Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99420
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂明璋zh_TW
dc.contributor.advisorMing-Chang Luen
dc.contributor.author呂柏毅zh_TW
dc.contributor.authorPo-Yi Luen
dc.date.accessioned2025-09-10T16:14:07Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-02-
dc.identifier.citation1.Amaral, C., et al., Phase change materials and carbon nanostructures for thermal energy storage: A literature review. Renewable and Sustainable Energy Reviews, 2017. 79: p. 1212–1228.
2.González-Torres, M., et al., A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 2022. 8: p. 626–637.
3.Padmavathy, S.R., et al., Performance studies of low GWP refrigerants as environmental alternatives for R134a in low-temperature applications. Environmental Science and Pollution Research, 2022. 29(57): p. 85945–85954.
4.Zhou, Z., et al., Review on high ice packing factor (IPF) ice slurry: Fabrication, characterization, flow characteristics and applications. Journal of Energy Storage, 2024. 81: p.113078
5.Hu, X., et al., Energy, environmental, and economic (3E) analysis of a dynamic ice storage system based on ice slurry for a super high-rise building in subtropical climates. Energy and Buildings, 2025: p. 115373.
6.Zhai, X., et al., A review on phase change cold storage in air-conditioning system: Materials and applications. Renewable and Sustainable Energy Reviews, 2013. 22: p. 108–120.
7.Zou, L. and X. Zhang, Exergy analysis of vacuum ice production device by solid adsorption. International Journal of Refrigeration, 2022. 136: p. 46–52.
8.Egolf, P.W. and M. Kauffeld, From physical properties of ice slurries to industrial ice slurry applications. International Journal of Refrigeration, 2005. 28(1): p. 4–12.
9.Kauffeld, M., et al., Ice Slurry Applications. Int J Refrig, 2010. 33(8): p. 1491–1505.
10.Lv, Y., X. Zhang, and L. Zou, Research progress on the effect of additives on ice slurry. Heat and Mass Transfer, 2022. 58(8): p. 1279–1287.
11.Asaoka, T., A. Tajima, and H. Kumano, Experimental investigation on inhomogeneity of ice packing factor in ice slurry flow. International Journal of Refrigeration-Revue Internationale Du Froid, 2016. 70: p. 33–41.
12.Hales, A., et al., Ice fraction measurement of ice slurries through electromagnetic attenuation. International Journal of Refrigeration-Revue Internationale Du Froid, 2014. 47: p. 98–104.
13.Bordet, A., et al., Flow visualizations and pressure drop measurements of isothermal ice slurry pipe flows. Experimental Thermal and Fluid Science, 2018. 99: p. 595–604.
14.Renaud-Boivin, S., M. Poirier, and N. Galanis, Experimental study of hydraulic and thermal behavior of an ice slurry in a shell and tube heat exchanger. Experimental Thermal and Fluid Science, 2012. 37: p. 130–141.
15.Bellas, J., I. Chaer, and S. Tassou, Heat transfer and pressure drop of ice slurries in plate heat exchangers. Applied Thermal Engineering, 2002. 22(7): p. 721–732.
16.Bédécarrats, J., F. Strub, and C. Peuvrel, Thermal and hydrodynamic considerations of ice slurry in heat exchangers. International Journal of Refrigeration-Revue Internationale Du Froid, 2009. 32(7): p. 1791–1800.
17.Lee, D., et al., Heat transfer characteristics of the ice slurry at melting process in a tube flow. International Journal of Refrigeration-Revue Internationale Du Froid, 2006. 29(3): p. 451–455.
18.Niezgoda-Żelasko, B., Heat transfer of ice slurry flows in tubes. International Journal of Refrigeration, 2006. 29(3): p. 437–450.
19.Grozdek, M., et al., Experimental investigation of ice slurry heat transfer in horizontal tube. International Journal of Refrigeration-Revue Internationale Du Froid, 2009. 32(6): p. 1310–1322.
20.Kumano, H., et al., Experimental study on heat transfer characteristics of ice slurry. International Journal of Refrigeration, 2010. 33(8): p. 1540–1549.
21.Mellari, S., Study of the convective heat transfer during full melt off of ice slurry in laminar and non-Newtonian flows. International Journal of Air-Conditioning and Refrigeration, 2022. 30(1): p.10
22.Gao, P., et al., Study on flow and heat transfer characteristics of salt solution ice slurry. International Journal of Refrigeration, 2024. 159: p. 1–16.
