suzuki, K., Takai, K., & Russell, M. J. (2013). Reactions between basalt and CO2-rich seawater at 250 and 350 °C, 500 bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chemical Geology, 359, 1–9. https://doi.org/10.1016/j.chemgeo.2013.08.044
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E. H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1(2), 90–102. https://doi.org/10.1038/s43017-019-0011-8
Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y., & Wang, J. (2023). Geomechanical challenges during geological CO2 storage: A review. Chemical Engineering Journal, 456, 140968. https://doi.org/10.1016/j.cej.2022.140968
Spielmann, J., Braig, D., Streck, A., Gustmann, T., Kuhn, C., Reinauer, F., Kurnosov, A., Leubner, O., Potapkin, V., Hasse, C., Deutschmann, O., M. Etzold, B. J., Scholtissek, A., & I. Kramm, U. (2024). Exploring the oxidation behavior of undiluted and diluted iron particles for energy storage: Mössbauer spectroscopic analysis and kinetic modeling. Physical Chemistry Chemical Physics, 26(17), 13049–13060. https://doi.org/10.1039/D3CP03484D
Teir, S. (2008). Fixation of Carbon Dioxide by Producing Carbonations from Minerals and Steelmaking Slags.
Voigt, M., Marieni, C., Baldermann, A., Galeczka, I. M., Wolff-Boenisch, D., Oelkers, E. H., & Gislason, S. R. (2021). An experimental study of basalt–seawater–CO2 interaction at 130 °C. Geochimica et Cosmochimica Acta, 308, 21–41. https://doi.org/10.1016/j.gca.2021.05.056
Wang, J., Watanabe, N., Inomoto, K., Kamitakahara, M., Nakamura, K., Komai, T., & Tsuchiya, N. (2021). Enhancement of aragonite mineralization with a chelating agent for CO2 storage and utilization at low to moderate temperatures. Scientific Reports, 11(1), 13956. https://doi.org/10.1038/s41598-021-93550-9
White, S. K., Spane, F. A., Schaef, H. T., Miller, Q. R. S., White, M. D., Horner, J. A., & McGrail, B. P. (2020). Quantification of CO2 Mineralization at the Wallula Basalt Pilot Project. Environmental Science & Technology, 54(22), 14609–14616. https://doi.org/10.1021/acs.est.0c05142
Wolff-Boenisch, D., & Galeczka, I. M. (2018). Flow-through reactor experiments on basalt-(sea)water-CO2 reactions at 90 °C and neutral pH. What happens to the basalt pore space under post-injection conditions? International Journal of Greenhouse Gas Control, 68, 176–190. https://doi.org/10.1016/j.ijggc.2017.11.013
Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2006). The effect of crystallinity on dissolution rates and CO2 consumption capacity of silicates. Geochimica et Cosmochimica Acta, 70(4), 858–870. https://doi.org/10.1016/j.gca.2005.10.016
Wolff-Boenisch, D., Wenau, S., Gislason, S. R., & Oelkers, E. H. (2011). Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral sequestration of carbon dioxide. Geochimica et Cosmochimica Acta, 75(19), 5510–5525. https://doi.org/10.1016/j.gca.2011.07.004
Xu, L., Li, Q., Myers, M., Chen, Q., & Li, X. (2019). Application of nuclear magnetic resonance technology to carbon capture, utilization and storage: A review. Journal of Rock Mechanics and Geotechnical Engineering, 11(4), 892–908. https://doi.org/10.1016/j.jrmge.2019.01.003
李寄隅. (1994). 澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化. 國立臺灣大學地質科學研究所博士論文.
蕭賢毅. (2024). 澎湖鹼性玄武岩二氧化碳礦化封存岩水試驗. 國立臺灣大學地質科學系碩士論文.
行政院國家永續發展委員會. (2022). 臺灣2050淨零排放路徑及策略總說明. 行政院國家永續發展委員會. https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path
顏一勤、李寄嵎. (2017). 澎湖群島[臺灣地質圖幅及說明書1/50,000]第二版. 經濟部中央地質調查所.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99442-
dc.description.abstract自工業革命以來,化石燃料大量燃燒導致大氣中二氧化碳(carbon dioxide, CO2)濃度上升,氣候變遷日益加劇,凸顯淨零排放的迫切性。在臺灣 2050 淨零排放路徑中,碳捕捉與封存(Carbon Capture and Storage, CCS)技術被視為長期減碳關鍵,近幾年CCS於全球快速擴展,各國亦積極推動相關政策與技術開發。其中碳封存可依方法分為海洋封存(ocean storage)、地質封存(geological storage)與礦化封存(mineral storage),後者因具高穩定與安全性而備受關注。其反應機制為礦物碳酸化(mineral carbonation),即將CO2與含鎂或含鈣的矽酸鹽礦物(玄武岩)進行反應,生成熱力學穩定的碳酸鹽礦物(碳酸鈣CaCO3、碳酸鎂MgCO3),使碳以固態形式長期固定於礦物中,達到碳封存之目的。目前冰島CarbFix計畫已驗證其可行性,惟該技術需消耗大量淡水資源,若以富含陽離子(鈣Ca2+、鎂Mg2+等)之環境水體替代淡水,進行二氧化碳、水體與玄武岩之礦化反應,除可減少用水競爭與衝突,亦能促進碳酸鹽生成、提升封存效率。
本研究模擬常壓(PCO2=1 atm)反應時間140 天與高壓(PCO2=1000、1500、2000 psi) 反應時間14 天條件下,水體、CO2與玄武岩之礦化反應,探討不同參數條件與環境水體(超純水、海水與鹵水)對礦化封存效率與反應動力學之影響。常壓部分比較封閉與連續採樣系統,結果顯示封閉系統反應平衡穩定,以淡水組70 天為例,在封閉與連續採樣系統玄武岩分別溶出了Mg2+濃度41.84與17.68 mmol/kg,可觀察封閉系統玄武岩溶解效果較佳,能促進碳酸鹽生成,高壓實驗亦採用此設計。高壓條件下,CO2轉為液相提高其在水中溶解度,進而與環境水體中(海水、鹵水)之Mg2+、Ca2+或玄武岩溶出到溶液之Mg2+、Ca2+、鐵Fe2+等陽離子反應生成碳酸鹽沉澱。因玄武岩在反應過程中會溶出金屬陽離子進而影響pH值,所以以pH值變化與陽離子濃度上升作為反應動力指標,常壓下淡水組Mg2+濃度最高達22 mmol/kg,與pH上升趨勢一致,反映玄武岩持續溶解。特別的是,在淡水組別中觀察到Ca²⁺濃度上升緩慢,而海水與鹵水組別中Ca²⁺濃度反而下降,推測在鹽水反應下有碳酸鈣沉澱生成,進一步以X光粉末繞射儀(X-ray diffractometer, XRD)分析確認產物,鹵水常壓反應140 天後之玄武岩粉末可辨識出方解石,特徵峰位於29.6°(2θ)處,與Tilleyite碳酸鹽類特徵峰,證實沉澱生成。
高壓條件下反應進程顯著加快,可透過矽Si4+濃度變化觀察,因其代表玄武岩礦物的溶解情形,在常壓淡水組Si4+上升至0.85 mmol/kg,而高壓淡水組僅14天便達3.04 mmol/kg。進一步以XRD分析確認反應產物,高壓反應後之玄武岩皆可辨識出碳酸鹽類特徵峰,其中Tilleyite、Shortite及Natrite等複碳酸鹽礦物並非玄武岩中的原生相,推測為高壓反應過程中新生成的碳酸鹽礦物。最後,熱重分析結果可估算碳酸鈣平均生成速率,在常壓140 天反應時間內,鹵水為0.058 g/day;而高壓在14 天內1000 psi鹵水亦為0.058 g/day、淡水為0.016 g/day,顯示高壓可於短時間內提升反應效率,並且鹵水能有效促進碳酸鹽生成、提高封存效率。綜合各項分析結果可知,1000 psi鹵水組別在碳酸鹽生成量、反應速率與礦物特徵辨識上皆表現最佳,為本研究中最具潛力之礦化封存條件。本研究結果可提供最適礦化封存參數,並為臺灣碳封存與負碳技術發展提供實證依據。
zh_TW
dc.description.abstractSince the Industrial Revolution, the extensive combustion of fossil fuels has led to a significant rise in atmospheric carbon dioxide (carbon dioxide, CO2) concentrations, intensifying climate change and highlighting the urgent need for net-zero emissions. In Taiwan’s 2050 net-zero pathway, Carbon Capture and Storage (CCS) technology is considered a key long-term strategy for carbon reduction. In recent years, CCS has rapidly expanded globally, with various countries actively advancing related policies and technological developments. Carbon storage methods can be categorized into ocean storage, geological storage, and mineral storage. Among these, mineral storage has gained considerable attention due to its high stability and safety. Its mechanism is based on mineral carbonation, where CO2 reacts with magnesium- or calcium-bearing silicate minerals (e.g., basalt) to form thermodynamically stable carbonate minerals (CaCO3, MgCO3), enabling long-term solid-state carbon fixation. The feasibility of this approach has been demonstrated in Iceland’s CarbFix project; however, it requires large volumes of freshwater. Replacing freshwater with ion-rich environmental waters (e.g., seawater or brine) may not only reduce water competition and conflict but also enhance carbonate formation and storage efficiency.
This study simulates the mineral carbonation of CO2, water, and basalt under atmospheric pressure (PCO2=1 atm) for 140 days and high-pressure conditions (PCO2=1000, 1500, 2000 psi) for 14 days, aiming to investigate the effects of different parameters and water types (ultrapure water, seawater, and brine) on mineral carbonation efficiency and reaction kinetics. Under atmospheric conditions, both closed and continuous sampling systems were compared. The closed system demonstrated better equilibrium maintenance and enhanced basalt dissolution. For instance, in the freshwater group after 70 days, Mg2+ concentrations reached 41.84 mmol/kg in the closed system compared to 17.68 mmol/kg in the continuous sampling system, indicating that closed systems better promote carbonate formation. This design was also adopted for high-pressure experiments.
Under high-pressure conditions, CO2 transitions into the liquid phase, increasing its solubility in water and facilitating reactions with Mg2+ and Ca2+ from the water or those leached from basalt (including Fe2+), resulting in carbonate precipitation. Since basalt dissolution alters pH due to the release of metal cations, changes in pH and ion concentrations were used as indicators of reaction kinetics. In the atmospheric-pressure freshwater group, Mg2+ reached up to 22 mmol/kg, accompanied by a pH increase, indicating continued basalt dissolution. Notably, Ca2+ concentrations rose slowly in the freshwater group but decreased in seawater and brine groups, suggesting CaCO3 precipitation. X-ray diffractometer (XRD) analysis confirmed the formation of calcite (peak at 29.6° 2θ) and Tilleyite in the brine group after 140 days under atmospheric conditions.
Under high-pressure conditions, the reaction rate was significantly accelerated, as evidenced by the increase in Si4+ concentration, which reflects basalt dissolution. In the atmospheric-pressure freshwater group, Si4+ reached 0.85 mmol/kg, while under high pressure, it reached 3.04 mmol/kg in just 14 days. XRD analysis of post-reaction basalt revealed distinct peaks of carbonate minerals, including Tilleyite, Shortite, and Natrite, none of which are primary phases in basalt, suggesting the formation of new secondary carbonates under high-pressure conditions. Thermogravimetric analysis estimated average CaCO3 formation rates: under atmospheric conditions, brine yielded 0.058 g/day; under high pressure (1000 psi), the brine group maintained 0.058 g/day, and freshwater reached 0.016 g/day. These results indicate that high pressure effectively enhances reaction efficiency within a short period, and ion-rich brine can further promote carbonate precipitation and improve storage performance.
In summary, the 1000 psi brine group demonstrated the highest performance in carbonate yield, reaction rate, and mineral identification, representing the most promising mineral carbonation condition in this study. These findings offer valuable insights into optimal mineral carbonation parameters and provide empirical support for advancing carbon storage and negative emissions technologies in Taiwan.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:18:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:18:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract V
目次 VII
圖次 XI
表次 XVI
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3研究目的 4
第二章 文獻回顧與探討 5
2.1 碳捕捉與封存技術 5
2.1.1海洋封存 9
2.1.2地質封存與機制 12
2.1.3礦化封存 16
2.2玄武岩礦化封存 18
2.3澎湖地區地質特徵概覽 25
第三章 研究方法與步驟 33
3.1實驗架構 33
3.2研究材料與前處理 35
3.2.1岩石樣品 35
3.2.2環境水體樣品 38
3.3實驗設計與方法 41
3.3.1常壓礦化封存反應動力實驗系統 43
3.3.2高壓礦化封存反應動力實驗系統 45
3.4實驗量測設備 48
3.4.1反應溶液樣品分析 48
3.4.1.1桌上型酸鹼計 48
3.4.1.2感應耦合電漿光學放射光譜儀(ICP-OES) 49
3.4.2岩石粉末樣品分析 50
3.4.2.1 X光粉末繞射儀(X-ray diffractometer, XRD) 50
3.4.2.2 X射線螢光光譜儀(X-ray Fluorescence Spectrometer, XRF) 51
3.4.2.3 比表面積分析儀(BET) 51
3.4.2.4 熱重分析儀(Thermogravimetric Analysis, TGA) 52
3.4.2.5 場發射掃描式電子顯微鏡及能量分散式光譜分析儀(Scanning Electron Microscope and Energy Dispersive Spectrometer, SEM-EDS) 52
3.4.2.6 雷射拉曼光譜儀(Raman Spectrometer) 53
第四章 數據分析與討論 55
4.1玄武岩物化特性分析 55
4.1.1 X 射線螢光光譜分析 55
4.1.2粉末X射線繞射分析 58
4.1.3比表面積分析 59
4.2常壓礦化封存反應動力分析 60
4.2.1反應溶液酸鹼值變化 60
4.2.2反應溶液主要陽離子溶出行為 64
4.2.3總無機碳累積 72
4.2.4沉澱物形成趨勢 74
4.2.5沉澱物礦物相鑑定 78
4.2.6沉澱物碳酸鹽含量定量分析 79
4.3高壓礦化封存反應動力分析 83
4.3.1反應溶液酸鹼值變化 83
4.3.2反應溶液主要陽離子溶出行為 85
4.3.3沉澱物形成趨勢 91
4.3.4沉澱物礦物相鑑定 95
4.3.5沉澱物中碳酸鹽含量定量分析 98
4.3.6 碳酸鹽特徵峰分析 100
4.3.7 同步輻射鈣元素多形態結晶分析 102
4.3.8碳酸鈣形成來源判釋 104
第五章 結論 109
5.1總結 109
5.2研究建議 111
參考文獻 112
-
dc.language.isozh_TW-
dc.subject碳封存zh_TW
dc.subject礦化封存zh_TW
dc.subject玄武岩zh_TW
dc.subject加速礦化zh_TW
dc.subject環境水體zh_TW
dc.subjectCarbon storageen
dc.subjectenvironmental water bodiesen
dc.subjectmineral carbonationen
dc.subjectbasalten
dc.title玄武岩之二氧化碳礦化封存:常壓與模擬現地高壓環境與灌注水源礦化反應分析zh_TW
dc.titleCO2 Mineral Sequestration in Basalt: Comparative Analysis of Mineralization Reactions under Ambient and Simulated In-situ High-pressure Conditions with Various Injection Watersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor楊汶達zh_TW
dc.contributor.coadvisorWen-Ta Yangen
dc.contributor.oralexamcommittee高立誠;林逸彬zh_TW
dc.contributor.oralexamcommitteeLi-Cheng Kao;Yi-Pin Linen
dc.subject.keyword碳封存,礦化封存,玄武岩,加速礦化,環境水體,zh_TW
dc.subject.keywordCarbon storage,basalt,mineral carbonation,environmental water bodies,en
dc.relation.page121-
dc.identifier.doi10.6342/NTU202501314-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-liftN/A-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
17.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved