Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余柏毅zh_TW
dc.contributor.advisorBor-Yih Yuen
dc.contributor.author黃亭維zh_TW
dc.contributor.authorTing-Wei Huangen
dc.date.accessioned2025-09-10T16:15:32Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation1. Yoro, K.O. and M.O. Daramola, CO2 emission sources, greenhouse gases, and the global warming effect, in Advances in carbon capture. 2020, Elsevier. p. 3-28.
2. Nunes, L.J.R., The Rising Threat of Atmospheric CO2: A Review on the Causes, Impacts, and Mitigation Strategies. Environments, 2023. 10(4).
3. Turakulov, Z., A. Kamolov, A. Norkobilov, M. Variny, G. Díaz-Sainz, L. Gómez-Coma, and M. Fallanza, Assessing various CO2 utilization technologies: a brief comparative review. Journal of Chemical Technology and Biotechnology, 2024. 99(6): p. 1291-1307.
4. Kanniche, M., R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, and C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering, 2010. 30(1): p. 53-62.
5. Tamura, M., M. Honda, Y. Nakagawa, and K. Tomishige, Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts. Journal of Chemical Technology and Biotechnology, 2014. 89(1): p. 19-33.
6. Chauvy, R., R. Lepore, P. Fortemps, and G. De Weireld, Comparison of multi-criteria decision-analysis methods for selecting carbon dioxide utilization products. Sustainable Production and Consumption, 2020. 24: p. 194-210.
7. Tomishige, K., M. Tamura, and Y. Nakagawa, CO2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2-Cyanopyridine. Chemical Record, 2019. 19(7): p. 1354-1379.
8. Tomishige, K., Y. Gu, Y. Nakagawa, and M. Tamura, Reaction of CO2 With Alcohols to Linear-, Cyclic-, and Poly-Carbonates Using CeO2-Based Catalysts. Frontiers in Energy Research, 2020. 8.
9. Tamura, M., Y. Nakagawa, and K. Tomishige, Direct CO2 Transformation to Aliphatic Polycarbonates. Asian Journal of Organic Chemistry, 2022. 11(11).
10. Peng, J., M. Yabushita, Y.A. Li, R. Fujii, M. Tamura, Y. Nakagawa, and K. Tomishige, CeO2-catalyzed transformation of various amine carbamates into organic urea derivatives in corresponding amine solvent. Applied Catalysis a-General, 2022. 643.
11. Gu, Y., M. Tamura, Y. Nakagawa, E. Ando, and K. Tomishige, Effect of flue gas impurities in carbon dioxide from power plants in the synthesis of isopropyl N-phenylcarbamate from CO2, aniline, and 2-propanol using CeO2 and 2-cyanopyridine. Catalysis Today, 2023. 410: p. 19-35.
12. Chilakamarry, C.R., A.M.M. Sakinah, A.W. Zularisam, and A. Pandey, Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing, 2021. 1(4): p. 378-396.
13. Ali, S.S., R. Al-Tohamy, T.M. Mohamed, Y.A.G. Mahmoud, H.A. Ruiz, L.S. Sun, and J.Z. Sun, Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. Biotechnology for Biofuels and Bioproducts, 2022. 15(1).
14. Monteiro, M.R., C.L. Kugelmeier, R.S. Pinheiro, M.O. Batalha, and A.D. César, Glycerol from biodiesel production: Technological paths for sustainability. Renewable & Sustainable Energy Reviews, 2018. 88: p. 109-122.
15. He, Q., J. McNutt, and J. Yang, Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable & Sustainable Energy Reviews, 2017. 71: p. 63-76.
16. Yang, F.X., M.A. Hanna, and R.C. Sun, Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnology for Biofuels, 2012. 5.
17. Yu, B.Y., T.Y. Tseng, Z.Y. Yang, and S.J. Shen, Evaluation on the solketal production processes: Rigorous design, optimization, environmental analysis, and control. Process Safety and Environmental Protection, 2022. 157: p. 140-155.
18. Ochoa-Gómez, J.R., O. Gómez-Jiménez-Aberasturi, C. Ramírez-López, and M. Belsué, A Brief Review on Industrial Alternatives for the Manufacturing of Glycerol Carbonate, a Green Chemical. Organic Process Research & Development, 2012. 16(3): p. 389-399.
19. Lukato, S., G.N. Kasozi, B. Naziriwo, and E. Tebandeke, Glycerol carbonylation with CO2 to form glycerol carbonate: A review of recent developments and challenges. Current Research in Green and Sustainable Chemistry, 2021. 4: p. 100199.
20. Lertlukkanasuk, N., S. Phiyanalinmat, W. Kiatkittipong, A. Arpornwichanop, F. Aiouache, and S. Assabumrungrat, Reactive distillation for synthesis of glycerol carbonate via glycerolysis of urea. Chemical Engineering and Processing-Process Intensification, 2013. 70: p. 103-109.
21. Li, J.B. and T. Wang, Coupling reaction and azeotropic distillation for the synthesis of glycerol carbonate from glycerol and dimethyl carbonate. Chemical Engineering and Processing-Process Intensification, 2010. 49(5): p. 530-535.
22. Esteban, J., M. Ladero, L. Molinero, and F. García-Ochoa, Liquid-liquid equilibria for the ternary systems DMC-methanol-glycerol, DMC-glycerol carbonate-glycerol and the quaternary system DMC-methanol-glycerol carbonate-glycerol at catalytic reacting temperatures. Chemical Engineering Research & Design, 2014. 92(12): p. 2797-2805.
23. Singh, D., B. Reddy, A. Ganesh, and S. Mahajani, Zinc/Lanthanum Mixed-Oxide Catalyst for the Synthesis of Glycerol Carbonate by Transesterification of Glycerol. Industrial & Engineering Chemistry Research, 2014. 53(49): p. 18786-18795.
24. Devi, P., U. Das, and A.K. Dalai, Production of glycerol carbonate using a novel Ti-SBA-15 catalyst. Chemical Engineering Journal, 2018. 346: p. 477-488.
25. Li, Y.J., J.X. Liu, and D.H. He, Catalytic synthesis of glycerol carbonate from biomass-based glycerol and dimethyl carbonate over Li-La2O3 catalysts. Applied Catalysis a-General, 2018. 564: p. 234-242.
26. Yu, B.Y., Development of two plant-wide glycerol carbonate production processes: Design, optimization and environmental analysis. Journal of the Taiwan Institute of Chemical Engineers, 2020. 117: p. 19-25.
27. Sonnati, M.O., S. Amigoni, E.P.T. de Givenchy, T. Darmanin, O. Choulet, and F. Guittard, Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chemistry, 2013. 15(2): p. 283-306.
28. Rodrigues, A., J.C. Bordado, and R.G. dos Santos, Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals-A Technological Review for Three Chemical Pathways. Energies, 2017. 10(11).
29. Ma, J., J.L. Song, H.Z. Liu, J.L. Liu, Z.F. Zhang, T. Jiang, H.L. Fan, and B.X. Han, One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chemistry, 2012. 14(6): p. 1743-1748.
30. Zhang, H., H. Li, A.P. Wang, C.B. Xu, and S. Yang, Progress of Catalytic Valorization of Bio-Glycerol with Urea into Glycerol Carbonate as a Monomer for Polymeric Materials. Advances in Polymer Technology, 2020. 2020.
31. Kulal, N., R. Vetrivel, N.S.G. Krishna, and G.V. Shanbhag, Zn-Doped CeO2 Nanorods for Glycerol Carbonylation with CO2. Acs Applied Nano Materials, 2021. 4(5): p. 4388-4397.
32. Liu, J.X., Y.M. Li, J. Zhang, and D.H. He, Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Applied Catalysis a-General, 2016. 513: p. 9-18.
33. Wu, P.J., C.C. Hsu, B.Y. Yu, and S.T. Lin, Rigorous simulation and comprehensive analysis for the novel glycerol carbonate (GC) production process via indirect conversion of CO2. Fuel, 2024. 357.
34. Wu, P.-J., H.-H. Chiu, Z.-C. Su, S.-T. Lin, and B.-Y. Yu, Safety considerations in CO2 Conversion: Production of glycerol carbonate via an indirect pathway. Journal of Industrial and Engineering Chemistry, 2025.
35. Vieville, C., J.W. Yoo, S. Pelet, and Z. Mouloungui, Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catalysis Letters, 1998. 56(4): p. 245-247.
36. Kuenen, H.J., H.J. Mengers, D.C. Nijmeijer, A.G.J. van der Ham, and A.A. Kiss, Techno-economic evaluation of the direct conversion of CO2 to dimethyl carbonate using catalytic membrane reactors. Computers & Chemical Engineering, 2016. 86: p. 136-147.
37. Koybasi, H.H. and A.K. Avci, Modeling of a membrane integrated catalytic microreactor for efficient DME production from syngas with CO2. Catalysis Today, 2022. 383: p. 133-145.
38. Gu, Y., K. Matsuda, A. Nakayama, M. Tamura, Y. Nakagawa, and K. Tomishige, Direct Synthesis of Alternating Polycarbonates from CO2 and Diols by Using a Catalyst System of CeO2 and 2-Furonitrile. Acs Sustainable Chemistry & Engineering, 2019. 7(6): p. 6304-6315.
39. Honda, M., S. Kuno, N. Begum, K. Fujimoto, K. Suzuki, Y. Nakagawa, and K. Tomishige, Catalytic synthesis of dialkyl carbonate from low pressure CO2 and alcohols combined with acetonitrile hydration catalyzed by CeO2. Applied Catalysis a-General, 2010. 384(1-2): p. 165-170.
40. Honda, M., S. Sonehara, H. Yasuda, Y. Nakagawa, and K. Tomishige, Heterogeneous CeO2 catalyst for the one-pot synthesis of organic carbamates from amines, CO2 and alcohols. Green Chemistry, 2011. 13(12): p. 3406-3413.
41. Honda, M., M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki, and K. Tomishige, Organic carbonate synthesis from CO2 and alcohol over CeO2 with 2-cyanopyridine: Scope and mechanistic studies. Journal of Catalysis, 2014. 318: p. 95-107.
42. Honda, M., M. Tamura, Y. Nakagawa, and K. Tomishige, Catalytic CO2 conversion to organic carbonates with alcohols in combination with dehydration system. Catalysis Science & Technology, 2014. 4(9): p. 2830-2845.
43. Wang, J., C.N. Hao, Q.J. Zhang, Q.R. Meng, and H.M. Liu, Research advances on photo-assisted CO2 conversion to methanol. Applied Catalysis a-General, 2022. 643.
44. Remiro-Buenamañana, S. and H. García, Photoassisted CO2 Conversion to Fuels. Chemcatchem, 2019. 11(1): p. 342-356.
45. Guo, Q., C.Y. Zhou, Z.B. Ma, and X.M. Yang, Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials, 2019. 31(50).
46. Li, Y.J., H.M. Liu, L. Ma, J.X. Liu, and D.H. He, Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst - a case study of the photo-thermal synergism. Catalysis Science & Technology, 2021. 11(3): p. 1007-1013.
47. Liu, H.M., Y.J. Li, L. Ma, J.X. Liu, and D.H. He, Photo-thermal conversion of CO2 and biomass-based glycerol into glycerol carbonate over Co3O4-ZnO p-n heterojunction catalysts. Fuel, 2022. 315.
48. Liu, J.X., Y.J. Li, H.M. Liu, and D.H. He, Photo-thermal synergistically catalytic conversion of glycerol and carbon dioxide to glycerol carbonate over Au/ZnWO4-ZnO catalysts. Applied Catalysis B-Environmental, 2019. 244: p. 836-843.
49. Mao, J., K. Li, and T.Y. Peng, Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology, 2013. 3(10): p. 2481-2498.
50. Liu, J.X., Y.J. Li, H.M. Liu, and D.H. He, Transformation of CO2 and glycerol to glycerol carbonate over CeO2-ZrO2 solid solution - effect of Zr doping. Biomass & Bioenergy, 2018. 118: p. 74-83.
51. Koranian, P., A.K. Dalai, and R. Sammynaiken, Production of glycerol carbonate from glycerol and carbon dioxide using metal oxide catalysts. Chemical Engineering Science, 2024. 286.
52. Huanhuan, X. and K. Yihu, Synthesis of glycerol carbonate from glycerol and CO2 over Cu-Zr complex oxide. Journal of Fuel Chemistry and Technology, 2024. 52(2): p. 171-182.
53. Sarkar, A., T. Tyagi, S. Sharma, V. Joshi, P. Gogoi, A. Puzari, and B. Paul, Synthesis of glycerol carbonate from glycerol and CO2 over Cu/In2O3/ZnO nanostructured catalyst. Catalysis Today, 2025. 448.
54. Su, X.L.N., W.W. Lin, H.Y. Cheng, C. Zhang, Y. Wang, X.J. Yu, Z.J. Wu, and F.Y. Zhao, Metal-free catalytic conversion of CO2 and glycerol to glycerol carbonate. Green Chemistry, 2017. 19(7): p. 1775-1781.
55. Liu, J.X. and D.H. He, Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst. Journal of Co2 Utilization, 2018. 26: p. 370-379.
56. Ozorio, L.P. and C.J.A. Mota, Direct Carbonation of Glycerol with CO2 Catalyzed by Metal Oxides. Chemphyschem, 2017. 18(22): p. 3260-3265.
57. Freitas, D., L.G. Lopes, and F. Morgado-Dias, Particle Swarm Optimisation: A Historical Review Up to the Current Developments. Entropy, 2020. 22(3).
58. Gad, A.G., Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Archives of Computational Methods in Engineering, 2022. 29(5): p. 2531-2561.
59. Abualigah, L., Particle Swarm Optimization: Advances, Applications, and Experimental Insights. Cmc-Computers Materials & Continua, 2025. 82(2): p. 1539-1592.
60. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education.
61. Chiu, H.H. and B.Y. Yu, Synthesis of green light olefins from direct hydrogenation of CO2. Part I: Techno-economic, decarbonization, and sustainability analyses based on rigorous simulation. Journal of the Taiwan Institute of Chemical Engineers, 2024. 156.
62. Nguyen, N.T. and Y. Demirel, A Novel Biodiesel and Glycerol Carbonate Production Plant. International Journal of Chemical Reactor Engineering, 2011. 9.
63. Xu, C.X. and Q. Xu, Novel Design for Simultaneous Production of Biodiesel and Glycerol Carbonate from Soybean Oil. Industrial & Engineering Chemistry Research, 2018. 57(49): p. 16809-16816.
64. Teng, W.K., G.C. Ngoh, R. Yusoff, and M.K. Aroua, A review on the performance of glycerol carbonate production via catalytic transesterification: Effects of influencing parameters. Energy Conversion and Management, 2014. 88: p. 484-497.
65. Huang, T.H., Y.S. Chen, and B.Y. Yu, Techno-economic, environmental, and exergetic evaluation of a novel isopropyl n-phenylcarbamate production process through non-reductive conversion of CO2. Process Safety and Environmental Protection, 2023. 179: p. 124-136.
66. Dimethylformamide Price and Market Analysis - ECHEMI.
67. Honda, M., M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K. Fujimoto, and K. Tomishige, Ceria-Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2-Cyanopyridine. Chemsuschem, 2013. 6(8): p. 1341-1344.
68. Liu, Y.J., B.Q. Zhong, and A. Lawal, Recovery and utilization of crude glycerol, a biodiesel byproduct. Rsc Advances, 2022. 12(43): p. 27997-28008.
69. Heikkilä, A.-M., Inherent safety in process plant design: an index-based approach. 1999: VTT Technical Research Centre of Finland.
70. Suardin, J., M.S. Mannan, and M. El-Halwagi, The integration of Dow's fire and explosion index (F&EI) into process design and optimization to achieve inherently safer design. Journal of Loss Prevention in the Process Industries, 2007. 20(1): p. 79-90.
71. Edwards, D.W. and D. Lawrence, Assessing the inherent safety of chemical process routes: is there a relation between plant costs and inherent safety? Process Safety and Environmental Protection, 1993. 71: p. 252-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99428-
dc.description.abstract碳酸甘油酯(glycerol carbonate, GC)之合成若能經由二氧化碳(carbon dioxide, CO₂)與甘油(glycerol, GLY)直接轉化而成,將可視為一項能將兩種廢棄原料轉化為具高附加價值之化學產品的創新技術。儘管已有相當多實驗研究投入於此領域,其製程設計的技術可行性仍有待深入評估。為解決此問題,本研究提出兩種直接轉化路徑以生產GC:製程一(Scheme 1)為光熱催化轉化;製程二(Scheme 2)則採用熱催化轉化並添加化學脫水劑2-氰基吡啶(2-cyanopyridine, 2-CP)以提升反應轉化率。兩種製程皆設計對應之嚴謹分離策略。接著,本研究對兩製程進行製程優化,並與其他GC生產途徑(如間接轉化及以反應精餾為基礎之酯交換法)進行經濟性、環境影響與安全性之比較分析。
整體而言,技術經濟評估 (techno-economic analysis, TEA) 指出,在現行技術條件下,兩種直接轉化方案尚未具備經濟可行性,其最低銷售價格(minimun selling price, MSP)分別為Scheme 1之每公斤8.15美元與Scheme 2之每公斤15.76美元。然而,若能降低反應器所產生之資本成本,並透過2-CP的再生使用或其水合副產物2-吡啶甲醯胺(2-picolinamide, 2-PA)之銷售回收成本,兩製程之MSP能有潛力地分別降至每公斤1.57美元與1.38美元。
根據搖籃到大門(cradle-to-gate)之生命週期評估(life cycle assessment, LCA)結果顯示,兩種直接轉化製程的永續性皆低於間接路徑;假如能提升Scheme 1之轉化率,其整體永續表現有機會與間接製程相當。此外,兩製程之固有安全指數(inherent safety index, ISI)皆相對較低,為未來深入開發該類製程提供安全性佐證。綜上所述,本研究點出了直接轉化途徑之應用潛力與所面臨之挑戰,並有助於後續製程開發與研究方向之規劃。
zh_TW
dc.description.abstractThe synthesis of glycerol carbonate (GC) through the direct conversion of carbon dioxide (CO2) and glycerol (GLY) represents a novel methodology that repurposes two waste materials into a commercially valuable product. Despite extensive experimental investigations, the technological feasibility of this process remains inadequately explored. To tackle this issue, the current study presents two distinct processes for the production of GC via the direct conversion route. Scheme 1 features photothermal catalytic conversion, while Scheme 2 employs thermal catalytic conversion with the addition of a chemical dehydrant (2-cyanopyridine, 2-CP) to enhance reaction efficiency. Rigorous separation strategies have been proposed for both schemes. Subsequently, both processes were optimized and compared against alternative GC production pathways (i.e., indirect conversion and reactive-distillation-based transesterification) with respect to economic, environmental, and safety considerations. Overall, the techno-economic analysis (TEA) reveals a lack of economic feasibility based on current technologies, reporting a minimum selling price (MSP) of $8.15 per kg for Scheme 1 and $15.76 per kg for Scheme 2. However, these values can be improved to $1.57 per kg for Scheme 1 and $1.38 per kg for Scheme 2, provided that the capital cost of the reactor is reduced and the expense of 2-CP can be offset through either regeneration or the sale of the hydration product, 2-picolinamide (2-PA). A cradle-to-gate life cycle assessment (LCA) indicates that both Schemes 1 and 2 exhibit lower sustainability compared to the indirect pathway. Nevertheless, should the yield of the product in Scheme 1 be improved, the overall sustainability could potentially align with that of the indirect process. Finally, both direct conversion schemes demonstrate lower values for the inherent safety index (ISI). This, in turn, provides supportive evidence for the further development of this pathway. In summary, this study highlights the potential benefits and obstacles associated with this conversion pathway. It may serve as a significant reference for future research aimed at process development.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:15:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:15:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Process Overview 9
2.1 Process Background 9
2.2 Physical Properties 10
Chapter 3 Process Development 14
3.1 Scheme 1: Synthesis of GC through a photothermal catalytic system 14
3.2 Scheme 2: Synthesis of GC through a thermal catalytic system with chemical dehydrant 16
3.3 Process optimization 20
3.3.1 Particle Swarm Optimization 20
3.3.2 Optimization 23
Chapter 4 Process Analysis 28
4.1 Techno-Economic Analysis 28
4.2 Life Cycle Assessment 34
4.2.1 System Boundary 34
4.2.2 Life Cycle Impact Assessment 37
4.3 Safety Issue Evaluation-Inherent Safety Index 49
4.4 Limitations and Uncertainties of This Study 52
Chapter 5 Conclusion 53
References 55
Appendix 65
Section A1. Details for the physical properties 65
Section A2. Details for the life cycle assessment 71
-
dc.language.isoen-
dc.subject碳酸甘油酯zh_TW
dc.subject光熱協同催化zh_TW
dc.subject二氧化碳轉化zh_TW
dc.subject技術經濟分析zh_TW
dc.subject生命週期分析zh_TW
dc.subject安全性評估zh_TW
dc.subjectCO2 conversionen
dc.subjectglycerol carbonateen
dc.subjectsafety evaluationen
dc.subjectlife cycle assessmenten
dc.subjecttechno-economic analysisen
dc.subjectphotothermal catalysisen
dc.title二氧化碳直接合成碳酸甘油酯技術評估:製程、經濟、生命週期與安全性分析zh_TW
dc.titleTechnological Assessment of Glycerol Carbonate Synthesis via Direct Conversion of CO2: An Examination of Process Design, Techno-Economic Analysis, Life Cycle Assessment, and Safety Evaluationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭宇伸;蔣雅郁;陳誠亮;吳哲夫zh_TW
dc.contributor.oralexamcommitteeYu-Shen Cheng;Ya-Yu Chiang;Cheng-Liang Chen;Jeffrey D. Warden
dc.subject.keyword碳酸甘油酯,光熱協同催化,二氧化碳轉化,技術經濟分析,生命週期分析,安全性評估,zh_TW
dc.subject.keywordglycerol carbonate,photothermal catalysis,CO2 conversion,techno-economic analysis,life cycle assessment,safety evaluation,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202502351-
dc.rights.note未授權-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved