請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99415完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓玉山 | zh_TW |
| dc.contributor.advisor | Yu-San Han | en |
| dc.contributor.author | 楊弘煜 | zh_TW |
| dc.contributor.author | Hong-Yu Yang | en |
| dc.date.accessioned | 2025-09-10T16:13:08Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 自強工程顧問有限公司. (2014). 103磺溪(含支流及河口海域)河川情勢調查.
艾奕康工程顧問股份有限公司. (2013). 鹽水溪(含支流)河川情勢調查-四草大橋及大港觀海大橋. 宜蘭縣政府. (2020). 五結防潮閘改建工程生態調查報告. 宜蘭縣政府. (2022). 得子口溪水環境改善整體計畫. 林瑩峯, & 黃大駿. (2016). 台江國家公園水質底泥監測暨指標生物評估計畫. 社團法人台灣濕地協會. (2018). 台江國家公園管理處行政中心北側魚塭棲地改善計畫. 逢甲大學. (2021). 頭前溪流域河川情勢調查. 陳義雄. (2014). 台江國家公園沿海與潟湖魚類生態資源調查及經營管理計畫。鹽水溪流域. 黃大駿, 邱郁文, & 黃元照. (2020). 台江學園水域生態資源調查計畫. 嘉義縣政府. (2016). 嘉義縣 104 年度朴子溪河口濕地背景環境生物監測與調查研究. 漢林生態顧問有限公司. (2019). 108 年度東港溪魅力河段生態檢核計畫. 臺中市大安區公所. (2019). 溫寮溪河口區域生態調查報告. 臺南市政府. (2009). 臺南市 98 年度國家重要濕地生態環境調查及復育計畫。. 臺南市政府. (2018). 臺南市二仁溪口濕地保育行動計畫. Ahn, H. (2020). Variation of Japanese eel eDNA in sequentially changing conditions and in different sample volumes. Journal of Fish Biology, 97(4), 1238-1241. Aoyama, J., Shinoda, A., Sasai, S., Miller, M., & Tsukamoto, K. (2005). First observations of the burrows of Anguilla japonica. Journal of Fish Biology, 67(6), 1534-1543. Aoyama, J., Wouthuyzen, S., Miller, M. J., Sugeha, H. Y., Kuroki, M., Watanabe, S., Syahailatua, A., Tantu, F. Y., Hagihara, S., & Otake, T. (2018). Reproductive ecology and biodiversity of freshwater eels around Sulawesi Island Indonesia. Zoological Studies, 57, e30. Arai, T. (2020). Ecology and evolution of migration in the freshwater eels of the genus Anguilla Schrank, 1798. Heliyon, 6(10). Benoit, N. P., Robinson, K. M., Kellogg, C. T., Lemay, M. A., & Hunt, B. P. (2023). Using qPCR of environmental DNA (eDNA) to estimate the biomass of juvenile Pacific salmon (Oncorhynchus spp.). Environmental DNA, 5(4), 683-696. Chen, J. Z., Huang, S. L., & Han, Y. S. (2014). Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuarine, Coastal and Shelf Science, 151, 361-369. Chen, S. C., Chang, C. R., & Han, Y. S. (2018). Seaward migration routes of indigenous eels, Anguilla japonica, A. marmorata, and A. bicolor pacifica, via satellite tags. Zoological Studies, 57, e21. Dekker, W. (2003). Did lack of spawners cause the collapse of the European eel, Anguilla anguilla? Fisheries Management and ecology, 10(6), 365-376. Dörner, H., Skov, C., Berg, S., Schulze, T., Beare, D., & Van der Velde, G. (2009). Piscivory and trophic position of Anguilla anguilla in two lakes: importance of macrozoobenthos density. Journal of Fish Biology, 74(9), 2115-2131. Dou, S.-Z., & Tsukamoto, K. (2003). Observations on the nocturnal activity and feeding behavior of Anguilla japonica glass eels under laboratory conditions. Environmental biology of fishes, 67(4), 389-395. Eichmiller, J. J., Best, S. E., & Sorensen, P. W. (2016). Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environmental science & technology, 50(4), 1859-1867. Han, Y. S., Yambot, A. V., Zhang, H., & Hung, C. L. (2012). Sympatric spawning but allopatric distribution of Anguilla japonica and Anguilla marmorata: temperature-and oceanic current-dependent sieving. PLoS one, 7(6), e37484. Harshitha, R., & Arunraj, D. R. (2021). Real‐time quantitative PCR: A tool for absolute and relative quantification. Biochemistry and Molecular Biology Education, 49(5), 800-812. Hsiung, K. M., Lin, Y. T., & Han, Y. S. (2022). Current dependent dispersal characteristics of Japanese Glass Eel around Taiwan. Journal of Marine Science and Engineering, 10(1), 98. Hsu, H. Y., Chen, H. W., & Han, Y. S. (2019). Habitat partitioning and its possible genetic background between two sympatrically distributed eel species in Taiwan. Zoological Studies, 58, e27. Hsu, H. Y., Wu, K. J., & Han, Y. S. (2023). Detecting Japanese Eels (Anguilla japonica) and Revealing Their Distribution in Taiwanese Rivers by Environmental DNA Analysis. Fishes, 8(10), 483. Itakura, H., Kaino, T., Miyake, Y., Kitagawa, T., & Kimura, S. (2015). Feeding, condition, and abundance of Japanese eels from natural and revetment habitats in the Tone River, Japan. Environmental biology of fishes, 98, 1871-1888. Itakura, H., Wakiya, R., Sakata, M. K., Hsu, H. Y., Chen, S. C., Yang, C. C., Huang, Y. C., Han, Y. S., Yamamoto, S., & Minamoto, T. (2020). Estimations of Riverine Distribution, Abundance, and Biomass of Anguillid Eels in Japan and Taiwan Using Environmental DNA Analysis. Zool Stud, 59, e17. https://doi.org/10.6620/ZS.2020.59-17 Itakura, H., Wakiya, R., Yamamoto, S., Kaifu, K., Sato, T., & Minamoto, T. (2019). Environmental DNA analysis reveals the spatial distribution, abundance, and biomass of Japanese eels at the river-basin scale. Aquatic Conservation Marine and Freshwater Ecosystems, 29. https://doi.org/10.1002/aqc.3058 Jacoby, D., & Gollock, M. (2014). Anguilla japonica. The IUCN Red List of Threatened Species 2014 Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., Letcher, B. H., & Whiteley, A. R. (2015). Distance, flow and PCR inhibition: e DNA dynamics in two headwater streams. Molecular ecology resources, 15(1), 216-227. Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). “Sight‐unseen” detection of rare aquatic species using environmental DNA. Conservation letters, 4(2), 150-157. Kaifu, K., Miyazaki, S., Aoyama, J., Kimura, S., & Tsukamoto, K. (2013). Diet of Japanese eels Anguilla japonica in the Kojima Bay-Asahi river system, Japan. Environmental biology of fishes, 96(4), 439-446. Kaifu, K., & Yokouchi, K. (2019). Increasing or decreasing?-Current status of the Japanese eel stock. Fisheries Research, 220, 105348. Karlsson, E., Ogonowski, M., Sundblad, G., Sundin, J., Svensson, O., Nousiainen, I., & Vasemägi, A. (2022). Strong positive relationships between eDNA concentrations and biomass in juvenile and adult pike (Esox lucius) under controlled conditions: Implications for monitoring. Environmental DNA, 4(4), 881-893. Kumai, Y., Kuroki, M., Goto, A., Takai, K., Muramatsu, K., & Yamakawa, T. (2023). Ontogenetic habitat shift of Anguilla marmorata and A. japonica in the rivers of southern Japan: Implications for habitat use evaluation and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 33(11), 1295-1308. Kume, M., Terashima, Y., Kawai, F., Kutzer, A., Wada, T., & Yamashita, Y. (2020). Size-dependent changes in habitat use of Japanese eel Anguilla japonica during the river life stage. Environmental biology of fishes, 103(3), 269-281. Lance, R. F., & Guan, X. (2020). Variation in inhibitor effects on qPCR assays and implications for eDNA surveys. Canadian Journal of Fisheries and Aquatic Sciences, 77(1), 23-33. Linton, E. D., Jónsson, B., & Noakes, D. L. (2007). Effects of water temperature on the swimming and climbing behaviour of glass eels, Anguilla spp. Environmental biology of fishes, 78(3), 189-192. Matsushige, K., Yasutake, Y., & Mochioka, N. (2020). Spatial distribution and habitat preferences of the Japanese eel, Anguilla japonica, at the reach and channel-unit scales in four rivers of Kagoshima Prefecture, Japan. Ichthyological Research, 67(1), 68-80. Miya, M., Minamoto, T., Yamanaka, H., Oka, S. i., Sato, K., Yamamoto, S., Sado, T., & Doi, H. (2016). Use of a filter cartridge for filtration of water samples and extraction of environmental DNA. Journal of visualized experiments: JoVE(117), 54741. Murphy, B. R., & Willis, D. W. (1996). Fisheries techniques. Citeseer. Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R., & Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA–a review of eDNA as a survey tool in ecology. Journal of applied ecology, 51(5), 1450-1459. Snyder, D. E. (2003). Invited overview: conclusions from a review of electrofishing and its harmful effects on fish. Reviews in fish biology and fisheries, 13, 445-453. Strickler, K. M., Fremier, A. K., & Goldberg, C. S. (2015). Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biological Conservation, 183, 85-92. Taberlet, P., Coissac, E., Hajibabaei, M., & Rieseberg, L. H. (2012). Environmental DNA. Mol Ecol, 21(8), 1789-1793. https://doi.org/10.1111/j.1365-294X.2012.05542.x Tatsukawa, K. (2003). Eel resources in east Asia. In Eel biology (pp. 293-298). Springer. Tesch, F. W., & White, R. J. (2003). The eel (Vol. 15). Wiley Online Library. Thomas, A. C., Tank, S., Nguyen, P. L., Ponce, J., Sinnesael, M., & Goldberg, C. S. (2020). A system for rapid eDNA detection of aquatic invasive species. Environmental DNA, 2(3), 261-270. Tsukamoto, K., Aoyama, J., & Miller, M. J. (2009). Present status of the Japanese eel: resources and recent research. American fisheries society symposium, Tsukamoto, K., Chow, S., Otake, T., Kurogi, H., Mochioka, N., Miller, M. J., Aoyama, J., Kimura, S., Watanabe, S., & Yoshinaga, T. (2011). Oceanic spawning ecology of freshwater eels in the western North Pacific. Nature communications, 2(1), 179. Tsukamoto, K., & Miller, M. J. (2021). The mysterious feeding ecology of leptocephali: a unique strategy of consuming marine snow materials. Fisheries Science, 87(1), 11-29. Wang, N., Dorman, R. A., Ingersoll, C. G., Hardesty, D. K., Brumbaugh, W. G., Hammer, E. J., Bauer, C. R., & Mount, D. R. (2016). Acute and chronic toxicity of sodium sulfate to four freshwater organisms in water‐only exposures. Environmental Toxicology and Chemistry, 35(1), 115-127. Wilcox, T. M., McKelvey, K. S., Young, M. K., Sepulveda, A. J., Shepard, B. B., Jane, S. F., Whiteley, A. R., Lowe, W. H., & Schwartz, M. K. (2016). Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biological Conservation, 194, 209-216. Wu, C.-F., & Tzeng, C.-S. (2000). Studies on the Periodic Fluctuation of the Fishes in the Shuangchi River Estuary of Northeastern Taiwan Yamanaka, H., Minamoto, T., Matsuura, J., Sakurai, S., Tsuji, S., Motozawa, H., Hongo, M., Sogo, Y., Kakimi, N., & Teramura, I. (2017). A simple method for preserving environmental DNA in water samples at ambient temperature by addition of cationic surfactant. Limnology, 18, 233-241. Yang, C.-h., Ke, T.-Y., Tzeng, C.-S., & Liao, T.-Y. (2024). The Red Lists of Freshwater Fishes of Taiwan, 2024. Taiwan Biodiversity Research Institute. Yokouchi, K., Itakura, H., Wakiya, R., Yoshinaga, T., Mochioka, N., Kimura, S., & Kaifu, K. (2022). Cumulative effects of low‐height barriers on distributions of catadromous Japanese eels in Japan. Animal Conservation, 25(1), 137-149. Zak, D., Hupfer, M., Cabezas, A., Jurasinski, G., Audet, J., Kleeberg, A., McInnes, R., Kristiansen, S. M., Petersen, R. J., & Liu, H. (2021). Sulphate in freshwater ecosystems: A review of sources, biogeochemical cycles, ecotoxicological effects and bioremediation. Earth-Science Reviews, 212, 103446. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99415 | - |
| dc.description.abstract | 日本鰻 (Anguilla japonica) 為臺灣重要的經濟性物種,然而近幾年來因過度捕撈、棲地破壞及氣候變遷等因素,使其野外族群數量大幅下降,面臨資源枯竭危機。為有效制定保育策略,本研究目標為評估環境DNA (environmental DNA, eDNA) 技術應用於日本鰻資源監測的可行性,結合即時定量聚合酶連鎖反應 (real-time qPCR) 與養殖槽實驗,建立eDNA濃度與生物量間的量化關係,並以此推估野外河川中日本鰻的相對生物量。本研究於2023年至2025年間,選取臺灣北、中、南部18條低污染河川作為調查目標河川,共設置91個樣點進行水樣採集與eDNA分析,利用本實驗室所設計針對日本鰻細胞色素B (Cytb) 基因的引子及探針進行即時定量聚合酶連鎖反應檢測,並利用養殖槽實驗所建立eDNA copy number與鰻魚生物量之間的換算公式,推估各樣點每公升水體中之日本鰻生物量。結果顯示,除雙溪外,其餘河川皆可檢測到日本鰻eDNA訊號,顯示日本鰻分布於多數臺灣河川中。然而,大多數樣點所推估之生物量皆偏低,並有多數需透過two-step PCR才能檢測到,暗示臺灣日本鰻族群數量已普遍處於低位階狀態。同時,也揭示出目前日本鰻資源急需保護的現況。另外,本研究亦指出,河川水量、底質型態、棲地結構及人為干擾 (如攔河堰與捕撈行為) 會可能會對日本鰻分布及其資源造成影響,各種環境參數亦會影響到eDNA檢測的結果。
簡而言之,本研究已成功地建立可用於評估日本鰻資源的eDNA技術,除了能夠調查出日本鰻存在與否,亦能夠推估其資源量,在未來可作為日本鰻資源評估與保育管理之重要工具。 | zh_TW |
| dc.description.abstract | Japanese eel (Anguilla japonica) is an important economic species in Taiwan. However, in recent years, due to overfishing, habitat degradation, and climate change, wild populations of this species have declined drastically, facing a severe risk of resource depletion. To establish effective conservation strategies, this study aimed to evaluate the feasibility of using environmental DNA (eDNA) techniques for monitoring Japanese eel resources. In combination with real-time quantitative polymerase chain reaction (real-time qPCR) and controlled tank experiments, this research established a quantitative relationship between eDNA concentration and eel biomass to estimate the relative biomass of Japanese eel in natural rivers.
From 2023 to 2025, we selected 18 low-pollution rivers across northern, central, and southern Taiwan as target sites for investigation. A total of 91 sampling sites were set up for water sampling and eDNA analysis. Using primers and a TaqMan probe specifically designed by our laboratory targeting the cytochrome b (Cytb) gene of Japanese eel, we performed real-time qPCR to detect eDNA concentrations. The biomass of Japanese eel (per liter of water) at each site was estimated using a conversion formula established through tank experiments. The results showed that, except for the Shuang River, Japanese eel eDNA was detected in all surveyed rivers, indicating a widespread distribution across Taiwan. However, most sites showed relatively low estimated biomass, and many required two-step PCR to detect eDNA signals, revealing that Japanese eel populations in Taiwan rivers are generally at low density and in urgent need of conservation. In addition, this study also indicates that river discharge, substrate type, habitat structure, and human disturbances (such as weirs and fishing activities) may affect the distribution and resources of Japanese eel. Various environmental parameters could also influence the results of eDNA detection. This study successfully established an eDNA-based method for investigating Japanese eel resources. The technique not only enables detection of species presence but also allows for biomass estimation, offering a valuable tool for future resource assessment and conservation management of Japanese eel. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:13:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:13:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii 目次 v 圖次 vii 表次 ix 一. 前言 1 1.1 鰻魚生活史 1 1.2 日本鰻偏好棲地 1 1.3 日本鰻資源及調查方法 2 1.4 環境DNA (environmental DNA, eDNA) 技術 2 1.5 即時定量聚合酶連鎖反應 (Real-time quantitative polymerase chain reaction, Real-time qPCR) 4 1.6 研究目的 5 二. 材料與方法 6 2.1 研究地點及水樣採集 6 2.2 eDNA萃取及純化 6 2.3 即時定量聚合酶連鎖反應 (Real-time qPCR) 7 2.4 日本鰻室內養殖槽實驗 9 2.5 統計分析 10 三. 結果 12 3.1 目標河川日本鰻eDNA檢測結果 12 3.1.1 北部區域河川日本鰻分布及資源量推估 12 3.1.2 中部區域河川日本鰻分布及資源量推估 13 3.1.3 南部區域河川日本鰻分布及資源量推估 14 四. 討論 16 4.1 日本鰻eDNA推估其生物量 16 4.2 各河川日本鰻eDNA調查結果分析 16 4.2.1 北部區域 16 4.2.2 中部區域 18 4.2.3 南部區域 19 4.3 棲地環境對日本鰻生物量及eDNA檢測的影響 20 五. 結論 22 六.參考文獻 23 圖 33 表 67 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 環境DNA (eDNA) | zh_TW |
| dc.subject | 日本鰻 | zh_TW |
| dc.subject | 物種分布 | zh_TW |
| dc.subject | 即時定量聚合酶連鎖反應 (real-time qPCR) | zh_TW |
| dc.subject | 生物量推估 | zh_TW |
| dc.subject | species distribution | en |
| dc.subject | real-time qPCR | en |
| dc.subject | Anguilla japonica | en |
| dc.subject | environmental DNA (eDNA) | en |
| dc.subject | biomass estimation | en |
| dc.title | 以環境DNA技術評估臺灣河川中日本鰻資源現況 | zh_TW |
| dc.title | Assessing Japanese Eel (Anguilla japonica) Resources in Taiwanese Rivers through Environmental DNA Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張俊偉;張家豪;許翔奕 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Wei Chang;Chia-Hao Chang;Hsiang-Yi Hsu | en |
| dc.subject.keyword | 日本鰻,環境DNA (eDNA),即時定量聚合酶連鎖反應 (real-time qPCR),物種分布,生物量推估, | zh_TW |
| dc.subject.keyword | Anguilla japonica,environmental DNA (eDNA),real-time qPCR,species distribution,biomass estimation, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202503197 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2030-08-01 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
