Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99417
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬zh_TW
dc.contributor.advisorWhei-Fen Wuen
dc.contributor.author江庭光zh_TW
dc.contributor.authorTing-Kuang Chiangen
dc.date.accessioned2025-09-10T16:13:30Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation劉晶晶, 陳志元, 王玉, 江丹,李名洁. 2020. 綠茶末中 L-茶氨酸的離子交換樹脂純化研究. 農產品加工. 7:14-16.
李元, 劉珊, 祝俊. 2016. PPK 和 GMAS 共表達重組菌株的構建及其在 L-茶氨酸合成中的應用. 生物工程學報. 32:1745-1749.
Adhikary, R., and V. Mandal. 2017. L-theanine: A potential multifaceted natural bioactive amide as health supplement. Asian Pac J Trop Biomed. 7:842-848.
Alcázar, A., O. Ballesteros, J. Jurado, F. Pablos, M. Martín, J. Vilches, and A. Navalón. 2007. Differentiation of green, white, black, Oolong, and Pu-erh teas according to their free amino acids content. J Agric Food Chem. 55:5960-5965.
Allameh, M., and V. Orsat. 2023. Optimization of extraction conditions for the maximum recovery of L‐theanine from tea leaves: Comparison of black, green, and white tea. J Sci Food Agric. 3:655-662.
Armeli, F., B. Mengoni, D.L. Laskin, and R. Businaro. 2024. Interplay among oxidative stress, autophagy, and the endocannabinoid system in neurodegenerative diseases: Role of the Nrf2-p62/SQSTM1 pathway and nutraceutical activation. Curr Issues Mol Biol. 46:6868.
Ashihara, H., and A. Crozier. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci. 6:407-413.
Bachmann, B.J. 1996. Derivations and genotypes of some mutant derivatives of Escherichia coli K‐12. Cell Mol Biol. 2460.
Cao, R., S. Hu, Y. Lu, W. Wang, Z. Fu, and J. Cheng. 2023. Fermentative Production of L-Theanine in Escherichia coli via the construction of an adenosine triphosphate regeneration system. Fermentation. 9:875.
Casimir, J., J. Jadot, and M. Renard. 1960. Separation and characterization of N-ethyl-gamma-glutamine from Xerocomus badius. Biochim Biophys Acta. 39:462-468.
Chen, X., L. Su, D. Wu, and J. Wu. 2014. Application of recombinant Bacillus subtilis γ-glutamyltranspeptidase to the production of L-theanine. Process Biochem. 49:1429-1439.
Chen, Z., Z. Wang, H. Yuan, and N. He. 2021. From tea leaves to factories: a review of research progress in L-theanine biosynthesis and production. J Agric Food Chem. 69:1187-1196.
Cherepanov, P.P., and W. Wackernagel. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 158:9-14.
Dai, H., X. Chen, J. He, P. Zheng, Y. Luo, B. Yu, D. Chen, and Z. Huang. 2023. Dietary L-theanine supplementation improves antioxidant capacity and lipid metabolism in finishing pigs. J Funct Foods. 110:105831.
Dai, Z., Z. Wu, S. Jia, and G. Wu. 2014. Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J. Chromatogr. B. 964:116-127.
Datsenko, K.A., and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 97:6640-6645.
Deng, W.W., S. Ogita, and H. Ashihara. 2010. Distribution and biosynthesis of theanine in Theaceae plants. Plant Physiol Biochem. 48:70-72.
Dong, C., F. Li, T. Yang, L. Feng, S. Zhang, F. Li, W. Li, G. Xu, S. Bao, and X. Wan. 2020. Theanine transporters identified in tea plants (Camellia sinensis L.). Plant J. 101:57-70.
Dr. Kate Placzek. 2017. L-theanine in green tea stimulates neurotransmitter production & reduces anxiety. The ZRT Laboratory Blog. Retrieved June 28 from https://www.zrtlab.com/blog/archive/l-theanine-green-tea-neurotransmitter-anxiety/#_edn8.
Feng, J., C. Yang, Z. Zhao, J. Xu, J. Li, and P. Li. 2021a. Application of cell-free protein synthesis system for the biosynthesis of L-theanine. Acs Synth Biol. 10:620-631.
Feng, M., X. Zheng, J. Wan, W. Pan, X. Xie, B. Hu, Y. Wang, H. Wen, and S. Cai. 2021b. Research progress on the potential delaying skin aging effect and mechanism of tea for oral and external use. Food Funct. 12:2814-2828.
Fujii, S., and K. Inai. 2008. Tumorigenicity study of L-theanine administrated orally to mice. Food Chem. 110:643-646.
Graham, H.N. 1992. Green tea composition, consumption, and polyphenol chemistry. Prev Med. 21:334-350.
Gu, H., Y. Jiang, and J. Wang. 2004. A practical synthesis of ethyl L-glutamine (L-theanine). Org Prep Proced Int. 36:182-185.
Hagihara, R., S. Ohno, M. Hayashi, K. Tabata, and H. Endo. 2021. Production of L-theanine by Escherichia coli in the absence of supplemental ethylamine. Appl Environ Microb. 87:e00031-00021.
Hori, H., H. Yoneyama, R. Tobe, T. Ando, E. Isogai, and R. Katsumata. 2011. Inducible L-alanine exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. Appl Environ Microb. 77:4027-4034.
Kakuda, T. 2011. Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacol Res. 64:162-168.
Kang, D., Y. Kim, and H. Cha. 2002. Comparison of green fluorescent protein expression in two industrial Escherichia coli strains, BL21 and W3110, under co-expression of bacterial hemoglobin. Appl Microbiol Biotechnol. 59:523-528.
Kawagishi, H., and K. Sugiyama. 1992. Facile and large-scale synthesis of L-theanine. Biosci Biotechnol Biochem. 56:689-689.
Kurihara, S., T. Shibakusa, and K.A. Tanaka. 2013. Cystine and theanine: amino acids as oral immunomodulative nutrients. Springerplus. 2:1-7.
Liang, Y. Rong, C. Liu, L.P. Xiang, and X.Q. Zheng. 2015. Health benefits of theanine in green tea: a review. Trop J Pharm Res. 14:1943-1949.
Lichtenstein, N. 1942. Preparation of γ-alkylamides of glutamic acid. J Am Chem Soc. 64:1021-1022.
Liu, S., Y. Li, and J. Zhu. 2016. Enzymatic production of L-theanine by γ-glutamylmethylamide synthetase coupling with an ATP regeneration system based on polyphosphate kinase. Process Biochem. 51:1458-1463.
Liu, S.H., J. Li, J.A. Huang, Z.H. Liu, and L.G. Xiong. 2021. New advances in genetic engineering for L-theanine biosynthesis. Trends Food Sci Tech. 114:540-551.
Ma, H., X. Fan, N. Cai, D. Zhang, G. Zhao, T. Wang, R. Su, M. Yuan, Q. Ma, and C. Zhang. 2020. Efficient fermentative production of L-theanine by Corynebacterium glutamicum. Appl Microbiol Biotechnol, 104, 119-130.
Miyake, K., and S. Kakita. 2009. A novel catalytic ability of γ-glutamylcysteine synthetase of Escherichia coli and its application in theanine production. Biosci Biotechnol Biochem. 73:2677-2683.
Morelli, C.F., C. Calvio, M. Biagiotti, and G. Speranza. 2014. pH‐Dependent hydrolase, glutaminase, transpeptidase and autotranspeptidase activities of Bacillus subtilis γ‐glutamyltransferase. FEBS J. 281:232-245.
Nie, Y., M. Yao, G. Jiang, Y. Yang, S. Wang, H. Xu, J. Liang, X. Ren, and Y. Tian. 2024. Systems engineering of Escherichia coli for high-level L-alanine production. Food Biosci. 59:103894.
Okada, Y., M. Koseki, and M. Chu. 2006. Protein and cDNA sequences of two theanine synthetases from Camellia sinensis. Japan Patent. 2006254780
Pu, H., Q. Wang, F. Zhu, X. Cao, Y. Xin, L. Luo, and Z. Yin. 2013. Cloning, expression of glutaminase from Pseudomonas nitroreducens and application to theanine synthesis. Biocatal. Biotransform. 31:1-7.
Sakato, Y. 1949. The chemical constituents of tea : A new amide Theanine. Nippon Nogeikagaku Kaishi. 23:262-267.
Sasaoka, K., M. Kito, and Y. Onishi. 1965. Some properties of the theanine synthesizing enzyme in tea seedlings. Agric Biol Chem. 29:984-988.
Selvendran, R., and S. Selvendran. 1973. The distribution of some nitrogenous constituents in the tea plant. J Sci Food Agric. 24:161-166.