23.Akhtar, S., H. Ali, and C.W. Park, Thermo-Fluidic Characteristics of Two-Phase Ice Slurry Flows Based on Comparative Numerical Methods. Processes, 2019. 7(12): p. 898.
24.Suzuki, K., et al., Microconvection effects on the cooling performance of ice slurry flows within a circular tube: Immersed boundary–lattice Boltzmann simulations. International Journal of Heat and Mass Transfer, 2024. 232: p.125953
25.Christensen, K.G. and M. Kauffeld, Heat Transfer Measurments with Ice Slurry. 1997.
26.JENSEN, E.N., et al., Pressure drop and heat transfer with ice slurry. Science et technique du froid, 2000: p. 572–580.
27.Knodel, B., et al., Heat transfer and pressure drop in ice-water slurries. Applied Thermal Engineering, 2000. 20(7): p. 671–685.
28.Stamatiou, E. and M. Kawaji, Thermal and flow behavior of ice slurries in a vertical rectangular channel—Part II. Forced convective melting heat transfer. International Journal of Heat and Mass Transfer, 2005. 48(17): p. 3544–3559.
29.Kitanovski, A., et al., The fluid dynamics of ice slurry. International Journal of Refrigeration, 2005. 28(1): p. 37–50.
30.Wang, J., et al., Mathematical and experimental investigation on pressure drop of heterogeneous ice slurry flow in horizontal pipes. International Journal of Heat and Mass Transfer, 2017. 108: p. 2381–2392.
31.Wang, J., et al., Flow and heat transfer characteristics of ice slurry in typical components of cooling systems: A review. International Journal of Heat and Mass Transfer, 2019. 141: p. 922–939.
32.Kumano, H., et al., Flow characteristics of ice slurry in narrow tubes. International Journal of Refrigeration, 2010. 33(8): p. 1513–1522.
33.Illán, F. and A. Viedma, Experimental study on pressure drop and heat transfer in pipelines for brine based ice slurry. Part I: Operational parameters correlations. International Journal of Refrigeration, 2009. 32(5): p. 1015–1023.
34.Illán, F. and A. Viedma, Experimental study on pressure drop and heat transfer in pipelines for brine based ice slurry Part II: Dimensional analysis and rheological model. International Journal of Refrigeration, 2009. 32(5): p. 1024–1031.
35.Sasaki, M., T. Kawashima, and H. Takahashi. Dynamics of snow-water flow in pipelines, slurry handing and pipeline transport. in Hydrotransport. 1993. p.533-613
36.Frei, B. and P. Egolf. Viscometry applied to the Bingham substance ice slurry. in Proceedings of the second workshop on ice slurries of the international institute of refrigeration, Paris, France. 2000. p.25-26
37.Gong, W., et al., Thermal-hydraulic performance enhancement analysis of microtube with superhydrophobic surfaces. International Journal of Heat and Mass Transfer, 2019. 144: p.118697
38.Williams, A.D., Enhanced laminar convective heat transfer using microstructured superhydrophobic surfaces. 2016: The University of New Mexico.
39.Shojaeian, M. and A. Kosar, Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. International Journal of Heat and Mass Transfer, 2014. 70: p. 664–673.
40.Nikkhah, Z., et al., Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. International Communications in Heat and Mass Transfer, 2015. 68: p. 69–77.
41.Ngoma, G. and F. Erchiqui, Heat flux and slip effects on liquid flow in a microchannel. International Journal of Thermal Sciences, 2007. 46(11): p. 1076–1083.
42.Vankudre, M.H. and J.L. Alvarado, Numerical Investigation of Thermal Performance of Minichannels With Transversely Patterned Nonslip and Superhydrophobic Surfaces in Turbulent Flow Conditions. ASME Journal of Heat and Mass Transfer, 2024. 146(12): p.121801
43.Heidarian, A., R. Rafee, and M.S. Valipour, Effects of wall hydrophobicity on the thermohydraulic performance of the microchannels with nanofluids. International Communications in Heat and Mass Transfer, 2020. 117: p.104758
44.Hadi, F., et al., An evaluation of heat transfer and pressure drop performance of superhydrophobic surfaced integral mini-channel heat sinks with nanofluids. Journal of Thermal Analysis and Calorimetry, 2024. 149(4): p. 1515–1533.
45.Ems, H., et al., Drag reduction in minichannel laminar flow past superhydrophobic surfaces. Physics of Fluids, 2021. 33(12): p.123608
46.Rothstein, J.P., Slip on Superhydrophobic Surfaces. Annual Review of Fluid Mechanics, 2010. 42(Volume 42, 2010): p. 89–109.
47.ENGINEERING, M.C., THERMOPHYSICAL PROPERTIES OF BRINES. 2011.
48.Kauffeld, M., M. Kawaji, and P.W. Egolf, Handbook on ice slurries. International Institute of Refrigeration, Paris, 2005. 359.
49.Barnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier.
50.Levy, F., A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. International Journal of Refrigeration, 1981. 4(4): p. 223–225.
51.Niezgoda-Żelasko, B., Heat transfer in the melting of ice slurry during flow in a vertical slit channel. Experimental Thermal and Fluid Science, 2024. 153: p.11133
52.Cengel, Y. and J. Cimbala, Ebook: Fluid mechanics fundamentals and applications (si units). 2013: McGraw Hill.
53.Incropera, F.P., et al., Fundamentals of heat and mass transfer. Vol. 6. 1996: Wiley New York.
54.Kakac, S., Y. Yener, and A. Pramuanjaroenkij, Convective heat transfer. 2013: CRC press.
55.Miljkovic, N., et al., Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett, 2013. 13(1): p. 179–87.
56.Jiang, X., et al., High performance heat sink with counter flow diverging microchannels. International Journal of Heat and Mass Transfer, 2020. 162: p.120344
57.Coleman, H.W. and W.G. Steele, Experimentation, validation, and uncertainty analysis for engineers. 2018: John Wiley & Sons.
58.Li, Y., et al., CFD Study of Ice Slurry Heat Transfer Characteristics in a Straight Horizontal Tube. Procedia Engineering, 2016. 146: p. 504–512.
59.Zhou, Z., et al., Physical, flow and heat transfer characteristic of ice slurry with sucrose solution and large particle group in circular tube. Energy, 2025. 322: p. 135550.
60.Ji, C., et al. The Study on the Influence of the Containing Ice Ratio on the Flow and Heat Transfer Characteristics of Ice Slurry in Coil Tubes. in Proceedings of the 11th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC 2019) Volume II: Heating, Ventilation, Air Conditioning and Refrigeration System 11. 2020. Springer. p.229-239
61.Guilpart, J., et al. Experimental study and calculation method of transport characteristics of ice slurries. in 1st IIR workshop on Ice Slurries, Yverdon-les-Bains, CHE, 28 mai 1999. 1999. p.74-82
62.Hsieh, S.-S. and C.-Y. Lin, Convective heat transfer in liquid microchannels with hydrophobic and hydrophilic surfaces. International Journal of Heat and Mass Transfer, 2009. 52(1-2): p. 260–270.
63.Hadi, F. and H.M. Ali, Experimental thermal and hydraulic study of super hydrophobic wavy mini channel heat sink using aqueous nanofluids. Chemical Engineering Communications, 2021. 210(6): p. 999–1021.
64.Kumano, H., T. Asaoka, and S. Sawada, Effect of initial aqueous solution concentration and heating conditions on heat transfer characteristics of ice slurry. International journal of refrigeration, 2014. 41: p. 72–81.
65.Yang, B., et al., Experimental study on pressure drop and ice blockage characteristics of ice slurry flow in big-diameter pipes. International Journal of Refrigeration, 2025. 169: p. 214–225.
66.Knodel, B. and D. France, Pressure drop in ice-water slurries for thermal storage application. Experimental Heat Transfer, 1987. 1(4): p. 265–275.
67.Im, M., et al. Analysis of a superhydrophobic microlens array surface: as a microchannel wall for pressure drop reduction. in Proceedings of Thirtheenth Internation Conference on Miniaturized Systems for Chemistry and Life Sciences. 2009. p.162-164
68.Thabit, S.M. and W.M. Abed. Hydraulic-thermal analysis of laminar flows in a rectangular channel with 45°-inclined grooves. in AIP Conference Proceedings. 2022. AIP Publishing LLC. p.040009
69.Zontul, H., et al., Investigation of convective heat transfer and flow hydrodynamics in rectangular grooved channels. International Communications in Heat and Mass Transfer, 2021. 126: p. 105366.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99420-
dc.description.abstract近年來,隨著全球暖化的問題日益加劇,能源消耗量持續上升,而空調系統在建築領域的耗電量占比相當高。發展兼具減碳效益與高效能的空調系統成為當今最重要的課題之一。因此,儲冰式空調逐漸受到關注,此系統可於用電離峰時段製冰並儲存冷能,於尖峰負載時段釋放冷氣,達到削峰填谷與提高能源使效率的效果。冰泥作為儲冰式空調系統的工作流體,不僅在製備過程中能有效減少對環境的損害,更因冰具備相當高的潛熱,使其擁有良好的熱傳性能。然而,目前針對冰泥於水平管道內的熱傳機制與流動特性的研究仍相對有限,且尚無文獻探討冰泥在超疏水表面的熱傳與流動行為。
本研究探討冰泥於層流的條件下,於純銅表面以及超疏水表面下的熱傳與流動特性。冰泥為由冰顆粒與載體溶液所組成的固液二相流體,藉由冰本身高潛熱的特性,展現出優異的儲能與熱傳能力,同時具備良好的流動性。IPF (Ice Packing Factor)為冰泥中固態冰所佔的體積比例,為影響冰泥熱傳與流動性質的重要參數。本研究首先進行單相水的實驗,結果與文獻中的經驗公式相符,驗證了系統的可靠性。接續以IPF分別為5%、10%、與15%的冰泥進行實驗,探討IPF、雷諾數與表面親疏水性對冰泥整體熱傳與流動性能的影響。
熱傳實驗結果顯示,IPF 5%冰泥的熱對流係數與單相水相近,隨著IPF提升至10%,熱傳性能明顯增強,相較於單相水,熱對流係數提升大約49.82%;然而進一步提升至IPF 15%時,熱傳性能趨於飽和,此現象與冰泥在管道中的流動型態變化有關。除此之外,在超疏水表面下,冰泥的熱對流係數相較於純銅表面提升約35%;此外,壓降實驗結果顯示,冰泥的壓降隨著IPF與雷諾數增加而上升,其變化趨勢與Darcy-Weisbach Law相符。與此同時,當冰泥流經超疏水表面時,其壓降相較於純銅表面降低約15%。研究結果顯示,超疏水表面有助於提升冰泥的熱傳與流動性能。綜合上述,本研究於層流操作條件下,比較冰泥於純銅表面與超疏水表面的熱傳與流動特性,探討不同表面性質對其性能的影響。實驗結果顯示,冰泥的熱傳性能與其流動型態密切相關,且超疏水表面不僅能有效提升冰泥的熱傳同時降低流動阻力。本研究填補了冰泥於超疏水管道中熱流行為的研究空缺,亦為未來儲冰式空調系統的設計提供了實驗基礎,未來若能將此技術應用於實際熱交換器,可望進一步提升系統整體熱交換效率,實現節能減碳的目標。
zh_TW
dc.description.abstractIn recent years, the global warming and higher energy demand have made it clear that building air-conditioning consumes an outsized share of electricity. Accordingly, the development of cooling technologies that combine high energy efficiency with carbon-reduction potential has become a critical research priority. Ice Storage air-conditioning has emerged as a promising approach: ice can be produced during off-peak hours, stored as cold energy, and discharged during peak demand, thereby flattening the load curve and improving overall energy utilization. As the working fluid in such system, ice slurry has two key benefits: it can be produced in an eco-friendly way, and its high latent heat gives it excellent thermal performance. However, fundamental knowledge of the convective heat transfer mechanisms and flow behavior of ice slurry in horizontal channels remains sparse, and no studies have investigated its performance on superhydrophobic surface. This study therefore investigated the heat transfer and flow characteristics of ice slurry flow over both plain copper and superhydrophobic surface, with the aim to guide the design of ice slurry storage air conditioning systems.
This study investigates the heat transfer and flow characteristics of ice slurry under laminar flow regime in channels with plain copper and superhydrophobic surface. Ice slurry, a solid-liquid two-phase flow comprising ice particles and a carrier fluid, exhibits exceptional energy storage and heat transfer capabilities due to the latent heat of ice. The ice packing factor (IPF), defined as the volume fraction of solid ice in the ice slurry, significantly influences heat transfer performance and flow behavior. The single-phase experiment results confirm the validity of the experimental system, as a convective heat transfer coefficient of single-phase water showed a good agreement with established empirical correlation. Subsequent experiments were performed with ice slurry at IPF 5%, 10% and 15% to evaluate the effect of IPF, Reynolds number and surface wettability on overall thermal-hydraulic performance. The result indicate that the convective heat transfer coefficient of the IPF 5% ice slurry is comparable to that of single-phase water. As the IPF increase to 10%, a significant enhancement in heat transfer performance is observed. However, further increasing the IPF to 15% leads to performance saturation. The variation in heat transfer performance across different IPF is closely related to changes in the flow pattern of ice slurry. Furthermore, the use of a superhydrophobic surface result in an approximately 35% increase in heat transfer coefficient compared to plain copper surface. Pressure drop measurements reveal that the ice slurry pressure loss increase with both IPF and Reynolds number, following the trend predicted by the Darcy-Weisbach Law. Concurrently, when ice slurry flowing over the superhydrophobic surface, the ice slurry experiences a reduction in pressure drop about 15% compared to the plain copper surface. These finding demonstrate that superhydrophobic surfaces can enhance both the heat transfer efficiency and flow performance of ice slurry systems. Under laminar flow conditions, this study compared the heat transfer and flow characteristics of ice slurry flow over plain copper surface and superhydrophobic surface, clarifying how surface properties affect performance. Experiments results demonstrate that superhydrophobic surface simultaneously enhance heat transfer and reduce flow resistance. These findings close a knowledge gap on ice slurry behavior in superhydrophobic tube and provide an experimental foundation for future ice storage air conditioning system design. Implementing such surface in practical heat exchanger could raise overall heat transfer efficiency and contribute to energy savings and carbon reduction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:14:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:14:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
目次 vii
圖次 ix
表次 xii
符號表 xiii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的與論文編排 6
第二章 冰泥性質與理論介紹 8
2.1 IPF 8
2.2 黏度 9
2.3 熱傳導率 9
2.4 比熱容 10
2.5 無因次參數 10
2.6 單相層流流動與熱傳 12
第三章 實驗系統與實驗方法 17
3.1 冰泥實驗系統 17
3.2 實驗標準流程 19
3.2.1 冰泥製作方法 19
3.2.2 熱傳及壓降實驗步驟 20
3.2.3 實驗結束後的步驟 21
3.2.4 具有微奈米結構的超疏水表面製作方法 21
3.3 冰泥顆粒粒徑分析 22
3.4 冰泥的流動以與速度分布 23
3.5 熱傳實驗 24
3.6 壓降實驗 25
3.7 誤差傳遞分析 26
第四章 結果與討論 51
4.1 單相水實驗 51
4.2 冰泥的流動與速度分布 52
4.2.1 冰泥的流動型態 52
4.2.2 速度分布 53
4.3 熱傳實驗 54
4.3.1 純銅表面 54
4.3.2 超疏水表面 58
4.4 壓降實驗 59
第五章 結論與未來工作 79
5.1 結論 79
5.2 未來工作 80
第六章 附錄 90
-
dc.language.isozh_TW-
dc.subject冰泥zh_TW
dc.subject熱傳zh_TW
dc.subject壓降zh_TW
dc.subject超疏水表面zh_TW
dc.subject熱傳增強zh_TW
dc.subjectPressure Dropen
dc.subjectIce Slurryen
dc.subjectHeat Transfer Enhancementen
dc.subjectSuperhydrophobic surfaceen
dc.subjectHeat Transferen
dc.title冰泥於超疏水表面的熱傳與流動特性zh_TW
dc.titleThermal and Flow Characteristic of Ice Slurry on Superhydrophobic Surfaceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王安邦;李明蒼zh_TW
dc.contributor.oralexamcommitteeAn-Bang Wang;Ming-Tsang Leeen
dc.subject.keyword冰泥,熱傳,壓降,超疏水表面,熱傳增強,zh_TW
dc.subject.keywordIce Slurry,Heat Transfer,Pressure Drop,Superhydrophobic surface,Heat Transfer Enhancement,en
dc.relation.page102-
dc.identifier.doi10.6342/NTU202503338-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved