請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳立涵 | zh_TW |
| dc.contributor.advisor | Li-Han Chen | en |
| dc.contributor.author | 吳宜蓁 | zh_TW |
| dc.contributor.author | Yi-Chen Wu | en |
| dc.date.accessioned | 2025-09-10T16:12:47Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | References
1 Liu, B., Dong, B., Tang, B., Zhang, T. & Xiang, J. Effect of stocking density on growth, settlement and survival of clam larvae, Meretrix meretrix. Aquaculture 258, 344-349 (2006). 2 Jasmin, F. Meretrix meretrix (Linnaeus, 1758). (2017). 3 Helm, M. M. B., N.; Lovatelli, A. Hatchery Culture of Bivalves, a Practical Manual; FAO Fisheries Technical Paper 471; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; Available online: https://www.fao.org/3/y5720e/y5720e00.htm (accessed on 30 October 2021). 4 Narasimham, K., Muthiah, P., Sundararajan, D. & Vaithinathan, N. Biology of the great clam, Meretrix meretrix in the Korampallam creek, Tuticorin. Indian Journal of Fisheries 35, 288-293 (1988). 5 楊清閔. 臺灣文蛤養殖產業面臨問題點之產地訪查. 《水試專訊》 86, 13-19 (2024). 6 Jeng, S. S. & Tyan, Y. M. Growth of the hard clam Meretrix lusoria in Taiwan. Aquaculture 27, 19-28 (1982). 7 Whetstone, J. M., Sturmer, L. N. & Oesterling, M. J. Biology and culture of the hard clam. Southern Regional Aquaculture Center 433, 1-6 (2005). 8 Fu, L. et al. Identification and expression characterization of the Smad3 gene and SNPs associated with growth traits in the hard clam (meretrix meretrix). Fishes 6, 83 (2021). 9 Valenzuela-Miranda, D., Del Río-Portilla, M. A. & Gallardo-Escárate, C. Characterization of the growth-related transcriptome in California red abalone (Haliotis rufescens) through RNA-Seq analysis. Marine genomics 24, 199-202 (2015). 10 Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The human microbiome and child growth–first 1000 days and beyond. Trends in microbiology 27, 131-147 (2019). 11 Perri, E., Sturmer, L., Wills, P. S., Baldwin, J. & Laramore, S. Effect of microalgal diets on Sunray Venus clam (Macrocallista nimbosa) production and fatty acid profile. Fishes 8, 72 (2023). 12 Ziqin, Z., Zhenghua, D., Dahui, Y. & Lirong, B. Studies on embryo development and larval feeding of clam Paphia textile. Aquaculture Reports 37, 102252 (2024). 13 Eryalçın, K. M., Pınarbaşı, Z. S., Turk, S. S. & Tınkır, M. Effects of microalgae diets on growth, proximate, and fatty acid composition of black mussel, Mytilus galloprovincialis. Journal of the World Aquaculture Society 55, e13050 (2024). 14 Xavier, B. et al. Comparative study on growth performance of mixed and monocultures of select marine microalgae. Marine Fisheries Information Service, Technical and Extension Series, 34-36 (2024). 15 Brown, M. & Blackburn, S. Live microalgae as feeds in aquaculture hatcheries. Advances in aquaculture hatchery technology, 117-158e (2013). 16 Tseng, K.-F., Huang, J.-S. & Liao, I.-C. Species control of microalgae in an aquaculture pond. Water Research 25, 1431-1437 (1991). 17 Smith, D. W. & Piedrahita, R. H. The relation between phytoplankton and dissolved oxygen in fish ponds. Aquaculture 68, 249-265 (1988). 18 Zang, C. et al. Comparison of relationships between pH, dissolved oxygen and chlorophyll a for aquaculture and non-aquaculture waters. Water, Air, & Soil Pollution 219, 157-174 (2011). 19 Ras, M., Steyer, J.-P. & Bernard, O. Temperature effect on microalgae: a crucial factor for outdoor production. Reviews in environmental science and bio/technology 12, 153-164 (2013). 20 Rabalais, N. N. Nitrogen in aquatic ecosystems. AMBIO: a Journal of the Human Environment 31, 102-112 (2002). 21 Solovchenko, A. E. et al. Luxury phosphorus uptake in microalgae. Journal of Applied Phycology 31, 2755-2770 (2019). 22 Guedes, A. C. & Malcata, F. X. Nutritional value and uses of microalgae in aquaculture. Aquaculture 10, 59-78 (2012). 23 Pernet, F., Bricelj, V. M. & Parrish, C. C. Effect of varying dietary levels of ω6 polyunsaturated fatty acids during the early ontogeny of the sea scallop, Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology 327, 115-133 (2005). 24 Gallager, S. M., Mann, R. & Sasaki, G. C. Lipid as an index of growth and viability in three species of bivalve larvae. Aquaculture 56, 81-103 (1986). 25 Matias, D., Joaquim, S., Ramos, M., Sobral, P. & Leitao, A. Biochemical compounds’ dynamics during larval development of the carpet-shell clam Ruditapes decussatus (Linnaeus, 1758): effects of mono-specific diets and starvation. Helgoland Marine Research 65, 369-379 (2011). 26 Stillwell, W. & Wassall, S. R. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chemistry and physics of lipids 126, 1-27 (2003). 27 Basen, T., Martin-Creuzburg, D. & Rothhaupt, K.-O. Role of essential lipids in determining food quality for the invasive freshwater clam Corbicula fluminea. Journal of the North American Benthological Society 30, 653-664 (2011). 28 Liu, H. et al. PUFA biosynthesis pathway in marine scallop Chlamys nobilis Reeve. Journal of agricultural and food chemistry 62, 12384-12391 (2014). 29 Tan, K., Ma, H., Li, S. & Zheng, H. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chemistry 311, 125907 (2020). 30 Chen, S.-M., Tseng, K.-Y. & Huang, C.-H. Fatty acid composition, sarcoplasmic reticular lipid oxidation, and immunity of hard clam (Meretrix lusoria) fed different dietary microalgae. Fish & Shellfish Immunology 45, 141-145 (2015). 31 Reis Batista, I., Kamermans, P., Verdegem, M. & Smaal, A. Growth and fatty acid composition of juvenile Cerastoderma edule (L.) fed live microalgae diets with different fatty acid profiles. Aquaculture Nutrition 20, 132-142 (2014). 32 Huang, H. et al. Effects of dietary fatty acids on growth performance, oxidation status, fatty acid and phospholipid profiles of razor clam Sinonovacula constricta. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 111078 (2025). 33 Boltovskoy, D., Izaguirre, I. & Correa, N. Feeding selectivity of Corbicula fluminea (Bivalvia) on natural phytoplankton. Hydrobiologia 312, 171-182 (1995). 34 Qiao, L., Chang, Z., Li, J. & Li, T. Selective feeding of three bivalve species on the phytoplankton community in a marine pond revealed by high-throughput sequencing. Scientific Reports 12, 6163 (2022). 35 Qiao, L. et al. Selective feeding of two bivalve species on the phytoplankton community in an aquaculture pond revealed by high-throughput sequencing. Applied Ecology & Environmental Research 19 (2021). 36 Changpasert, W., Wong, S.-L. & Torpol, K. Effect of microalgal diets and its biochemical composition on growth and survival of Asiatic freshwater clam. Malaysian Applied Biology 48, 61-67 (2019). 37 Jwa, M.-S. & Hong, C.-Y. Investigating the link between microalgal nutrition and the environment in hen clam (Mactra chinensis) larvae growth and survival. Applied Sciences 12, 1367 (2022). 38 Ren, Y., Liu, W., Pearce, C., Forster, I. & McKinley, R. Effects of selected mixed‐algal diets on growth and survival of early postset juveniles of the Pacific geoduck clam, Panopea generosa (G ould, 1850). Aquaculture nutrition 21, 152-161 (2015). 39 Marsh, A. G. & Fielman, K. T. Transcriptome profiling of individual larvae of two different developmental modes in the poecilogonous polychaete Streblospio benedicti (Spionidae). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 304, 238-249 (2005). 40 Vogt, G. n. et al. Production of different phenotypes from the same genotype in the same environment by developmental variation. Journal of Experimental Biology 211, 510-523 (2008). 41 Pace, D. A. et al. Physiological bases of genetically determined variation in growth of marine invertebrate larvae: a study of growth heterosis in the bivalve Crassostrea gigas. Journal of Experimental Marine Biology and Ecology 335, 188-209 (2006). 42 Liu, X. Microbiome. The Yale Journal of Biology and Medicine 89, 275 (2016). 43 Krajmalnik‐Brown, R., Ilhan, Z. E., Kang, D. W. & DiBaise, J. K. Effects of gut microbes on nutrient absorption and energy regulation. Nutrition in clinical practice 27, 201-214 (2012). 44 Shi, N., Li, N., Duan, X. & Niu, H. Interaction between the gut microbiome and mucosal immune system. Military Medical Research 4, 1-7 (2017). 45 Kogut, M. H., Lee, A. & Santin, E. Microbiome and pathogen interaction with the immune system. Poultry science 99, 1906-1913 (2020). 46 Nieuwdorp, M., Gilijamse, P. W., Pai, N. & Kaplan, L. M. Role of the microbiome in energy regulation and metabolism. Gastroenterology 146, 1525-1533 (2014). 47 Piazzon, M. C. et al. Sex, age, and bacteria: how the intestinal microbiota is modulated in a protandrous hermaphrodite fish. Frontiers in Microbiology 10, 2512 (2019). 48 Karlsen, C. et al. Feed microbiome: confounding factor affecting fish gut microbiome studies. ISME communications 2, 14 (2022). 49 Murphy, A. E., Kolkmeyer, R., Song, B., Anderson, I. C. & Bowen, J. Bioreactivity and microbiome of biodeposits from filter-feeding bivalves. Microbial Ecology 77, 343-357 (2019). 50 Zhu, Y.-T. et al. The mussel larvae microbiome changes in response to a temperature rise. Frontiers in Marine Science 11, 1367608 (2024). 51 Hou, D. et al. Intestine bacterial community composition of shrimp varies under low-and high-salinity culture conditions. Frontiers in Microbiology 11, 589164 (2020). 52 Wang, Z. et al. Integrated microbiome and metabolome analyses reveal the effects of low pH on intestinal health and homeostasis of crayfish (Procambarus clarkii). Aquatic Toxicology 270, 106903 (2024). 53 Goodrich, H. R. & Clark, T. D. Why do some fish grow faster than others? Fish and Fisheries 24, 796-811 (2023). 54 Dai, W., Dong, Y., Ye, J., Xue, Q. & Lin, Z. Gut microbiome composition likely affects the growth of razor clam Sinonovacula constricta. Aquaculture 550, 737847 (2022). 55 Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455, 481-483 (2008). 56 Janda, J. M. & Abbott, S. L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology 45, 2761-2764 (2007). 57 Zhang, Z. et al. Potential functions of the gut microbiome and modulation strategies for improving aquatic animal growth. Reviews in Aquaculture 17, e12959 (2025). 58 Dai, W. et al. Acute salinity stress disrupts gut microbiota homeostasis and reduces network connectivity and cooperation in razor clam Sinonovacula constricta. Marine Biotechnology 25, 1147-1157 (2023). 59 Carreon‐Martinez, L., Johnson, T., Ludsin, S. & Heath, D. D. Utilization of stomach content DNA to determine diet diversity in piscivorous fishes. Journal of Fish Biology 78, 1170-1182 (2011). 60 Berry, O. et al. Comparison of morphological and DNA metabarcoding analyses of diets in exploited marine fishes. Marine Ecology Progress Series 540, 167-181 (2015). 61 Kezlya, E., Tseplik, N. & Kulikovskiy, M. Genetic markers for metabarcoding of freshwater microalgae. Biology 12, 1038 (2023). 62 Khaw, Y. S., Khong, N. M. H., Shaharuddin, N. A. & Yusoff, F. M. A simple 18S rDNA approach for the identification of cultured eukaryotic microalgae with an emphasis on primers. Journal of microbiological methods 172, 105890 (2020). 63 Moon-van der Staay, S. Y., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607-610 (2001). 64 Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS one 9, e87624 (2014). 65 Tragin, M., Lopes dos Santos, A., Christen, R. & Vaulot, D. Diversity and ecology of green microalgae in marine systems: an overview based on 18S rRNA gene sequences. Perspect. Phycol 3, 141-154 (2016). 66 Kumar, V. et al. Distribution and diversity of eukaryotic microalgae in Kuwait waters assessed using 18S rRNA gene sequencing. PLoS One 16, e0250645 (2021). 67 Ebenezer, V., Medlin, L. K. & Ki, J.-S. Molecular detection, quantification, and diversity evaluation of microalgae. Marine biotechnology 14, 129-142 (2012). 68 Zhang, H., Xu, Q., Zhao, Y. & Yang, H. Sea cucumber (Apostichopus japonicus) eukaryotic food source composition determined by 18s rDNA barcoding. Marine Biology 163, 1-11 (2016). 69 Waraniak, J. M., Marsh, T. L. & Scribner, K. T. 18S rRNA metabarcoding diet analysis of a predatory fish community across seasonal changes in prey availability. Ecology and Evolution 9, 1410-1430 (2019). 70 Heo, Y.-J. et al. Application of DNA Metabarcoding for Identifying the Diet of Asian Clam (Corbicula fluminea). Sustainability 15, 441 (2022). 71 Hsiao, S.-T. & Chuang, S.-C. Meretrix taiwanica (Bivalvia: Veneridae), a previously misidentified new species in Taiwan. Molluscan Research 43, 12-21 (2023). 72 Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PloS one 4, e6372 (2009). 73 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014). 74 Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology 29, 644-652 (2011). 75 Haas, B. https://github.com/TransDecoder/TransDecoder 76 Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658-1659 (2006). 77 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Molecular biology and evolution 38, 5825-5829 (2021). 78 Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic acids research 47, D309-D314 (2019). 79 Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell reports 18, 762-776 (2017). 80 Gish, W. & States, D. J. Identification of protein coding regions by database similarity search. Nature genetics 3, 266-272 (1993). 81 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. Journal of molecular biology 215, 403-410 (1990). 82 Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nature biotechnology 40, 1023-1025 (2022). 83 Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic acids research 33, D501-D504 (2005). 84 Punta, M. et al. The Pfam protein families database. Nucleic acids research 40, D290-D301 (2012). 85 Tatusov, R. L. et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic acids research 29, 22-28 (2001). 86 Bairoch, A. & Boeckmann, B. The SWISS-PROT protein sequence data bank. Nucleic acids research 20, 2019 (1992). 87 Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic acids research 40, D109-D114 (2012). 88 Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nature genetics 25, 25-29 (2000). 89 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210-3212 (2015). 90 Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics 12, 1-16 (2011). 91 Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic acids research 41, e1-e1 (2013). 92 Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology 37, 852-857 (2019). 93 Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nature biotechnology 38, 685-688 (2020). 94 Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome biology 12, R60 (2011). 95 Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. (2012). 96 Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431-432 (2011). 97 Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of plant ecology 5, 3-21 (2012). 98 Zhang, T. et al. Dissecting the chromosome-level genome of the Asian Clam (Corbicula fluminea). Scientific Reports 11, 15021 (2021). 99 PERHAM, R. N. The fructose-1, 6-bisphosphate aldolases: same reaction, different enzymes. Biochemical Society transactions 18, 185-187 (1990). 100 Campanella, M. E., Chu, H. & Low, P. S. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proceedings of the National Academy of Sciences 102, 2402-2407 (2005). 101 Xia, J. et al. Cloning and characterization of fructose-1, 6-bisphosphate aldolase from Euphausia superba. International Journal of Molecular Sciences 23, 10478 (2022). 102 MAZUREK, S., ZWERSCHKE, W., JANSEN-DÜRR, P. & EIGENBRODT, E. Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyruvate kinase type M2 and the glycolytic-enzyme complex. Biochemical Journal 356, 247-256 (2001). 103 Brooks, S. P. & Storey, K. B. Reevaluation of the “glycolytic complex” in muscle: A multitechnique approach using trout white muscle. Archives of biochemistry and biophysics 267, 13-22 (1988). 104 Gao, Z. et al. Genome-wide association and transcriptomic analysis and the identification of growth-related genes in Macrobrachium nipponense. BMC genomics 25, 1-14 (2024). 105 Wang, C., Wang, H., Li, Y. & Liu, B. Identification of a fructose-1, 6-bisphosphate aldolase gene and association of the single nucleotide polymorphisms with growth traits in the clam Meretrix meretrix. Molecular biology reports 39, 5017-5024 (2012). 106 Means, A. R. & Dedman, J. R. Calmodulin—an intracellular calcium receptor. Nature 285, 73-77 (1980). 107 Rasmussen, C. D. & Means, A. R. Calmodulin is involved in regulation of cell proliferation. The EMBO Journal 6, 3961-3968 (1987). 108 Fang, Z. et al. Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata. Progress in Natural Science 18, 405-412 (2008). 109 Huang, J., Zhang, C., Ma, Z., Xie, L. & Zhang, R. A novel extracellular EF-hand protein involved in the shell formation of pearl oyster. Biochimica et Biophysica Acta (BBA)-General Subjects 1770, 1037-1044 (2007). 110 Arnon, A., Cook, B., Montell, C., Selinger, Z. & Minke, B. Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science 275, 1119-1121 (1997). 111 Xin, X. et al. Calmodulin regulates the calcium homeostasis in mantle of Crassostrea gigas under ocean acidification. Frontiers in Marine Science 9, 1050022 (2022). 112 Li, S. et al. Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 138, 235-243 (2004). 113 Langdon, C. & Waldock, M. The effect of algal and artificial diets on the growth and fatty acid composition of Crassostrea gigas spat. Journal of the Marine Biological Association of the United Kingdom 61, 431-448 (1981). 114 Zanlungo, S. et al. Sterol carrier protein 2 gene transfer changes lipid metabolism and enterohepatic sterol circulation in mice. Gastroenterology 119, 1708-1719 (2000). 115 Zheng, J.-C., Yue, X.-R., Kuang, W.-Q., Liu, T.-X. & Jing, X. GENOME-WIDE IDENTIFICATION OF STEROL CARRIER PROTEINS AND THEIR EVOLUTIONARY DIVERSITY IN INSECTS. Pakistan Journal of Agricultural Sciences 56 (2019). 116 Fu, Y. et al. Synergistic roles of acyl‐CoA binding protein (ACBP1) and sterol carrier protein 2 (SCP2) in Toxoplasma lipid metabolism. Cellular Microbiology 21, e12970 (2019). 117 Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. Journal of lipid research 51, 1101-1112 (2010). 118 Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. nature 444, 1027-1031 (2006). 119 Bae, Y. et al. Bacterial diversity and its relationship to growth performance of broilers. Korean Journal of Veterinary Research 57, 159-167 (2017). 120 Wang, W. et al. Formation of high-quality mixed silage from paper mulberry and wheat bran driven by the characteristics of the microbial community. Frontiers in Microbiology 15, 1476067 (2024). 121 Gerritsen, J. et al. Genomic and functional analysis of Romboutsia ilealis CRIBT reveals adaptation to the small intestine. PeerJ 5, e3698 (2017). 122 Fan, Z. et al. Genomic and biochemical analysis reveals fermented product of a putative novel Romboutsia species involves the glycometabolism of tilapia. Aquaculture 581, 740483 (2024). 123 Yin, H., Huang, J., Guo, X., Xia, J. & Hu, M. Romboutsia lituseburensis JCM1404 supplementation ameliorated endothelial function via gut microbiota modulation and lipid metabolisms alterations in obese rats. FEMS Microbiology Letters 370, fnad016 (2023). 124 Yin, Y. et al. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: roles of the bacterial community and metabolic functions. Journal of Environmental Sciences 108, 84-95 (2021). 125 Kerk, D. & Moorhead, G. B. A phylogenetic survey of myotubularin genes of eukaryotes: distribution, protein structure, evolution, and gene expression. BMC Evolutionary Biology 10, 1-16 (2010). 126 Boopathi, S. et al. Microbiome analysis of Litopenaeus vannamei reveals Vibrio as main risk factor of white faeces syndrome. Aquaculture 576, 739829 (2023). 127 Milan, M. et al. Host‐microbiota interactions shed light on mortality events in the striped venus clam Chamelea gallina. Molecular Ecology 28, 4486-4499 (2019). 128 Prayoonmaneerat, N., Charoensapsri, W., Amparyup, P. & Imjongjirak, C. Transcriptomic and microbiome analyses of copepod Apocyclops royi in response to an AHPND-causing strain of Vibrio parahaemolyticus. Developmental & Comparative Immunology 162, 105277 (2025). 129 Wlodarska, M., Willing, B. P., Bravo, D. M. & Finlay, B. B. Phytonutrient diet supplementation promotes beneficial Clostridia species and intestinal mucus secretion resulting in protection against enteric infection. Scientific reports 5, 9253 (2015). 130 Lopetuso, L. R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut pathogens 5, 1-8 (2013). 131 Wei, X. et al. Prebiotic activity of chitooligosaccharides and their ability to alleviate necrotizing enterocolitis in newborn rats. Carbohydrate Polymers 299, 120156 (2023). 132 Karimi Dermani, F., Gholamzadeh Khoei, S., Afshar, S. & Amini, R. The potential role of nucleophosmin (NPM1) in the development of cancer. Journal of cellular physiology 236, 7832-7852 (2021). 133 Pfister, J. A. & D'Mello, S. R. Regulation of neuronal survival by nucleophosmin 1 (NPM1) is dependent on its expression level, subcellular localization, and oligomerization status. Journal of Biological Chemistry 291, 20787-20797 (2016). 134 Qing, Y., Yingmao, G. & Lujun, B. Role of Npm1 in proliferation, apoptosis and differentiation of neural stem cells. Journal of the Neurological Sciences 266, 131-137 (2008). 135 DeBoer, T. S., Baker, A. C., Erdmann, M. V., Jones, P. R. & Barber, P. H. Patterns of Symbiodinium distribution in three giant clam species across the biodiverse Bird’s Head region of Indonesia. Marine Ecology Progress Series 444, 117-132 (2012). 136 Gordon, B. R. & Leggat, W. Symbiodinium—invertebrate symbioses and the role of metabolomics. Marine drugs 8, 2546-2568 (2010). 137 Fitt, W. K., Fisher, C. R. & Trench, R. K. Contribution of the symbiotic dinoflagellate Symbiodinium microadriaticum to the nutrition, growth and survival of larval and juvenile tridacnid clams. Aquaculture 55, 5-22 (1986). 138 Metz, S., Singer, D., Domaizon, I., Unrein, F. & Lara, E. Global distribution of Trebouxiophyceae diversity explored by high‐throughput sequencing and phylogenetic approaches. Environmental Microbiology 21, 3885-3895 (2019). 139 Garrison, J. A., Motwani, N. H., Broman, E. & Nascimento, F. J. Molecular diet analysis enables detection of diatom and cyanobacteria DNA in the gut of Macoma balthica. PLoS One 17, e0278070 (2022). 140 Van Doan, H. et al. Host-associated probiotics: a key factor in sustainable aquaculture. Reviews in fisheries science & aquaculture 28, 16-42 (2020). 141 Borowitzka, M. A. Microalgae for aquaculture: opportunities and constraints. Journal of applied phycology 9, 393-401 (1997). 142 Wikfors, G. H. & Ohno, M. Impact of algal research in aquaculture. Journal of phycology 37, 968-974 (2001). 143 Yamasaki, Y., Ishii, K., Taga, S. & Kishioka, M. Enhancement of dietary effect of Nannochloropsis sp. on juvenile Ruditapes philippinarum clams by alginate hydrolysates. Aquaculture Reports 9, 31-36 (2018). 144 Seychelles, L., Audet, C., Tremblay, R., Fournier, R. & Pernet, F. Essential fatty acid enrichment of cultured rotifers (Brachionus plicatilis, Müller) using frozen‐concentrated microalgae. Aquaculture Nutrition 15, 431-439 (2009). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99413 | - |
| dc.description.abstract | 文蛤是台灣主要養殖的雙殼類,是重要的經濟與生態物種。文蛤產地主要集中在彰化、雲林、和台南。然而近年來出現文蛤生長速度緩慢的現象,但目前仍尚不清楚發生的原因。本研究旨在透過RNA-seq技術,探討大文蛤與小文蛤在基因表現上的差異,並結合16 S 和18S rRNA資料,找出影響文蛤大小的關鍵因素。每批次蒐集回來的文蛤以體重前四分之一定義為大文蛤,最後四分之一為小文蛤。之後進行文蛤轉錄體組裝,並進行差異性表達基因的分析,結果發現有31個基因差異性表現基因上調,69個基因下調。以COG和KEGG資料庫註釋差異性表達基因後發現許多DEGs與脂質和碳水化合物代謝相關。在微生物方面,根據LEfSe結果發現Romboutsia 和 Ulivibacter 屬在大隻文蛤組中顯著富集,PICRUSt2功能預測中顯示大隻文蛤組在代謝相關的多條路徑(碳水化合物與脂質代謝) 顯著富集,推測腸道菌可能有助於提升宿主的營養吸收效率與整體代謝能力。而在網絡分析顯示,一些與細胞生長調控相關的宿主基因與特定的藻類或細菌高度相關。本結果表明,文蛤的生長表現可能不僅受其遺傳背景所限制,還可能受到腸道環境因子的共同調控,這些發現有助於識別與文蛤生長相關的基因與環境,為水產養殖技術提供嶄新見解。 | zh_TW |
| dc.description.abstract | Bivalve species hold significant economic and ecological value, with the hard clam (Meretrix meretrix) being one of the farmed species in Taiwan. The main production areas for hard clams are concentrated in Changhua, Yunlin, and Tainan. However, in recent years, there has been a noticeable trend of slow growth in the clams. Although the reasons behind this slow growth remain unclear, existing literature suggests that growth is regulated by factors such as RNA expression and environmental conditions. In this study, hard clams from each batch were classified into large and small groups by the first and last quartile of size, respectively. RNA-seq was employed to investigate differential gene expression, alongside 16S and 18S rRNA analyses to identify key microbial factors associated with clam size. After transcriptome assembly, differential expression analysis was conducted to identify genes associated with size-related phenotypic differences. Overall, 31 genes were up-regulated and 69 genes were down-regulated when comparing the large group to the small group. Based on functional annotations from the COG and KEGG databases, several differentially expressed genes (DEGs) were associated with lipid and carbohydrate metabolism. In microbiome part, LEfSe analysis revealed that Romboutsia and Ulivibacter genus were significantly enriched in the large-size clam group. The results of functional prediction using PICRUSt2 indicated that various metabolism-related pathways were also enriched in the large-size group. Network analysis revealed that certain host genes associated with cell growth regulation were highly correlated with specific algae or bacteria. This suggests that the growth phenotype of clams may not only be constrained by their genetic background, but also be co-regulated by intestinal environmental factors. These findings provide valuable insights into identifying key genes and microbial factors related to clam growth, offering scientific guidance for improving aquaculture techniques in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:12:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:12:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iv Abstract v Content vii Tables x Figures xi Chapter 1 Introduction 1 1-1 Meretrix meretrix 1 1-2 The current status of hard clam 1 1-3 Microalgae 3 1-4 Molecular and environmental influences on growth variation in clams 5 1-5 Metagenomics 6 1-6 Research motivation and aims 9 Chapter 2 Materials and Method 10 2-1 Sample collection 10 2-2 RNA extraction and sequencing 10 2-3 Library construction and Illumina sequencing 11 2-4 De Novo transcriptome assembly 13 2-4-1 Quality control 13 2-4-2 De Novo assembly 13 2-4-3 Optimization of transcriptome 13 2-5 Transcriptome annotation 14 2-6 Assembly completeness 14 2-7 Differential expression analysis 15 2-8 Ingenuity Pathway Analysis (IPA) 15 2-9 DNA extraction 15 2-10 Polymerase chain reaction (PCR) amplification and purification 16 2-11 Library preparation and purification 18 2-12 Metagenomic sequencing 20 2-13 Bioinformatic analysis in the 16s and 18s sequencing data 20 Chapter 3 Results 22 3-1 Sequencing data analysis 22 3-2 De novo assembly 22 3-3 The completeness of transcriptome 23 3-4 Functional annotation 23 3-5 Identification of differentially expressed genes 24 3-6 Functional enrichment of DEGs 25 3-7 IPA 26 3-8 Gut microbiota and microalgae composition in clam digestive tracts 28 3-8-1 Rarefaction curve 28 3-8-2 Top 20 most abundant microbial and eukaryotic genera 28 3-8-3 Alpha diversity and beta diversity 29 3-8-4 Linear discriminant analysis effect size (LEfSe) 29 3-8-5 Microbial functional potential prediction 30 3-9 Differential gene expression correlates with microbial and eukaryotic community compositions 30 Chapter 4 Discussion 32 4-1 Functional characterization of DEGs related to calcium signaling and metabolic Pathways 32 4-1-1 Fructose-1,6-bisphosphate aldolase (FBA) 32 4-1-2 Calmodulin (CALM) 33 4-1-3 Sterol carrier protein 2 (SCP2) 34 4-2 Integrative analysis of microbiota in M. meretrix 35 4-3 Association between host gene expression and eukaryotic communities 37 4-4 Integrative analysis of microbiota and eukaryotic communities in M. meretrix 38 4-5 Limitations and future directions 39 Chapter 5 Conclusion 41 References 42 | - |
| dc.language.iso | en | - |
| dc.subject | 文蛤 | zh_TW |
| dc.subject | 成長 | zh_TW |
| dc.subject | 轉錄體 | zh_TW |
| dc.subject | 微生物組 | zh_TW |
| dc.subject | 藻類群落 | zh_TW |
| dc.subject | 表現基因差異 | zh_TW |
| dc.subject | Transcriptome | en |
| dc.subject | Meretrix meretrix | en |
| dc.subject | Differential expressed genes | en |
| dc.subject | Algal communities | en |
| dc.subject | Microbiome | en |
| dc.subject | Growth | en |
| dc.title | 文蛤成長轉錄體與微生物組、藻類群落綜合分析 | zh_TW |
| dc.title | Integrated Analysis of the Transcriptome, Microbiome, and Algal Communities Associated with Hard Clam Growth (Meretrix meretrix) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李建樂;黃慶輝 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Yueh Lee;Ching-Huei Huang | en |
| dc.subject.keyword | 文蛤,成長,轉錄體,微生物組,藻類群落,表現基因差異, | zh_TW |
| dc.subject.keyword | Meretrix meretrix,Growth,Transcriptome,Microbiome,Algal communities,Differential expressed genes, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202503091 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2030-08-03 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