Sun, C., Z. Li, X. Ning, W. Xu, and Z. Li. 2021. In vitro biosynthesis of ATP from adenosine and polyphosphate. Bioresour Bioprocess. 8:1-10.
Suzuki, H., S. Izuka, N. Miyakawa, and H. Kumagai. 2002. Enzymatic production of theanine, an “umami” component of tea, from glutamine and ethylamine with bacterial γ-glutamyltranspeptidase. Enzyme Microb Technol. 31:884-889.
Tachiki, T., H. Suzuki, S. Wakisaka, T. Yano, and T. Tochikura. 1986. Production of γ-glutamylmethylamide and γ-glutamylethylamide by coupling of baker's yeast preparations and bacterial glutamine synthetase. J Gen Appl Microbiol. 32:545-548.
Thomason, L.C., N. Costantino, and D.L. Court. 2007. E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol. 79:1-17
Ting, W.W., S.I. Tan, and I.S. Ng. 2020. Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresour Bioprocess. 7:1-13.
Tsuge, H., S. Sano, T. Hayakawa, T. Kakuda, and T. Unno. 2003. Theanine, γ-glutamylethylamide, is metabolized by renal phosphate-independent glutaminase. Biochim Biophys Acta - Gen Subj 1620:47-53.
Tsushida, T., and T. Takeo. 1985. An enzyme hydrolyzing L-theanine in tea leaves. Agric Biol Chem. 49:2913-2917.
Vuong, Q.V., C.E. Stathopoulos, J.B. Golding, M.H. Nguyen, and P.D. Roach. 2011. Optimum conditions for the water extraction of L‐theanine from green tea. J Sep Sci. 34:2468-2474.
Wang, H., B. Zhu, S. Qiao, C. Dong, X. Wan, W. Gong, and Z. Zhang. 2024. Structure and evolution of Alanine/Serine Decarboxylases and the engineering of theanine production. Elife. 12:RP91046.
Wang, L., M. Brennan, S. Li, H. Zhao, K.W. Lange, and C. Brennan. 2022. How does the tea L-theanine buffer stress and anxiety. Food Sci Hum Wellness. 11:467-475.
Yamamoto, S., K. Uchimura, M. Wakayama, and T. Tachiki. 2004. Purification and characterization of glutamine synthetase of Pseudomonas taetrolens Y-30: an enzyme usable for production of theanine by coupling with the alcoholic fermentation system of baker’s yeast. Biosci Biotechnol Biochem. 68:1888-1897.
Yamamoto, S., M. Wakayama, and T. Tachiki. 2006. Cloning and expression of Pseudomonas taetrolens Y-30 gene encoding glutamine synthetase: an enzyme available for theanine production by coupled fermentation with energy transfer. Biosci Biotechnol Biochem. 70:500-507.
Yamamoto, S., M. Wakayama, and T. Tachiki. 2007. Characterization of theanine-forming enzyme from Methylovorus mays no. 9 in respect to utilization of theanine production. Biosci Biotechnol Biochem. 71:545-552.
Yamamoto, S., M. Wakayama, and T. Tachiki. 2008. Cloning and expression of Methylovorus mays no. 9 gene encoding γ-glutamylmethylamide synthetase: an enzyme usable in theanine formation by coupling with the alcoholic fermentation system of baker’s yeast. Biosci Biotechnol Biochem. 72:101-109.
Yan, S.H., J. Dufour, and M. Meurens. 2003. Synthesis and characterization of highly pure theanine. J Tea Sci. 23:99-104.
Yao, J., J. Li, D. Xiong, Y. Qiu, G. Shi, J.-M. Jin, Y. Tao, and S.-Y. Tang. 2020. Development of a highly efficient and specific L-theanine synthase. Appl Microbiol Biotechnol. 104:3417-3431.
Yoneda, Y., K. Kawada, and N. Kuramoto. 2020. Selective upregulation by theanine of Slc38a1 expression in neural stem cell for brain wellness. Molecules. 25:347.
