請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99435完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬 | zh_TW |
| dc.contributor.advisor | Hsueh-Fen Juan | en |
| dc.contributor.author | 陳品妤 | zh_TW |
| dc.contributor.author | Pin-Yu Chen | en |
| dc.date.accessioned | 2025-09-10T16:16:47Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Amos, A., Amos, A., Wu, L., & Xia, H. (2023). The Warburg effect modulates DHODH role in ferroptosis: a review. Cell Communication and Signaling, 21(1), 100.
Bartz, R., Li, W. H., Venables, B., Zehmer, J. K., Roth, M. R., et al. (2007). Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res, 48(4), 837-847. Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., et al. (2020). Ferroptosis and Cancer: Mitochondria Meet the "Iron Maiden" Cell Death. Cells, 9(6). Bersuker, K., Peterson, C. W. H., To, M., Sahl, S. J., Savikhin, V., et al. (2018). A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes. Dev Cell, 44(1), 97-112.e117. Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D., et al. (2021). Lipid metabolism and cancer. J Exp Med, 218(1). Boukalova, S., Hubackova, S., Milosevic, M., Ezrova, Z., Neuzil, J., et al. (2020). Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1866(6), 165759. Carter, D. R., Sutton, S. K., Pajic, M., Murray, J., Sekyere, E. O., et al. (2016). Glutathione biosynthesis is upregulated at the initiation of MYCN-driven neuroblastoma tumorigenesis. Mol Oncol, 10(6), 866-878. Chua, N. K., Coates, H. W., & Brown, A. J. (2020). Squalene monooxygenase: a journey to the heart of cholesterol synthesis. Prog Lipid Res, 79, 101033. Coates, H. W., Nguyen, T. B., Du, X., Olzomer, E. M., Farrell, R., et al. (2024). The constitutively active form of a key cholesterol synthesis enzyme is lipid droplet-localized and upregulated in endometrial cancer tissues. J Biol Chem, 300(5), 107232. D'Arcy, M. S. (2019). Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int, 43(6), 582-592. Danielli, M., Perne, L., Jarc Jovičić, E., & Petan, T. (2023). Lipid droplets and polyunsaturated fatty acid trafficking: Balancing life and death. Front Cell Dev Biol, 11, 1104725. Dixon, S. J., & Olzmann, J. A. (2024). The cell biology of ferroptosis. Nature Reviews Molecular Cell Biology, 25(6), 424-442. Fang, J., Uchiumi, T., Yagi, M., Matsumoto, S., Amamoto, R., et al. (2013). Dihydro-orotate dehydrogenase is physically associated with the respiratory complex and its loss leads to mitochondrial dysfunction. Biosci Rep, 33(2), e00021. Göbel, A., Rauner, M., Hofbauer, L. C., & Rachner, T. D. (2020). Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta Rev Cancer, 1873(2), 188351. Göbel, A., Riffel, R. M., Hofbauer, L. C., & Rachner, T. D. (2022). The mevalonate pathway in breast cancer biology. Cancer Letters, 542, 215761. Jin, Y., Tan, Y., Wu, J., & Ren, Z. (2023). Lipid droplets: a cellular organelle vital in cancer cells. Cell Death Discovery, 9(1), 254. Johnsen, J. I., Dyberg, C., & Wickström, M. (2019). Neuroblastoma-A Neural Crest Derived Embryonal Malignancy. Front Mol Neurosci, 12, 9. Kuo, C.-H. (2023). Drug repositioning for neuroblastoma therapy via targeting dihydroorotate dehydrogenase in mitochondrial dynamics. ( Master's thesis). National Taiwan University, Lee, H., Horbath, A., Kondiparthi, L., Meena, J. K., Lei, G., et al. (2024). Cell cycle arrest induces lipid droplet formation and confers ferroptosis resistance. Nat Commun, 15(1), 79. Liu, Y., Lu, S., Wu, L. L., Yang, L., Yang, L., et al. (2023). The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis, 14(8), 519. Lu, J., Wu, T., Zhang, B., Liu, S., Song, W., et al. (2021). Types of nuclear localization signals and mechanisms of protein import into the nucleus. Cell Commun Signal, 19(1), 60. Ma, T., Du, J., Zhang, Y., Wang, Y., Wang, B., et al. (2022). GPX4-independent ferroptosis—a new strategy in disease’s therapy. Cell Death Discovery, 8(1), 434. Mahoney, C. E., Pirman, D., Chubukov, V., Sleger, T., Hayes, S., et al. (2019). A chemical biology screen identifies a vulnerability of neuroendocrine cancer cells to SQLE inhibition. Nat Commun, 10(1), 96. Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., et al. (2021). DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature, 593(7860), 586-590. Mishima, E., Nakamura, T., Zheng, J., Zhang, W., Mourão, A. S. D., et al. (2023). DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature, 619(7968), E9-E18. Oliynyk, G., Ruiz-Pérez, M. V., Sainero-Alcolado, L., Dzieran, J., Zirath, H., et al. (2019). MYCN-enhanced Oxidative and Glycolytic Metabolism Reveals Vulnerabilities for Targeting Neuroblastoma. iScience, 21, 188-204. Olsen, T. K., Dyberg, C., Embaie, B. T., Alchahin, A., Milosevic, J., et al. (2022). DHODH is an independent prognostic marker and potent therapeutic target in neuroblastoma. JCI Insight, 7(17). Onal, G., Kutlu, O., Gozuacik, D., & Dokmeci Emre, S. (2017). Lipid Droplets in Health and Disease. Lipids Health Dis, 16(1), 128. Orozco Rodriguez, J. M., Wacklin-Knecht, H. P., Clifton, L. A., Bogojevic, O., Leung, A., et al. (2022). New Insights into the Interaction of Class II Dihydroorotate Dehydrogenases with Ubiquinone in Lipid Bilayers as a Function of Lipid Composition. Int J Mol Sci, 23(5). Petan, T. (2023). Lipid Droplets in Cancer. Rev Physiol Biochem Pharmacol, 185, 53-86. Pistritto, G., Trisciuoglio, D., Ceci, C., Garufi, A., & D'Orazi, G. (2016). Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 8(4), 603-619. Qi, X. F., Zheng, L., Lee, K. J., Kim, D. H., Kim, C. S., et al. (2013). HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death & Disease, 4(2), e518-e518. Shir, J.-C. (2024). Therapeutic Targeting of Dihydroorotate Dehydrogenase (DHODH) in Neuroblastoma: Modulating Lipid Metabolism and Ferroptosis. (Master's thesis). National Taiwan University, Sun, H., Li, L., Li, W., Yang, F., Zhang, Z., et al. (2021). p53 transcriptionally regulates SQLE to repress cholesterol synthesis and tumor growth. EMBO Rep, 22(10), e52537. Sun, Y., Zheng, Y., Wang, C., & Liu, Y. (2018). Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death & Disease, 9(7), 753. Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: molecular mechanisms and health implications. Cell Research, 31(2), 107-125. Tao, L., Mohammad, M. A., Milazzo, G., Moreno-Smith, M., Patel, T. D., et al. (2022). MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nature Communications, 13(1), 3728. Tricarico, P. M., Crovella, S., & Celsi, F. (2015). Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link. Int J Mol Sci, 16(7), 16067-16084. Wang, F., & Min, J. (2021). DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduction and Targeted Therapy, 6(1), 244. Wu, P., Zhang, X., Duan, D., & Zhao, L. (2023). Organelle-Specific Mechanisms in Crosstalk between Apoptosis and Ferroptosis. Oxid Med Cell Longev, 2023, 3400147. Xia, Y., Zhang, J., & Liu, G. (2023). A prospective strategy leveraging nanomedicine for cancer therapy: Pouring ferroptosis on apoptosis. Nano Today, 48, 101740. Xu, R., Song, J., Ruze, R., Chen, Y., Yin, X., et al. (2023). SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis, 14(8), 497. Yoshioka, H., Coates, H. W., Chua, N. K., Hashimoto, Y., Brown, A. J., et al. (2020). A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate. Proc Natl Acad Sci U S A, 117(13), 7150-7158. Yu, Y., Ding, J., Zhu, S., Alptekin, A., Dong, Z., et al. (2021). Therapeutic targeting of both dihydroorotate dehydrogenase and nucleoside transport in MYCN-amplified neuroblastoma. Cell Death Dis, 12(9), 821. Zafar, A., Wang, W., Liu, G., Wang, X., Xian, W., et al. (2021). Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev, 41(2), 961-1021. Zhang, L., Zhang, J., Wang, J., Ren, C., Tang, P., et al. (2022). Recent advances of human dihydroorotate dehydrogenase inhibitors for cancer therapy: Current development and future perspectives. Eur J Med Chem, 232, 114176. Zhao, L., Zhou, X., Xie, F., Zhang, L., Yan, H., et al. (2022). Ferroptosis in cancer and cancer immunotherapy. Cancer Commun (Lond), 42(2), 88-116. Zhou, Y., Tao, L., Zhou, X., Zuo, Z., Gong, J., et al. (2021). DHODH and cancer: promising prospects to be explored. Cancer Metab, 9(1), 22. Zirath, H., Frenzel, A., Oliynyk, G., Segerström, L., Westermark, U. K., et al. (2013). MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells. Proc Natl Acad Sci U S A, 110(25), 10258-10263. Zou, Y., Zhang, H., Bi, F., Tang, Q., & Xu, H. (2022). Targeting the key cholesterol biosynthesis enzyme squalene monooxygenasefor cancer therapy. Front Oncol, 12, 938502. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99435 | - |
| dc.description.abstract | 近期研究指出,二氫乳清酸脫氫酶(dihydroorotate dehydrogenase, DHODH)表現與癌症進程密切相關,尤其在具 MYCN 擴增的高風險神經母細胞瘤中呈現最高表達,暗示 DHODH 可能在腫瘤致病機制中扮演關鍵角色。透過分子對接分析、熱轉移試驗與酵素螢光活性分析,我們系統性地鑑定出 FDA 已核准的多重激酶抑制劑 Regorafenib 具有潛在 DHODH 抑制作用。功能驗證顯示,DHODH 基因敲降與 Regorafenib 處理均顯著誘導細胞凋亡並降低細胞遷移能力,但不影響細胞週期進程。為闡明其分子機制,我們實驗室之前利用 tandem mass tag (TMT)定量蛋白體分析,比較 Regorafenib 處理組與 DHODH 敲降組之蛋白質表現譜。液相層析–串聯質譜(LC-MS/MS)共鑑定 31,518 條胜肽與 4,472 種蛋白質。差異表現蛋白的基因本體論富集分析顯示,DHODH 抑制顯著干擾脂質代謝並下調甲羥戊酸途徑,最終指向鐵致凋亡(ferroptosis)為下游結果。為驗證此機制鏈結,我們檢測膽固醇生合成,發現總膽固醇與游離膽固醇皆顯著下降。鑑於膽固醇代謝與脂滴形成及鐵致凋亡調控之關聯,我們進一步以共軛焦顯微鏡與流式細胞儀檢視脂滴動態,證實 DHODH 阻斷顯著抑制脂滴形成。重新分析我們的蛋白體資料並對照加州大學柏克萊分校 Olzmann 實驗室發表之脂滴蛋白體,鑑定出在膽固醇生合成中具限速作用的角鯊烯環氧化酶(squalene epoxidase, SQLE)為關鍵下游分子。值得注意的是,SQLE 主要定位於脂滴周邊,且在 DHODH 抑制後呈現顯著的核內累積,此現象為文獻中未曾報導。為評估臨床相關性,我們建立了病人衍生的神經母細胞瘤類器官。Regorafenib 處理導致類器官明顯形態解離,伴隨顯著的細胞凋亡與鐵致凋亡增加,以及脂滴含量的顯著減少,與體外細胞實驗結果一致。綜合而言,本研究證實透過 Regorafenib 或基因沉默抑制 DHODH,可藉由調控甲羥戊酸途徑、擾動脂質代謝並抑制 SQLE 活性與定位,同時誘發神經母細胞瘤細胞的凋亡與鐵致凋亡。此發現凸顯 DHODH 作為高風險神經母細胞瘤新穎代謝脆弱點的治療潛力。 | zh_TW |
| dc.description.abstract | Recent studies have underscored a strong association between dihydroorotate dehydrogenase (DHODH) expression and cancer progression, particularly in high-risk neuroblastoma characterized by MYCN amplification. This correlation suggests a potential role for DHODH in neuroblastoma pathogenesis. Through molecular docking, thermal shift, and enzymatic fluorescence-based activity assays, we systematically identified the FDA-approved multi-kinase inhibitor Regorafenib as a potential DHODH inhibitor. Functional validation revealed that both DHODH knockdown and Regorafenib treatment significantly induced apoptosis and reduced cell migratory capacity, without affecting cell cycle progression. To elucidate the underlying molecular mechanisms, we previously performed tandem mass tag (TMT)-based quantitative proteomics, comparing protein expression profiles between Regorafenib-treated cells and those with DHODH knockdown. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis yielded 31,518 peptides corresponding to 4,472 proteins. Gene ontology enrichment analysis of differentially expressed proteins revealed marked disruption of lipid metabolic processes and suppression of the mevalonate pathway, ultimately implicating ferroptosis as a downstream consequence of DHODH inhibition. To validate this mechanistic link, we examined cholesterol biosynthesis and observed a significant reduction in both total and free cholesterol levels following DHODH inhibition. Given the known role of cholesterol metabolism in lipid droplet formation and ferroptosis regulation, we further evaluated lipid droplet dynamics using confocal microscopy and flow cytometry, which confirmed that DHODH blockade markedly suppressed lipid droplet formation. Reanalysis of our proteomic data, in comparison with the lipid droplet proteome curated by Dr. Olzmann’s laboratory (UC Berkeley), identified squalene epoxidase (SQLE)—a rate-limiting enzyme in cholesterol biosynthesis—as a key downstream effector. SQLE was found to localize near lipid droplets and showed significantly increased nuclear accumulation upon DHODH inhibition, a novel observation not previously reported in the literature. Finally, to assess the clinical relevance of our findings, we established patient-derived neuroblastoma organoids. Regorafenib treatment induced substantial morphological disintegration of the organoids, accompanied by increased apoptosis, ferroptosis, and a marked reduction in lipid droplet content, in line with our in vitro findings. In summary, this study demonstrates that DHODH inhibition, via Regorafenib or genetic silencing, induces both apoptosis and ferroptosis in neuroblastoma through modulation of the mevalonate pathway, disruption of lipid metabolism, and suppression of SQLE activity and localization. These findings highlight the therapeutic potential of targeting DHODH as a novel metabolic vulnerability in high-risk neuroblastoma. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:16:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:16:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v Contents vii List of Tables ix List of Figures x List of Supplementary Figures xii Chapter 1. Introduction 1 1.1 Neuroblastoma 1 1.2 Dihydroorotate dehydrogenase (DHODH) 2 1.3 Cell death 3 1.4 Mevalonate pathway 5 1.5 SQLE 6 1.6 Lipid droplet 7 1.7 Motivation 8 Chapter 2. Materials and Methods 10 2.1 Experimental design 10 2.2 Cell culture 10 2.3 Stable shRNA knockdown of DHODH 11 2.4 Western blot analysis 11 2.5 Drug preparation 12 2.6 Wound healing assay 12 2.7 Transwell migration assay 12 2.8 Cell apoptosis assay 13 2.9 Cell cycle analysis 13 2.10 Establishment of primary cancer cell culture from patient tissues 14 2.11 Organoid culture and drug treatment 14 2.12 Lipid peroxidation assay 15 2.13 Lipid droplet staining 15 2.14 Cholesterol assay 16 2.15 Immunocytochemistry 16 2.16 Nuclear isolation 17 2.17 Mitochondrial superoxide measurement 18 Chapter 3. Results 19 3.1 Investigation of DHODH expression and knockdown effects in neuroblastoma cell lines. 19 3.2 Elucidating the role of DHODH in neuroblastoma progression and its potential as a therapeutic target. 19 3.3 A previous study on the selection of Regorafenib as a potential DHODH inhibitor. 21 3.4 Investigating the impact of Regorafenib treatment on cellular functions. 21 3.5 A previous study conducted a proteomic analysis using TMT-based quantitative proteomics to compare the proteome profiles of Regorafenib-treated and shRNA-transfected samples. 23 3.6 Exploring the influence of DHODH inhibition on mevalonate pathway regulation 24 3.7 Investigation of whether SQLE translocates from the ER membrane to lipid droplets revealed an unexpected localization of SQLE within the cell nucleus. 25 3.8 Exploring the effects of Regorafenib on cell death and lipid metabolism in patient-derived neuroblastoma organoids 27 Chapter 4. Discussion 29 Chapter 5. Conclusion 34 Reference 36 Tables 42 Figures 52 | - |
| dc.language.iso | en | - |
| dc.subject | 二氫乳清酸脫氫酶 | zh_TW |
| dc.subject | 神經母細胞瘤 | zh_TW |
| dc.subject | 蛋白體學 | zh_TW |
| dc.subject | 脂質代謝 | zh_TW |
| dc.subject | 鐵死亡 | zh_TW |
| dc.subject | 脂滴 | zh_TW |
| dc.subject | 3-環氧鯊烯 | zh_TW |
| dc.subject | neuroblastoma | en |
| dc.subject | SQLE | en |
| dc.subject | lipid droplet | en |
| dc.subject | ferroptosis | en |
| dc.subject | lipid metabolism | en |
| dc.subject | proteomics | en |
| dc.subject | DHODH | en |
| dc.title | 阻斷DHODH透過甲羥戊酸途徑重編程、SQLE表現下調與核內轉移,誘發神經母細胞瘤細胞死亡 | zh_TW |
| dc.title | Blockade of DHODH Triggers Cell Death in Neuroblastoma via Mevalonate Pathway Reprogramming, SQLE Downregulation, and Nuclear Translocation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃宣誠;張心儀;徐駿森;李岳倫 | zh_TW |
| dc.contributor.oralexamcommittee | Hsuan-Cheng Huang;Hsin-Yi Chang;Chun-Hua Hsu;Yueh-Luen Lee | en |
| dc.subject.keyword | 二氫乳清酸脫氫酶,神經母細胞瘤,蛋白體學,脂質代謝,鐵死亡,脂滴,2,3-環氧鯊烯, | zh_TW |
| dc.subject.keyword | DHODH,neuroblastoma,proteomics,lipid metabolism,ferroptosis,lipid droplet,SQLE, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202501912 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| dc.date.embargo-lift | 2029-07-30 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
