請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99427完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余柏毅 | zh_TW |
| dc.contributor.advisor | Bor-Yih Yu | en |
| dc.contributor.author | 蘇子承 | zh_TW |
| dc.contributor.author | Zi-Cheng Su | en |
| dc.date.accessioned | 2025-09-10T16:15:21Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | 1. Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, and P.R. Shukla, Global Warming of 1.5 C: IPCC special report on impacts of global warming of 1.5 C above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty. 2022: Cambridge University Press.
2. Carbon Brief. Analysis: Global CO2 emissions will reach new high in 2024 despite slower growth. 2024; Available from: https://www.carbonbrief.org/analysis-global-co2-emissions-will-reach-new-high-in-2024-despite-slower-growth/. 3. Luo, X., X. Pei, X. Zhang, H. Du, L. Ju, S. Li, L. Chen, and J. Zhang, Advancing Hydrothermal Carbonization: Assessing Hydrochar's Role and Challenges in Carbon Sequestration. Environmental Research, 2025: p. 121023. 4. Li, J., L. Pan, M. Suvarna, Y.W. Tong, and X. Wang, Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Applied Energy, 2020. 269: p. 115166. 5. Wu, S., Q. Wang, D. Wu, D. Cui, C. Wu, J. Bai, F. Xu, B. Liu, Z. Shan, and J. Zhang, Influence of temperature and process water circulation on hydrothermal carbonization of food waste for sustainable fuel production. Journal of the Energy Institute, 2024. 112: p. 101459. 6. Ighalo, J.O., S. Rangabhashiyam, K. Dulta, C.T. Umeh, K.O. Iwuozor, C.O. Aniagor, S.O. Eshiemogie, F.U. Iwuchukwu, and C.A. Igwegbe, Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chemical Engineering Research and Design, 2022. 184: p. 419-456. 7. Khosravi, A., H. Zheng, Q. Liu, M. Hashemi, Y. Tang, and B. Xing, Production and characterization of hydrochars and their application in soil improvement and environmental remediation. Chemical Engineering Journal, 2022. 430: p. 133142. 8. Islam, M.A., M.S.H. Limon, M. Romić, and M.A. Islam, Hydrochar-based soil amendments for agriculture: a review of recent progress. Arabian Journal of Geosciences, 2021. 14(2): p. 102. 9. Ebrahimi, M., J. Friedl, M. Vahidi, D.W. Rowlings, Z. Bai, K. Dunn, I.M. O'Hara, and Z. Zhang, Effects of hydrochar derived from hydrothermal treatment of sludge and lignocellulose mixtures on soil properties, nitrogen transformation, and greenhouse gases emissions. Chemosphere, 2022. 307: p. 135792. 10. Sevilla, M., G.A. Ferrero, and A.B. Fuertes, Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon, 2017. 114: p. 50-58. 11. Liu, D., Y. Wang, B. Jia, J. Wei, C. Liu, J. Zhu, S. Tang, Z. Wu, and G. Chen, Microwave-assisted hydrothermal preparation of corn straw hydrochar as supercapacitor electrode materials. ACS omega, 2020. 5(40): p. 26084-26093. 12. Liu, J., L. Yang, C. Jin, C. Gong, K. Sheng, and X. Zhang, Facile one-pot synthesis of functional hydrochar catalyst for biomass valorization. Fuel, 2022. 315: p. 123172. 13. Varma, R.S., Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications. ACS sustainable chemistry & engineering, 2019. 7(7): p. 6458-6470. 14. IBI and USBI. 2023 Global Biochar Market Report. 2023; Available from: https://biochar-international.org/2023-global-biochar-market-report/. 15. González-Arias, J., M.E. Sánchez, J. Cara-Jiménez, F.M. Baena-Moreno, and Z. Zhang, Hydrothermal carbonization of biomass and waste: A review. Environmental Chemistry Letters, 2022: p. 1-11. 16. Toor, S.S., L. Rosendahl, and A. Rudolf, Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy, 2011. 36(5): p. 2328-2342. 17. Funke, A. and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 2010. 4(2): p. 160-177. 18. Reza, M.T., M.H. Uddin, J.G. Lynam, S.K. Hoekman, and C.J. Coronella, Hydrothermal carbonization of loblolly pine: reaction chemistry and water balance. Biomass Conversion and Biorefinery, 2014. 4: p. 311-321. 19. Zhuang, X., H. Zhan, Y. Song, C. He, Y. Huang, X. Yin, and C. Wu, Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel, 2019. 236: p. 960-974. 20. Shanmugam, V., E. Kaynak, O. Das, and L.P. Padhye, The effects of feedstock types and their properties on hydrothermal carbonisation and resulting hydrochar: A review. Current Opinion in Green and Sustainable Chemistry, 2025: p. 101024. 21. McGaughy, K. and M. Toufiq Reza, Hydrothermal carbonization of food waste: simplified process simulation model based on experimental results. Biomass Conversion and Biorefinery, 2018. 8(2): p. 283-292. 22. Kambo, H.S. and A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 2015. 45: p. 359-378. 23. Farru, G., F.B. Scheufele, D. Moloeznik Paniagua, F. Keller, C. Jeong, and D. Basso, Business and market analysis of hydrothermal carbonization process: roadmap toward implementation. Agronomy, 2024. 14(3): p. 541. 24. Ingelia. Piombino (IT) Project. 2024 2024-12-24]; Available from: http://www.ingelia.it/portfolio/piombino/ 25. Ingelia. Chiusi (IT) Project. 2024 2024-12-24]; Available from: http://www.ingelia.it/portfolio/chiusi/. 26. Edo, M., Hydrothermal carbonization (HTC): Valorisation of organic waste and sewage sludges for hydrochar production and biofertilizers. 2021. 27. Industries, C. 2025; Available from: https://www.invicagroup.com/. 28. TerraNova Energy GmbH. 2025; Available from: https://www.terranova-energy.com/. 29. HTCycle. 2025; Available from: https://htcycle.ag/. 30. Antaco. 2025; Available from: https://www.antaco.co.uk/. 31. C‑Green AB. 2025; Available from: https://www.c-green.se/. 32. Ingelia. 2025; Available from: https://www.ingelia.com/. 33. SoMax. 2025; Available from: https://somaxhtc.com/. 34. Kinava. 2025; Available from: https://kinava.com/new/en/. 35. Sun, S.-C., Y. Xu, J.-L. Wen, T.-Q. Yuan, and R.-C. Sun, Recent advances in lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications. Green Chemistry, 2022. 24(15): p. 5709-5738. 36. Mastrolitti, S., E. Borsella, A. Giuliano, M. Petrone, I. De Bari, R. Gosselink, G. van Erven, E. Annevelink, K. Triantafyllidis, and H. Stichnothe, Sustainable lignin valorization: Technical lignin, processes and market development; IEA Bioenergy: Task 42, October 2021. 2021. 37. Rodrigues, A.E., P.C.d.O.R. Pinto, M.F. Barreiro, C.A. Esteves da Costa, M.I. Ferreira da Mota, I. Fernandes, A.E. Rodrigues, P.C.d.O.R. Pinto, M.F. Barreiro, and C.A. Esteves da Costa, Chemical pulp mills as biorefineries. An Integrated Approach for Added-Value Products from Lignocellulosic Biorefineries: Vanillin, Syringaldehyde, Polyphenols and Polyurethane, 2018: p. 1-51. 38. Nadányi, R., A. Ház, A. Lisý, M. Jablonský, I. Šurina, V. Majová, and A. Baco, Lignin modifications, applications, and possible market prices. Energies, 2022. 15(18): p. 6520. 39. Moretti, C., B. Corona, R. Hoefnagels, I. Vural-Gürsel, R. Gosselink, and M. Junginger, Review of life cycle assessments of lignin and derived products: Lessons learned. Science of the Total Environment, 2021. 770: p. 144656. 40. Bajwa, D.S., G. Pourhashem, A.H. Ullah, and S.G. Bajwa, A concise review of current lignin production, applications, products and their environmental impact. Industrial Crops and Products, 2019. 139: p. 111526. 41. Mandlekar, N., A. Cayla, F. Rault, S. Giraud, F. Salaün, G. Malucelli, and J.-P. Guan, An overview on the use of lignin and its derivatives in fire retardant polymer systems. Lignin-trends and applications, 2018. 9: p. 207-231. 42. Fatehi, P. and J. Chen, Extraction of technical lignins from pulping spent liquors, challenges and opportunities. Production of biofuels and chemicals from lignin, 2016: p. 35-54. 43. Kazzaz, A.E. and P. Fatehi, Technical lignin and its potential modification routes: A mini-review. Industrial Crops and Products, 2020. 154: p. 112732. 44. Stobernack, N., F. Mayer, C. Malek, and R. Bhandari, Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: Modeling of the entire process chain. Bioresource technology, 2020. 318: p. 124038. 45. Medina-Martos, E., I.-R. Istrate, J.A. Villamil, J.-L. Gálvez-Martos, J. Dufour, and Á.F. Mohedano, Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. Journal of Cleaner Production, 2020. 277: p. 122930. 46. Do, T.X., T.T.N. Phan, and T. Van Dinh Son, Process modeling and economic assessment of converting municipal solid waste into solid fuel via hydrothermal processing: a case study in Vietnam. Journal of Material Cycles and Waste Management, 2021. 23(6): p. 2318-2335. 47. Martinez, C.L.M., E. Sermyagina, J. Saari, M.S. de Jesus, M. Cardoso, G.M. de Almeida, and E. Vakkilainen, Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass and Bioenergy, 2021. 147: p. 106004. 48. Nadarajah, K., O.M. Rodriguez-Narvaez, J. Ramirez, E.R. Bandala, and A. Goonetilleke, Lab-scale engineered hydrochar production and techno-economic scaling-up analysis. Waste Management, 2024. 174: p. 568-574. 49. Reza, M.T., W. Yan, M.H. Uddin, J.G. Lynam, S.K. Hoekman, C.J. Coronella, and V.R. Vásquez, Reaction kinetics of hydrothermal carbonization of loblolly pine. Bioresource technology, 2013. 139: p. 161-169. 50. Keiller, B.G., R. Muhlack, R.A. Burton, and P.J. van Eyk, Biochemical compositional analysis and kinetic modeling of hydrothermal carbonization of Australian saltbush. Energy & Fuels, 2019. 33(12): p. 12469-12479. 51. Bevan, E., G. Santori, and M. Luberti, Kinetic modelling of the hydrothermal carbonisation of the macromolecular components in lignocellulosic biomass. Bioresource Technology Reports, 2023. 24: p. 101643. 52. Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings of ICNN'95-international conference on neural networks. 1995. ieee. 53. Gad, A.G., Particle swarm optimization algorithm and its applications: a systematic review. Archives of computational methods in engineering, 2022. 29(5): p. 2531-2561. 54. Rutenbar, R.A., Simulated annealing algorithms: An overview. IEEE Circuits and Devices magazine, 2002. 5(1): p. 19-26. 55. Li, M., Y. Cui, X. Shi, Z. Zhang, X. Zhao, X. Zhu, and J. Gao, Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures. Chinese Journal of Chemical Engineering, 2021. 33: p. 203-210. 56. Musa, U., M. Castro-Díaz, C.N. Uguna, and C.E. Snape, Effect of process variables on producing biocoals by hydrothermal carbonisation of pine Kraft lignin at low temperatures. Fuel, 2022. 325: p. 124784. 57. Atta-Obeng, E., B. Dawson-Andoh, M.S. Seehra, U. Geddam, J. Poston, and J. Leisen, Physico-chemical characterization of carbons produced from technical lignin by sub-critical hydrothermal carbonization. Biomass and bioenergy, 2017. 107: p. 172-181. 58. Rodríguez Correa, C., M. Stollovsky, T. Hehr, Y. Rauscher, B. Rolli, and A. Kruse, Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses. ACS Sustainable Chemistry & Engineering, 2017. 5(9): p. 8222-8233. 59. Daniel, D., L. Khachatryan, C. Astete, R. Asatryan, C. Marculescu, and D. Boldor, Sulfur contaminations inhibit depolymerization of Kraft lignin. Bioresource Technology Reports, 2019. 8: p. 100341. 60. Lin, H., Q. Li, S. Zhang, L. Zhang, G. Hu, and X. Hu, Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin. Bioresource Technology, 2022. 351: p. 127055. 61. Salcedo-Puerto, O., C. Mendoza-Martinez, J. Saari, and E. Vakkilainen, Hydrothermal carbonization of industrial kraft lignin: Assessment of operational parameters. Fuel, 2024. 373: p. 132389. 62. Heidari, M., O. Norouzi, S. Salaudeen, B. Acharya, and A. Dutta, Prediction of hydrothermal carbonization with respect to the biomass components and severity factor. Energy & Fuels, 2019. 33(10): p. 9916-9924. 63. Barbier, J., N. Charon, N. Dupassieux, A. Loppinet-Serani, L. Mahé, J. Ponthus, M. Courtiade, A. Ducrozet, A.-A. Quoineaud, and F. Cansell, Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass and Bioenergy, 2012. 46: p. 479-491. 64. Yong, T.L.-K. and M. Yukihiko, Kinetic analysis of guaiacol conversion in sub-and supercritical water. Industrial & Engineering Chemistry Research, 2013. 52(26): p. 9048-9059. 65. Furutani, Y., Y. Dohara, S. Kudo, J.-i. Hayashi, and K. Norinaga, Theoretical study on the kinetics of thermal decomposition of guaiacol and catechol. The Journal of Physical Chemistry A, 2017. 121(44): p. 8495-8503. 66. Nunes, A.D.S., J. Sierra-Pallares, K.-Q. Tran, and R.J. Hearst, Development of an aqueous lignin mixture thermophysical model for hydrothermal liquefaction applications using uncertainty quantification tools. Chemical Engineering Science, 2022. 261: p. 117944. 67. Lin, S.-T. and S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model. Industrial & engineering chemistry research, 2002. 41(5): p. 899-913. 68. Yu, B.-Y. and C.-C. Tsai, Rigorous simulation and techno-economic analysis of a bio-jet-fuel intermediate production process with various integration strategies. Chemical Engineering Research and Design, 2020. 159: p. 47-65. 69. Withag, J.A., J.R. Smeets, E.A. Bramer, and G. Brem, System model for gasification of biomass model compounds in supercritical water–a thermodynamic analysis. The Journal of supercritical fluids, 2012. 61: p. 157-166. 70. Louw, J., C.E. Schwarz, J.H. Knoetze, and A.J. Burger, Thermodynamic modelling of supercritical water gasification: Investigating the effect of biomass composition to aid in the selection of appropriate feedstock material. Bioresource technology, 2014. 174: p. 11-23. 71. Mutlu, Ö.Ç. and T. Zeng, Challenges and opportunities of modeling biomass gasification in Aspen Plus: A review. Chemical Engineering & Technology, 2020. 43(9): p. 1674-1689. 72. Wallmo, H., K. Lindholm, G. Christiansen, H. Karlsson, and A. Littorin, The Next-Generation Lignoboost-Tailor-Made Lignin Production for Different Lignin Bioproduct Markets. J-FOR-JOURNAL OF SCIENCE & TECHNOLOGY FOR FOREST PRODUCTS AND PROCESSES, 2018. 7(2): p. 6-10. 73. Azzi, E.S., H. Li, H. Cederlund, E. Karltun, and C. Sundberg, Modelling Biochar Long-Term Carbon Storage in Soil with Harmonized Analysis of Incubation Data. Available at SSRN 4601106, 2023. 74. Chiu, H.-H. and B.-Y. Yu, Synthesis of green light olefins from direct hydrogenation of CO2. Part I: Techno-economic, decarbonization, and sustainability analyses based on rigorous simulation. Journal of the Taiwan Institute of Chemical Engineers, 2024. 156: p. 105340. 75. Culbertson, C., T. Treasure, R. Venditti, H. Jameel, and R. Gonzalez, Life cycle assessment of lignin extraction in a softwood kraft pulp mill. Nordic Pulp & Paper Research Journal, 2016. 31(1): p. 30-40. 76. Turton, R., R.C. Bailie, W.B. Whiting, and J.A. Shaeiwitz, Analysis, synthesis and design of chemical processes. 2008: Pearson Education. 77. Gadalla, M.A., Z. Olujic, P.J. Jansens, M. Jobson, and R. Smith, Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environmental science & technology, 2005. 39(17): p. 6860-6870. 78. Johannesson, G., S. Boles, L. Shumaker, and U. Initiative, GHG life cycle assessment of CharBoss® biochar production and potential use for CDR certificate generation. 2024. 79. Hermansson, F., M. Janssen, and M. Svanström, Allocation in life cycle assessment of lignin. The International Journal of Life Cycle Assessment, 2020. 25: p. 1620-1632. 80. Axelsson, E., M.R. Olsson, and T. Berntsson, Increased capacity in kraft pulp mills: Lignin separation and reduced steam demand compared with recovery boiler upgrade. Nordic Pulp & Paper Research Journal, 2006. 21(4): p. 485-492. 81. Lobato-Rodríguez, Á., B. Gullón, A. Romaní, P. Ferreira-Santos, G. Garrote, and P.G. Del-Río, Recent advances in biorefineries based on lignin extraction using deep eutectic solvents: A review. Bioresource Technology, 2023. 388: p. 129744. 82. Jiang, Z., Y. Zou, Y. Li, F. Kong, and D. Yang, Environmental life cycle assessment of supercapacitor electrode production using algae derived biochar aerogel. Biochar, 2021. 3(4): p. 701-714. 83. Puro.earth. CORC Carbon Removal Indexes. 2025; Available from: https://puro.earth/corc-carbon-removal-indexes. 84. Watson, M., P. Machado, A. Da Silva, Y. Saltar, C. Ribeiro, C. Nascimento, and A. Dowling, Sustainable aviation fuel technologies, costs, emissions, policies, and markets: A critical review. Journal of cleaner production, 2024. 449: p. 141472. 85. Liu, H., Z. Jin, R. Mei, and M. Li, Multi-objective optimization and Techno-economic analyses of conventional combustion and chemical looping combustion for a Municipal solid waste incineration plant in China. Waste Management, 2025. 202: p. 114834. 86. Trapero, J., A. Alcazar-Ruiz, F. Dorado, and L. Sanchez-Silva, Biochar price forecasting: A novel methodology for enhancing market stability and economic viability. Journal of Environmental Management, 2025. 377: p. 124681. 87. Marketplace, E. State of the Voluntary Carbon Market 2025. 2025; Available from: https://3298623.fs1.hubspotusercontent-na1.net/hubfs/3298623/SOVCM%202025/Ecosystem%20Marketplace%20State%20of%20the%20Voluntary%20Carbon%20Market%202025.pdf. 88. Kreibich, N., Toward global net zero: the voluntary carbon market on its quest to find its place in the post‐Paris climate regime. Wiley Interdisciplinary Reviews: Climate Change, 2024. 15(5): p. e892. 89. Lock, W., Enriching carbon: Surplus value creation and capture on the voluntary carbon markets. Antipode, 2024. 56(5): p. 1734-1753. 90. Alpha Ladder Group. China Carbon Market Weekly Update – 19 May 2025. 2025; Available from: https://www.linkedin.com/pulse/china-carbon-market-weekly-update-19-may-2025-alphaladder-hp8ac/. 91. Intercontinental Exchange. EUA Futures (EUA Carbon Futures data). 2025; Available from: https://www.ice.com/products/197/EUA-Futures/data?marketId=7423768. 92. Chauhan, H. South Korea expands ETS to enhance market effectiveness, may cancel Feb auction to curb oversupply. 2025; Available from: https://www.spglobal.com/commodity-insights/en/news-research/latest-news/energy-transition/020725-south-korea-expands-ets-to-enhance-market-effectiveness-may-cancel-feb-auction-to-curb-oversupply. 93. EcoEngineers. Venturing into the Voluntary Market. 2023; Available from: https://www.ecoengineers.us/insights/venturing-into-the-voluntary-market/. 94. International Biochar Initiative. BIOCHAR: Carbon Sheet – Digital Version. 2023; Available from: https://biochar-international.org/wp-content/uploads/2023/12/BIOCHAR_Carbon-sheet_DIGITAL.pdf. 95. Klein, J. Carbon removal startup lands $53 million contract. 2023; Available from: https://trellis.net/article/carbon-removal-startup-lands-53-million-contract/. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99427 | - |
| dc.description.abstract | 在全球暖化背景下,生物炭近年來被視為最具潛力的負碳方案之一。而水熱碳化(Hydrothermal Carbonization, HTC)技術能夠將濕生物質直接轉化為生物炭,特別適合處理木質素。目前已經有許多實驗研究,然而反應機制過於複雜,導致既有動力學模型仍為總集模型,無預測生物炭性質之能力。因此,本研究透過模型化合物方法,建立了木質素HTC的嚴謹模型,不僅能預測生物炭的產率與元素組成,也可以同時描述液相與氣相產物組成。此外,本研究也將此模型整合至製程設計與優化,結合生命週期評估(Life Cycle Assessment, LCA)及技術經濟分析(Techno-Economic Analysis, TEA),全方位評估木質素 HTC 之可行性。
LCA指出,生物炭的負碳效益為 -2.05 CO2 eq/kg biochar,具有顯著負碳效益。然而,原料木質素的分配情境將會大幅度地影響生物炭的整體效益: 若是增益分配情境下,生物炭的全球暖化為 -2.49 kg CO₂ eq/kg biochar;如果在主產品分配情境時,生物炭的全球暖化則是 +1.87 kg CO₂/kg biochar,反而成為排放源。 TEA表明,生物炭最低售價(Minimum Selling Price, MSP)為 1.42 USD kg⁻¹,而製程對原料價格與規模經濟高度敏感。納入碳權收益後,MSP 可降至 1.10 USD kg⁻¹;若碳價提高至極端情境,則MSP理論上可能降至0;但在主產品分配情境下,反而會使成本上升。因此,碳價與分配情境皆是木質素HTC經濟性的關鍵要素。 綜上所述,本研究首度以嚴謹模型、程序模擬、 LCA以及TEA,指出木質素 HTC 在適當分配法與碳價條件下兼具環境與經濟可行性,為木質素HTC領域奠定堅實的基礎。 | zh_TW |
| dc.description.abstract | Biochar has emerged as one of the most promising carbon removal strategy climate change mitigation. Hydrothermal carbonization (HTC) can convert wet biomass directly into biochar and is particularly suitable for wet feedstocks such as lignin. However, the complexity of HTC mechanism has confined existing kinetic studies to lumped models that cannot predict detailed product properties. To bridge the gap, this work develops a rigorous model for lignin HTC using a model-compound approach. The model can predict the yields and elemental composition of biochar as well as the composition of liquid and gaseous products. It is further integrated with process design and optimization, providing the foundation for a comprehensive life cycle assessment (LCA) and techno-economic analysis (TEA) of the lignin HTC process.
The LCA shows that the global warming of the biochar is –2.05 kg CO₂ eq per kg biochar. However, the result is highly sensitive to the lignin allocation scenario. If treating lignin extraction as an added benefit to existing process (“benefit allocation”) deepens the advantage to –2.49 kg CO₂ eq per kg. By contrast, when all upstream impacts of extraction are attributed to lignin because lignin is considered the main product (“main product allocation”), the result swings to +1.87 kg CO₂ eq per kg, turning the biochar into a net emission source. The TEA indicates a minimum selling price (MSP) of 1.42 USD per kg, driven primarily by feedstock cost and plant scale. Monetizing carbon credits at 0.155 USD per kg CO₂ lowers the MSP to 1.10 USD per kg, and an extreme carbon price could theoretically drive the MSP to zero; nevertheless, under the “main product” allocation, the carbon credits raise rather than reduce costs, highlighting the coupled influence of carbon price and allocation scenario on economic viability. Overall, this work is the first to integrate a rigorous model with process simulation, LCA, and TEA, demonstrating that lignin HTC can achieve negative carbon emissions and competitive economics under appropriate allocation and carbon-price conditions, thereby providing a solid foundation for future research and development in lignin HTC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:15:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:15:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 vi 圖次 viii 表次 ix 第一章 緒論 1 1.1 全球暖化 1 1.2 生物炭 2 1.3 水熱碳化技術 4 1.4 水熱碳化商業化規模與發展現狀 6 1.5 木質素 8 1.6 水熱碳化模擬研究 11 1.7 研究動機 12 第二章 演算法 14 2.1 粒子群演算法 14 2.2 模擬退火演算法 17 第三章 建模方法 19 3.1 數據收集 19 3.2 模型化合物 21 3.3 反應路徑 22 3.4 動力學參數回歸方法 24 3.5 模型驗證 25 3.6 熱力學性質 31 第四章 製程設計 33 4.1 製程架構 33 4.2 製程優化 35 4.2.1 碳封存模型 35 4.2.2 優化目標與方法 36 第五章 製程可行性評估 40 5.1 生命週期評估 40 5.1.1 目標與範疇界定 43 5.1.2 盤查分析 45 5.1.3 衝擊評估 47 5.1.4 結果闡釋 50 5.2 技術經濟分析 51 5.3 碳權影響 54 5.3.1 全球碳交易市場 54 5.3.2 碳權對於生物炭售價影響 55 第六章 結論 57 參考資料 58 附錄一 物化性質參數 66 附錄二 LCA詳細結果 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水熱碳化 | zh_TW |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 生物炭 | zh_TW |
| dc.subject | 生命週期評估 | zh_TW |
| dc.subject | 技術經濟分析 | zh_TW |
| dc.subject | 製程設計 | zh_TW |
| dc.subject | Life cycle assessment | en |
| dc.subject | Biochar | en |
| dc.subject | Process design | en |
| dc.subject | Techno-economic analysis | en |
| dc.subject | Hydrothermal carbonization | en |
| dc.subject | Lignin | en |
| dc.title | 木質素水熱碳化產製生物炭: 嚴謹建模、生命週期評估與技術經濟分析 | zh_TW |
| dc.title | Hydrothermal Carbonization of Lignin for Biochar Production: Development of a Rigorous Model, Life Cycle Assessment, and Techno-Economic Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳誠亮;吳哲夫;鄭宇伸;蔣雅郁 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Liang Chen;Jeffrey D. Ward;Yu-Shen Cheng;Ya-Yu Chiang | en |
| dc.subject.keyword | 水熱碳化,木質素,生物炭,生命週期評估,技術經濟分析,製程設計, | zh_TW |
| dc.subject.keyword | Hydrothermal carbonization,Lignin,Biochar,Process design,Life cycle assessment,Techno-economic analysis, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202502346 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
