請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張翠玉 | zh_TW |
| dc.contributor.advisor | Emmy Tsui-Yu Chang | en |
| dc.contributor.author | 賴念楨 | zh_TW |
| dc.contributor.author | Nian-Jhen Lai | en |
| dc.date.accessioned | 2025-09-10T16:17:41Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Albarello, D., Herak, M., Lunedei, E., Paolucci, E., & Tanzini, A. (2023). Simulating H/V spectral ratios (HVSR) of ambient vibrations: a comparison among numerical models. Geophysical Journal International, 234(2), 870-878. https://doi.org/10.1093/gji/ggad109
Bignardi, S., Mantovani, A., & Abu Zeid, N. (2016). OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences, 93, 103-113. https://doi.org/10.1016/j.cageo.2016.05.009 Chatelain, J. L., & Guillier, B. (2013). Reliable Fundamental Frequencies of Soils and Buildings Down to 0.1 Hz Obtained from Ambient Vibration Recordings with a 4.5-Hz Sensor. Seismological Research Letters, 84(2), 199-209. https://doi.org/10.1785/0220120003 Cornard, P. H., Moernaut, J., Moore, G. F., Kioka, A., Kopf, A., dos Santos Ferreira, C., & Strasser, M. (2022). Sequence stratigraphic evolution of the Kumano forearc basin during the last deglaciation: Influence of eustasy and tectonically-controlled shelf morphology on deep-marine sediment dynamics. Sedimentary Geology, 430. https://doi.org/10.1016/j.sedgeo.2022.106100 Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. kdd, Expedition 315 Scientists. (2009). Expedition 315 Site C0001. In M. T. H. A. J. K. G. L. S. S. E. J. C. D. M. H. M. K. T. Kinoshita & S. the Expedition (Eds.), Proceedings of the Integrated Ocean Drilling Program (Vol. 314/315/316). Integrated Ocean Drilling Program Management International, Inc. https://doi.org/https://doi.org/10.2204/iodp.proc.314315316.123.2009 Herak, M. (2008). ModelHVSR—A Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences, 34(11), 1514-1526. https://doi.org/10.1016/j.cageo.2007.07.009 Hino, R., Tsuji, T., Bangs, N. L., Sanada, Y., Park, J.-O., von Huene, R., Moore, G. F., Araki, E., & Kinoshita, M. (2015). QP structure of the accretionary wedge in the Kumano Basin, Nankai Trough, Japan, revealed by long-offset walk-away VSP. Earth, Planets and Space, 67(1). https://doi.org/10.1186/s40623-014-0175-x Ike, T., Moore, G. F., Kuramoto, S. i., Park, J. O., Kaneda, Y., & Taira, A. (2008). Variations in sediment thickness and type along the northern Philippine Sea Plate at the Nankai Trough. Island Arc, 17(3), 342-357. https://doi.org/10.1111/j.1440-1738.2008.00624.x Kawase, H., Nagashima, F., Nakano, K., & Mori, Y. (2019). Direct evaluation of S-wave amplification factors from microtremor H/V ratios: Double empirical corrections to “Nakamura” method. Soil Dynamics and Earthquake Engineering, 126. https://doi.org/10.1016/j.soildyn.2018.01.049 Kimura, G., Nakamura, Y., Shiraishi, K., Fujie, G., Kodaira, S., Tsuji, T., Fukuchi, R., & Yamaguchi, A. (2022). Nankai Forearc Structural and Seismogenic Segmentation Caused by a Magmatic Intrusion off the Kii Peninsula. Geochemistry, Geophysics, Geosystems, 23(8). https://doi.org/10.1029/2022gc010331 Kodaira, S., Iidaka, T., Nakanishi, A., Park, J.-O., Iwasaki, T., & Kaneda, Y. (2005). Onshore-offshore seismic transect from the eastern Nankai Trough to central Japan crossing a zone of the Tokai slow slip event. Earth, Planets and Space, 57(10), 943-959. Konno, K., & Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228-241. Krylov, A. A., Kulikov, M. E., Kovachev, S. A., Medvedev, I. P., Lobkovsky, L. I., & Semiletov, I. P. (2022). Peculiarities of the HVSR Method Application to Seismic Records Obtained by Ocean-Bottom Seismographs in the Arctic. Applied Sciences, 12(19). https://doi.org/10.3390/app12199576 Lachet, C., & Bard, P. (1995). Theoretical investigations on the Nakamura's technique. Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation? Bulletin of the Seismological Society of America, 84(5), 1350-1364. Lunedei, E., & Albarello, D. (2009). On the seismic noise wavefield in a weakly dissipative layered Earth. Geophysical Journal International, 177(3), 1001-1014. https://doi.org/10.1111/j.1365-246X.2008.04062.x Lunedei, E., & Albarello, D. (2010). Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2010.04560.x MacFerrin, M., Amante, C., Carignan, K., Love, M., & Lim, E. (2025). The Earth Topography 2022 (ETOPO 2022) global DEM dataset. Earth Syst. Sci. Data, 17(5), 1835-1849. https://doi.org/10.5194/essd-17-1835-2025 MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, Malischewsky, P. G., & Scherbaum, F. (2004). Love’s formula and H/V-ratio (ellipticity) of Rayleigh waves. Wave Motion, 40(1), 57-67. https://doi.org/10.1016/j.wavemoti.2003.12.015 Miyazaki, S. i., & Heki, K. (2001). Crustal velocity field of southwest Japan: Subduction and arc‐arc collision. Journal of Geophysical Research: Solid Earth, 106(B3), 4305-4326. Molnar, S., Sirohey, A., Assaf, J., Bard, P. Y., Castellaro, S., Cornou, C., Cox, B., Guillier, B., Hassani, B., Kawase, H., Matsushima, S., Sánchez-Sesma, F. J., & Yong, A. (2022). A review of the microtremor horizontal-to-vertical spectral ratio (MHVSR) method. Journal of Seismology, 26(4), 653-685. https://doi.org/10.1007/s10950-021-10062-9 Moore, G. F., Boston, B. B., Strasser, M., Underwood, M. B., & Ratliff, R. A. (2015). Evolution of tectono-sedimentary systems in the Kumano Basin, Nankai Trough forearc. Marine and Petroleum Geology, 67, 604-616. https://doi.org/10.1016/j.marpetgeo.2015.05.032 Moore, G. F., Taira, A., Klaus, A., Becker, L., Boeckel, B., Cragg, B. A., Dean, A., Fergusson, C. L., Henry, P., & Hirano, S. (2001). New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochemistry, Geophysics, Geosystems, 2(10). Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1). Nakanishi, A., Kodaira, S., Miura, S., Ito, A., Sato, T., Park, J. O., Kido, Y., & Kaneda, Y. (2008). Detailed structural image around splay‐fault branching in the Nankai subduction seismogenic zone: Results from a high‐density ocean bottom seismic survey. Journal of Geophysical Research: Solid Earth, 113(B3). https://doi.org/10.1029/2007jb004974 Okino, K., Shimakawa, Y., & Nagaoka, S. (1994). Evolution of the Shikoku basin. Journal of geomagnetism and geoelectricity, 46(6), 463-479. Sánchez-Sesma, F. J., Rodríguez, M., Iturrarán-Viveros, U., Luzón, F., Campillo, M., Margerin, L., García-Jerez, A., Suarez, M., Santoyo, M. A., & Rodriguez-Castellanos, A. (2011). A theory for microtremor H/V spectral ratio: application for a layered medium. Geophysical Journal International, 186(1), 221-225. Schumann, K., Stipp, M., Behrmann, J. H., Klaeschen, D., & Schulte-Kortnack, D. (2014). PandSwave velocity measurements of water-rich sediments from the Nankai Trough, Japan. Journal of Geophysical Research: Solid Earth, 119(2), 787-805. https://doi.org/10.1002/2013jb010290 Sesame. (2004). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. Measurements, processing and interpretation. Site EffectS assessment using AMbient Excitations SESAME European Research Project, France. Strasser, M., Moore, G. F., Kimura, G., Kopf, A. J., Underwood, M. B., Guo, J., & Screaton, E. J. (2011). Slumping and mass transport deposition in the Nankai fore arc: Evidence from IODP drilling and 3‐D reflection seismic data. Geochemistry, Geophysics, Geosystems, 12(5). https://doi.org/10.1029/2010gc003431 Taira, A. (1985). Turbidite sedimentation in the Nankai Trough as interpreted from magnetic fabric, grain size and detrital modal analyses. Initial Reports of the Deep Sea Drilling Project, 87, 611-632. Tobin, H., Hirose, T., Ikari, M., Kanagawa, K., Kimura, G., Kinoshita, M., Kitajima, H., Saffer, D., Yamaguchi, A., Eguchi, N., Maeda, L., Toczko, S., Bedford, J., Chiyonobu, S., Colson, T. A., Conin, M., Cornard, P. H., Dielforder, A., Doan, M. L.,…Saito, S. (2020). Expedition 358 summary. In Volume 358: NanTroSEIZE Plate Boundary Deep Riser 4: Nankai Seismogenic/Slow Slip Megathrust. https://doi.org/10.14379/iodp.proc.358.101.2020 Tsai, N., & Housner, G. (1970). Calculation of surface motions of a layered half-space. Bulletin of the Seismological Society of America, 60(5), 1625-1651. Tsuji, T., Dvorkin, J., Mavko, G., Nakata, N., Matsuoka, T., Nakanishi, A., Kodaira, S., & Nishizawa, O. (2011). VP/VS ratio and shear-wave splitting in the Nankai Trough seismogenic zone: Insights into effective stress, pore pressure, and sediment consolidation. Geophysics, 76(3), WA71-WA82. Wang, Z., Seth Carpenter, N., & Woolery, E. W. (2019). Horizontal-to-vertical spectral ratio of S-waves and SH-wave transfer functions at the vertical seismic and strong-motion arrays in the Central United States. Journal of Applied Geophysics, 162, 64-71. https://doi.org/https://doi.org/10.1016/j.jappgeo.2018.10.017 Wathelet, M., Savvaidis, A., Ohrnberger, M., Guillier, B., Giulio, G. D., Cornou, C., & Chatelain, J.-L. (2020). Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismological Research Letters, 91(3), 1878-1889. https://doi.org/10.1785/0220190360 Xu, J., & Kono, Y. (2002). Geometry of slab, intraslab stress field and its tectonic implication in the Nankai trough, Japan. Earth, Planets and Space, 54, 733-742. Yamamoto, Y., Takahashi, T., Kaiho, Y., Obana, K., Nakanishi, A., Kodaira, S., & Kaneda, Y. (2017). Seismic structure off the Kii Peninsula, Japan, deduced from passive- and active-source seismographic data. Earth and Planetary Science Letters, 461, 163-175. https://doi.org/10.1016/j.epsl.2017.01.003 Zhu, C., Pilz, M., & Cotton, F. (2020). Evaluation of a novel application of earthquake HVSR in site-specific amplification estimation. Soil Dynamics and Earthquake Engineering, 139. https://doi.org/10.1016/j.soildyn.2020.106301 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99440 | - |
| dc.description.abstract | 本研究分析2011年9–12月於紀伊半島外海布放之 147 部海底地震儀三分量環境噪訊,應用地震噪訊H/V頻譜比分析 (Horizontal-to-Vertical Spectral Ratio analysis, HVSR) 解析海床淺層構造。當地震波在地層傳播時,在不同波速阻抗的界面上發生反射和折射。當剪力波經過有明顯阻抗差異的界面時,水平方向的振動會產生共振效應。因此將水平頻譜除以垂直頻譜,其能量波峰對應此地層的共振頻率,稱為波峰頻率。因此可根據波峰頻率估算主要速度變化層 (通常為沉積層) 的波速與厚度。
研究區域位於菲律賓海板塊隱沒至歐亞大陸板塊的聚合邊界南海海槽,測站分布在4條縱向跨越弧前盆地 (熊野弧前盆地及室戶弧前盆地的東緣)、大陸斜坡和南海海槽,以及1條東西橫跨兩弧前盆地的測線。在所有測站獲得的HVSR曲線中,有135個測站辨識出波峰頻率,頻率愈低代表界面愈深,而HVSR振幅愈高則表示速度阻抗差愈大。因此基於各站的波峰頻率,以及對應的HVSR振幅,使用k-means群聚分析分成7群。分析結果指出:海溝區呈0.6–2 Hz低頻高振幅特徵,對應70–220 m厚之低速沉積層並可追蹤至相變阻抗面;熊野弧前盆地的多峰HVSR頻率隨測線向盆地中心遞減;大陸斜坡區域則以 > 6Hz的高頻低振幅HVSR波峰為主,顯示薄層沉積層或基盤裸露。之後也選擇波峰較顯著且連續的海槽段和弧前盆地段進行HVSR曲線逆推,取得淺層地震波速度模型,和前人研究結果比對後,發現Vp/Vs比模型可描繪出沉積構造單元和波速剖面中低速帶形貌。 HVSR波峰頻率在三個月時序中,除布放初期的壓密效應與偶發外來噪訊外,整體變化甚微,而其空間變化則與海溝、大陸斜坡與弧前盆地等構造單元呈系統性對應。本研究藉由長時間、大空間尺度觀測的環境噪訊資料,透過波峰頻率在時空中的分布特徵,顯示深海區域HVSR與地質構造具有高度相關性,並以此為基礎討論增積岩體淺層剪力波速度阻抗層面的深度,量化隱沒帶淺層構造物理特性。 | zh_TW |
| dc.description.abstract | This study analyzes three-component ambient seismic noise recorded by 147 ocean bottom seismometers (OBS) deployed off the Kii Peninsula between September and December 2011. We apply ambient-noise Horizontal-to-Vertical Spectral Ratio (HVSR) analysis to delineate the shallow structure. When seismic waves propagate through layered media, reflections and refractions occur at interfaces with contrasting seismic impedances. A shear wave crossing a pronounced impedance contrast excites resonance in the horizontal components; dividing the horizontal by the vertical spectrum yields an HVSR peak whose frequency represents the fundamental resonance frequency of that interface. The peak frequency therefore constrains the depth and shear-wave velocity of the principal velocity contrast, commonly marking the base of the sedimentary layer.
The study area spans the Nankai Trough—the convergent margin where the Philippine Sea Plate subducts beneath the Eurasian Plate. OBS stations are arranged along four trench-perpendicular profiles that cross the forearc basins (eastern Kumano and Muroto), the continental slope, and the trench, plus one trench-parallel profile intersecting both forearc basins. Distinct HVSR peaks are identified at 135 stations; lower peak frequencies indicate deeper interfaces, whereas larger HVSR amplitudes imply stronger impedance contrasts. Using the peak frequency and its corresponding amplitude, we perform k-means clustering and classify the observations into seven groups. The trench sector exhibits low-frequency (0.6–2 Hz) high-amplitude HVSR peaks that correspond to a 70–220 m-thick low-velocity sediment layer and can be traced to an impedance associated with a silica phase transition. In the Kumano forearc basin, multi-peak HVSR spectra show frequencies that decrease landward toward the basin center. Along the continental slope, HVSR peaks are characterized by high frequency (> 6 Hz) and low amplitude, indicating a thin sediment cover or exposed basement. Representative trench and forearc basin sites with clear, continuous peaks are inverted by Monte-Carlo modeling of the full HVSR curve, yielding shallow shear-wave velocity models; comparison with previous seismic and borehole studies confirms that the derived Vp/Vs ratio model delineates sedimentary units and low-velocity zones. Over the three-month observation, peak frequencies remain nearly constant—apart from minor increases attributable to initial instrument compaction and several anthropogenic noise—and their spatial pattern systematically correlates with structural domains such as the trench, continental slope, and forearc basins. Leveraging long-duration, wide-aperture ambient-noise data, we show that the spatiotemporal distribution of peak frequencies exhibits a strong correlation between deep-marine HVSR responses and underlying geological structures. Building on this relationship, we construct a shallow shear-wave impedance map that quantitatively constrains the physical properties of the upper Nankai subduction zone. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:17:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:17:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目 次 vi 圖 次 viii 表 次 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 HVSR方法回顧 2 1.3 研究地區地質背景:紀伊半島外海隱沒帶 3 1.3.1 南海海槽 5 1.3.2 增積岩體外側斜坡 6 1.3.3 弧前盆地 8 1.4 小結 9 第二章 震測剖面以及海底地震儀資料陣列 10 2.1 海底地震儀資料 10 2.2 區域地震波速度構造 13 第三章 研究資料與分析流程 21 3.1 地震噪訊單站頻譜比法 21 3.2 資料處理 22 3.2.1 時間窗的篩選 23 3.2.2 傅立葉頻譜平滑化與合成 26 3.2.3 波峰頻率的判定 26 3.3 地層震波速度逆推 27 3.4 群聚分析 29 3.4.1 DBSCAN方法 30 3.4.2 k – means方法 32 第四章 結果與討論 33 4.1 HVSR曲線空間分布 33 4.2 HVSR波峰頻率分群結果 35 4.3 地震波速度逆推結果 42 4.4 HVSR波峰時間變異 48 第五章 結論 52 參考文獻 54 附錄 58 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 環境噪訊 | zh_TW |
| dc.subject | H/V頻譜比 | zh_TW |
| dc.subject | 南海海槽隱沒帶 | zh_TW |
| dc.subject | 海底地震儀 | zh_TW |
| dc.subject | 淺層構造 | zh_TW |
| dc.subject | Shallow structure | en |
| dc.subject | Ocean bottom seismometer | en |
| dc.subject | Nankai Trough subduction zone | en |
| dc.subject | Ambient noise | en |
| dc.subject | H/V spectral ratio | en |
| dc.title | 利用地震噪訊H/V頻譜比分析日本隱沒帶增積岩體淺層構造 | zh_TW |
| dc.title | Probing into the Shallow Structures of the Accretionary Wedge Offshore the Kii Peninsula (Japan) by means of HVSR Analysis with OBS data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 龔源成;牟鍾香 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Cheng Gung;Chung-Hsiang Mu | en |
| dc.subject.keyword | H/V頻譜比,環境噪訊,淺層構造,海底地震儀,南海海槽隱沒帶, | zh_TW |
| dc.subject.keyword | H/V spectral ratio,Ambient noise,Shallow structure,Ocean bottom seismometer,Nankai Trough subduction zone, | en |
| dc.relation.page | 85 | - |
| dc.identifier.doi | 10.6342/NTU202502765 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2027-07-30 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