Zhou, X., Z. Zhang, X. Jia, Y. Wu, L. Luo, and Z. Yin. 2008. Mn 2+ enhances theanine-forming activity of recombinant glutamine synthetase from Bacillus subtilis in Escherichia coli. World J Microbiol Biotechnol 24:1267-1272.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99417-
dc.description.abstractL-茶胺酸 (L-theanine) 是一種天然存在於茶葉中的非蛋白質胺基酸,是茶葉鮮味的主要來源。由於具有保護神經、緩解壓力、改善睡眠等多種生理功效,廣泛應用於食品、保健品和化妝品等產業。目前生產 L-茶胺酸的方法主要有茶葉萃取、化學合成、酵素催化和微生物發酵。其中,由於微生物發酵則能在大型生物反應器中穩定運行,適合大規模生產,成本更具競爭力。然而,目前利用微生物發酵生產 L-茶胺酸的詳細研究仍相對有限。相應地,L-茶胺酸的生產需要添加前驅物乙胺。雖然乙胺是L-茶胺酸合成的必要基質,但它價格昂貴、毒性大、易燃,對微生物和環境都有害。因此,已有研究開發出無需添加乙胺的微生物生產L-茶胺酸的生物方法。然而,迄今為止,尚未有詳細的實驗在單一微生物中同時測試所有可能影響L-茶胺酸最佳產量的因素。基於這些原因,本研究透過比較不同微生物的酵素活性,結合新的遺傳和代謝工程以及使用新的宿主菌株,在大腸桿菌中重新建立了一個優化的L-茶胺酸生產系統,以在不添加乙胺的情況下,以達到L-茶胺酸的最大產量。透過構建同時攜帶 CsAlaDC、BsAld 和 gmas 基因的雙質體菌株,並系統性優化宿主菌株、基因元件、代謝途徑與培養條件,有效提升 L-茶胺酸的產量。具體策略包括:選用 K-12 系列的 E. coli W3110::pI、使用突變型 CsAlaDC (L110F/P114A) 和來自 Pseudomonas syringae pv. syringae B728a 的 gmas基因,過度表達大腸桿菌內源性 gdha基因、補充多磷酸鹽並引入 Rsppk2基因增強 ATP 再生,以及刪除 L-丙胺酸外排基因 (alaE) 以提高前驅物供應。在最佳化條件 (0.1 mM IPTG 誘導、30°C 培養、30 g/L 葡萄糖) 下,經 24 小時培養後,L-茶胺酸產量由原先的 166.44 ± 3 mg/L 提升至 827.13 ± 25  mg/L,約為原來的 5 倍。本研究顯示,結合基因重組與代謝工程的優化,能有效強化 E. coli 合成 L-茶胺酸的能力,為後續開發高效的微生物發酵生產 L-茶胺酸方法提供了基礎和參考。zh_TW
dc.description.abstractL-theanine is a non-proteinogenic amino acid naturally found in tea leaves and is the major contributor to the umami flavor of tea. Due to its multiple physiological benefits, including neuroprotection, stress relief, and sleep improvement, L-theanine is widely used in the food, health supplement, and cosmetics industries. Currently, L-theanine is produced via four main methods: tea leaf extraction, chemical synthesis, enzymatic catalysis, and microbial fermentation. Among these, microbial fermentation is particularly suitable for large-scale production because it can be stably operated in industrial bioreactors and offers a more cost-effective alternative. However, detailed studies on microbial fermentation for L-theanine production remain relatively limited.  In most microbial processes, the addition of ethylamine is necessary as a precursor for L-theanine biosynthesis. Although ethylamine is an essential substrate, it is expensive, highly toxic, and flammable, posing hazards to both microorganisms and the environment. As a result, bio-based production strategies that do not require ethylamine supplementation have been developed. Nonetheless, to date, no single study has systematically evaluated all factors that may influence optimal L-theanine production in a single microbial host.  In this study, we established an optimized ethylamine-free biosynthetic system for L-theanine production in Escherichia coli by comparing enzymatic activity from different microorganisms and integrating advanced genetic and metabolic engineering strategies, along with the use of a new host strain. A dual-plasmid system co-expressing CsAlaDC, BsAld, and gmas genes was constructed. Through systematic optimization of the host strain, genetic elements, metabolic pathway, and culture conditions, the production of L-theanine was significantly improved.  Key strategies included the use of the E. coli K-12 strain W3110::pI, a mutant CsAlaDC (L110F/P114A), the gmas gene from Pseudomonas syringae pv. syringae B728a, overexpression of the endogenous gdhA gene, polyphosphate supplementation with overexpression of the Rsppk2 gene to enhance ATP regeneration, and deletion of the alaE gene (involved in L-alanine export) to improve precursor availability.  Under optimized conditions (0.1 mM IPTG induction, 30°C cultivation, 30 g/L glucose), the L-theanine titer increased from 166.44 ± 3 mg/L to 827.13 ± 25 mg/L after 24 hours, representing approximately a 5-fold improvement. This study demonstrates that combining recombinant gene expression with metabolic engineering can effectively enhance L-theanine biosynthesis in E. coli, providing a foundation and reference for future development of efficient microbial fermentation strategies for L-theanine production.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:13:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:13:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 ix
附錄 x
第一章、 前言 1
1.1 L-茶胺酸 (L-theanine) 介紹 1
1.2 茶樹中L-茶胺酸 (L-theanine) 的生物合成途徑 3
1.3 茶葉萃取L-茶胺酸 (L-theanine) 之方法 5
1.4 化學合成L-茶胺酸 (L-theanine) 之方法 5
1.5 酵素催化合成 L-茶胺酸 (L-theanine) 之方法 6
1.6 微生物發酵生產L-茶胺酸 (L-theanine) 之方法 11
1.7 研究動機與目的 14
第二章、 材料與方法 15
2.1 實驗材料 15
2.2 器材與設備 16
2.3 實驗方法 17
2.3.1 相關套組使用 17
2.3.2 勝任細胞製備(preparation of competent cell) 17
2.3.3 轉形作用(transformation) 18
2.3.4 基因選殖 19
2.3.5 突變基因之建構 21
2.3.6 茶樹 (Camellia sinensis) 之CsAlaDC基因提取 21
2.3.7 菌株建構 23
2.3.8 表達質體之建構 27
2.3.9 菌株培養及發酵生產L-茶胺酸 28
2.3.10 IPTG濃度對L-茶胺酸產量之影響 28
2.3.11 培養溫度對L-茶胺酸產量之影響 28
2.3.12 Glucose濃度對L-茶胺酸產量之影響 29
2.3.13 (NaPO3)6 濃度對L-茶胺酸產量之影響 29
2.3.14 L-茶胺酸、L-丙胺酸 -高效液相層析儀 (HPLC) 測定 29
2.3.15 蛋白質膠體電泳 (SDS-PAGE) 31
第三章、結果 34
3.1 不同質體之建構對L-茶胺酸產量之影響 34
3.2 不同E.coli菌株對L-茶胺酸產量之影響 34
3.3 CsAlaDC L110F/P114A 突變對L-茶胺酸產量之影響 35
3.4 不同 L-茶胺酸生合成基因對 L-茶胺酸產量之影響 36
3.5 過度表達內源性gdha基因對 L-茶胺酸產量之影響 37
3.6 IPTG濃度對L-茶胺酸產量之影響 38
3.7 培養溫度對L-茶胺酸產量之影響 38
3.8 Glucose濃度對L-茶胺酸產量之影響 39
3.9 表達ppk2基因及不同濃度 (NaPO3)6 對L-茶胺酸產量之影響 39
3.10 刪除alaE基因對L-丙胺酸和L-茶胺酸產量之影響 40
第四章、討論 42
第五章、結論 46
第六章、參考文獻 47
附錄 81
-
dc.language.isozh_TW-
dc.subject微生物發酵zh_TW
dc.subjectL-茶胺酸zh_TW
dc.subject茶樹zh_TW
dc.subject乙胺zh_TW
dc.subject大腸桿菌zh_TW
dc.subjectEscherichia colien
dc.subjectEthylamineen
dc.subjectCamellia sinensisen
dc.subjectMicrobial fermentationen
dc.subjectL-theanineen
dc.title利用新型基因重組與工程系統於大腸桿菌中生產 L-茶胺酸zh_TW
dc.titleProduction of L-theanine by a new genetically recombinant and engineered system in Escherichia colien
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳昭瑩;洪傳揚;陳建德;余建泓zh_TW
dc.contributor.oralexamcommitteeChao-Ying Chen;Chwan-Yang Hong;Chien-Teh Chen;Chien-Hung Yuen
dc.subject.keywordL-茶胺酸,微生物發酵,大腸桿菌,乙胺,茶樹,zh_TW
dc.subject.keywordL-theanine,Microbial fermentation,Escherichia coli,Ethylamine,Camellia sinensis,en
dc.relation.page91-
dc.identifier.doi10.6342/NTU202502946-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved