請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99405完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何銘洋 | zh_TW |
| dc.contributor.advisor | Ming-Yang Ho | en |
| dc.contributor.author | 洪子恬 | zh_TW |
| dc.contributor.author | Tzu-Tien Hung | en |
| dc.date.accessioned | 2025-09-10T16:11:21Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-24 | - |
| dc.identifier.citation | Bailey, Timothy L, Johnson, James, Grant, Charles E, & Noble, William S. (2015). The MEME suite. Nucleic acids research, 43(W1), W39–W49.
Beal, Colin M, Gerber, Léda N, Sills, Deborah L, Huntley, Mark E, Machesky, Stephen C, Walsh, Michael J, Tester, Jefferson W, Archibald, Ian, Granados, Joe, & Greene, Charles H. (2015). Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Research, 10, 266–279. Behle, Anna, Saake, Pia, Germann, Anna T, Dienst, Dennis, & Axmann, Ilka M. (2020). Comparative dose–response analysis of inducible promoters in cyanobacteria. ACS synthetic biology, 9(4), 843–855. Behrendt, Lars, Trampe, Erik L, Nord, Nadia B, Nguyen, Jen, Kühl, Michael, Lonco, Danijela, Nyarko, Alex, Dhinojwala, Ali, Hershey, Olivia S, & Barton, Hazel. (2020). Life in the dark: far‐red absorbing cyanobacteria extend photic zones deep into terrestrial caves. Environmental microbiology, 22(3), 952–963. Bellver, Marta, Altamira-Algarra, Beatriz, García, Joan, Ferrer, Ivet, & Gonzalez-Flo, Eva. (2024). Enhancing pigment production with cyanobacteria-rich microbiomes: Effect of light quality and exposure time. Algal Research, 83, 103726. Billi, Daniela, Friedmann, E Imre, Helm, Richard F, & Potts, Malcolm. (2001). Gene transfer to the desiccation-tolerant cyanobacterium Chroococcidiopsis. Journal of Bacteriology, 183(7), 2298–2305. Biswas, Avijit, Vasquez, Yasmin M, Dragomani, Tierna M, Kronfel, Monica L, Williams, Shervonda R, Alvey, Richard M, Bryant, Donald A, & Schluchter, Wendy M. (2010). Biosynthesis of cyanobacterial phycobiliproteins in Escherichia coli: chromophorylation efficiency and specificity of all bilin lyases from Synechococcus sp. strain PCC 7002. Applied and Environmental Microbiology, 76(9), 2729–2739. Bland, Erik, & Angenent, Largus T. (2016). Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria. Bioresource Technology, 216, 579–586. Brown, Igor I, Bryant, Donald A, Casamatta, Dale, Thomas-Keprta, Kathie L, Sarkisova, Svetlana A, Shen, Gaozhong, Graham, Joel E, Boyd, Eric S, Peters, John W, & Garrison, Daniel H. (2010). Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Applied and Environmental Microbiology, 76(19), 6664–6672. Cassiano, Murilo Henrique Anzolini, & Silva-Rocha, Rafael. (2020). Benchmarking bacterial promoter prediction tools: Potentialities and limitations. Msystems, 5(4), 10.1128/msystems. 00439–00420. Chen, Hua-Bing, Wu, Jiun-Yan, Wang, Chin-Feng, Fu, Chun-Chong, Shieh, Chwen-Jen, Chen, Chih-I, Wang, Chih-Yu, & Liu, Yung-Chuan. (2010). Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochemical Engineering Journal, 53(1), 52–56. Choi, Cheol Young, Kim, Na Na, Shin, Hyun Suk, Park, Heum Gi, Cheon, Sang-Gyu, & Kil, Gyung-Suk. (2013). The effect of various wavelengths of light from light-emitting diodes on the antioxidant system of marine cyanobacteria, Synechococcus sp. Molecular & Cellular Toxicology, 9, 295–302. Dubbs, JM, & Bryant, DA. (1991). Molecular cloning and transcriptional analysis of the cpeBA operon of the cyanobacterium Pseudanabaena species PCC 7409. Molecular microbiology, 5(12), 3073–3085. Efroymson, Rebecca A, Dale, Virginia H, & Langholtz, Matthew H. (2017). Socioeconomic indicators for sustainable design and commercial development of algal biofuel systems. Gcb Bioenergy, 9(6), 1005–1023. Elhai, Jeff, Vepritskiy, Alexey, Muro-Pastor, Alicia M, Flores, Enrique, & Wolk, C Peter. (1997). Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. Journal of Bacteriology, 179(6), 1998–2005. Elhai, Jeff, & Wolk, C Peter. (1988). [83] Conjugal transfer of DNA to cyanobacteria. In Methods in enzymology (Vol. 167, pp. 747–754). Elsevier. Englund, Elias, Liang, Feiyan, & Lindberg, Pia. (2016). Evaluation of promoters and ribosome binding sites for biotechnological applications in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Scientific reports, 6(1), 36640. Farrokh, Parisa, Sheikhpour, Mojgan, Kasaeian, Alibakhsh, Asadi, Hassan, & Bavandi, Roya. (2019). Cyanobacteria as an eco‐friendly resource for biofuel production: a critical review. Biotechnology progress, 35(5), e2835. Gan, Fei, & Bryant, Donald A. (2015). Adaptive and acclimative responses of cyanobacteria to far‐red light. Environmental microbiology, 17(10), 3450–3465. Gan, Fei, Shen, Gaozhong, & Bryant, Donald A. (2014). Occurrence of far-red light photoacclimation (FaRLiP) in diverse cyanobacteria. Life, 5(1), 4–24. Gan, Fei, Zhang, Shuyi, Rockwell, Nathan C, Martin, Shelley S, Lagarias, J Clark, & Bryant, Donald A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345(6202), 1312–1317. García-López, DA, Olguín, EJ, González-Portela, RE, Sánchez-Galván, G, De Philippis, R, Lovitt, RW, Llewellyn, CA, Fuentes-Grünewald, C, & Saldívar, R Parra. (2020). A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. Bioresource Technology, 298, 122548. Gilbert, Ian R, Jarvis, Paul G, & Smith, Harry. (2001). Proximity signal and shade avoidance differences between early and late successional trees. Nature, 411(6839), 792–795. González-Morales, Sandra Isabel, Pacheco-Gutiérrez, Navid Berenice, Ramírez-Rodríguez, Carlos A, Brito-Bello, Alethia A, Estrella-Hernández, Priscila, Herrera-Estrella, Luis, & López-Arredondo, Damar L. (2020). Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds. Biotechnology for Biofuels, 13, 1–19. Heidorn, Thorsten, Camsund, Daniel, Huang, Hsin-Ho, Lindberg, Pia, Oliveira, Paulo, Stensjö, Karin, & Lindblad, Peter. (2011). Synthetic biology in cyanobacteria: engineering and analyzing novel functions. In Methods in enzymology (Vol. 497, pp. 539–579). Elsevier. Hernandez-Garcia, Carlos M, & Finer, John J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 217, 109–119. Ho, Ming-Yang, Gan, Fei, Shen, Gaozhong, & Bryant, Donald A. (2017). Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II. Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynthesis research, 131, 187–202. Ho, Ming-Yang, Gan, Fei, Shen, Gaozhong, Zhao, Chi, & Bryant, Donald A. (2017). Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression. Photosynthesis research, 131(2), 173–186. Ho, Ming-Yang, Shen, Gaozhong, Canniffe, Daniel P, Zhao, Chi, & Bryant, Donald A. (2016). Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353(6302), aaf9178. Ho, Ming Yang, & Bryant, Donald A. (2021). Photosynthesis: Long wavelength pigments in photosynthesis. In Encyclopedia of Biological Chemistry: Third Edition (pp. 245–255). Elsevier. Huang, Hsin-Ho, & Lindblad, Peter. (2013). Wide-dynamic-range promoters engineered for cyanobacteria. Journal of biological engineering, 7, 1–11. Jaiswal, Damini, Sengupta, Annesha, Sengupta, Shinjinee, Madhu, Swati, Pakrasi, Himadri B, & Wangikar, Pramod P. (2020). A novel cyanobacterium Synechococcus elongatus PCC 11802 has distinct genomic and metabolomic characteristics compared to its neighbor PCC 11801. Scientific reports, 10(1), 191. Jaiswal, Damini, Sengupta, Annesha, Sohoni, Sujata, Sengupta, Shinjinee, Phadnavis, Ambarish G, Pakrasi, Himadri B, & Wangikar, Pramod P. (2018). Genome features and biochemical characteristics of a robust, fast growing and naturally transformable cyanobacterium Synechococcus elongatus PCC 11801 isolated from India. Scientific reports, 8(1), 16632. Kim, Wook Jin, Lee, Sun-Mi, Um, Youngsoon, Sim, Sang Jun, & Woo, Han Min. (2017). Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942. Frontiers in plant science, 8, 293. Kirilovsky, Diana. (2015). Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis research, 126(1), 3–17. Kuo, Syue-Ting, Chang, Joshua Kevin, Chang, Clara, Shen, Wei-Yi, Hsu, Christine, Lai, Sheng-Wen, & Chou, Hsin-Hung David. (2025). Unravel the start element and promoter architecture across the domain Bacteria. bioRxiv, 2025.2001. 2023.634641. Lemasson, C, Marsac, N Tandeau De, & Cohen-Bazire, G. (1973). Role of allophycocyanin as light-harvesting pigment in cyanobacteria. Proceedings of the National Academy of Sciences, 70(11), 3130–3133. Li, Zhixiang, Li, Shubin, Chen, Lei, Sun, Tao, & Zhang, Weiwen. (2024). Fast-growing cyanobacterial chassis for synthetic biology application. Critical Reviews in Biotechnology, 44(3), 414–428. Lin, Way-Rong, Tan, Shih-I, Hsiang, Chuan-Chieh, Sung, Po-Kuei, & Ng, I-Son. (2019). Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery. Bioresource Technology, 291, 121932. Liu, Deng, & Pakrasi, Himadri B. (2018). Exploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803. Microbial cell factories, 17, 1–8. Liu, Ting-So, Wu, Ke-Feng, Jiang, Han-Wei, Chen, Kai-Wen, Nien, Ting-Shuo, Bryant, Donald A, & Ho, Ming-Yang. (2023). Identification of a far-red light-inducible promoter that exhibits light intensity dependency and reversibility in a cyanobacterium. ACS synthetic biology, 12(4), 1320–1330. Luimstra, Veerle M, Schuurmans, J Merijn, Hellingwerf, Klaas J, Matthijs, Hans CP, & Huisman, Jef. (2020). Blue light induces major changes in the gene expression profile of the cyanobacterium Synechocystis sp. PCC 6803. Physiologia plantarum, 170(1), 10–26. Luimstra, Veerle M, Schuurmans, J Merijn, Verschoor, Antonie M, Hellingwerf, Klaas J, Huisman, Jef, & Matthijs, Hans CP. (2018). Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis research, 138, 177–189. Luria, SE, & Burrous, Jeanne W. (1957). Hybridization between Escherichia coli and Shigella. Journal of Bacteriology, 74(4), 461–476. Markley, Andrew L, Begemann, Matthew B, Clarke, Ryan E, Gordon, Gina C, & Pfleger, Brian F. (2015). Synthetic biology toolbox for controlling gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002. ACS synthetic biology, 4(5), 595–603. Nien, Ting-Shuo, Bryant, Donald A, & Ho, Ming-Yang. (2022). Use of quartz sand columns to study far-red light photoacclimation (FaRLiP) in cyanobacteria. Applied and Environmental Microbiology, 88(13), e00562–00522. Nies, Fabian, Springstein, Benjamin L, Hanke, Dustin M, & Dagan, Tal. (2022). Natural competence in the filamentous, heterocystous cyanobacterium Chlorogloeopsis fritschii PCC 6912. Msphere, 7(4), e00997–00921. Nürnberg, Dennis J, Morton, Jennifer, Santabarbara, Stefano, Telfer, Alison, Joliot, Pierre, Antonaru, Laura A, Ruban, Alexander V, Cardona, Tanai, Krausz, Elmars, & Boussac, Alain. (2018). Photochemistry beyond the red limit in chlorophyll f–containing photosystems. Science, 360(6394), 1210–1213. Ohkubo, Satoshi, & Miyashita, Hideaki. (2017). A niche for cyanobacteria producing chlorophyll f within a microbial mat. The ISME Journal, 11(10), 2368–2378. Pérez, Adam A, Gajewski, John P, Ferlez, Bryan H, Ludwig, Marcus, Baker, Carol S, Golbeck, John H, & Bryant, Donald A. (2017). Zn2+-inducible expression platform for Synechococcus sp. strain PCC 7002 based on the smtA promoter/operator and smtB repressor. Applied and Environmental Microbiology, 83(3), e02491–02416. Rippka, Rosmarie, Deruelles, Josette, Waterbury, John B, Herdman, Michael, & Stanier, Roger Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1–61. Sakamoto, Toshio, & Bryant, Donald A. (1997). Growth at low temperature causes nitrogen limitation in the cyanobacterium Synechococcus sp. PCC 7002. Archives of microbiology, 169, 10–19. Sarsekeyeva, Fariza, Zayadan, Bolatkhan K, Usserbaeva, Aizhan, Bedbenov, Vladimir S, Sinetova, Maria A, & Los, Dmitry A. (2015). Cyanofuels: biofuels from cyanobacteria. Reality and perspectives. Photosynthesis research, 125, 329–340. Sengupta, Annesha, Madhu, Swati, & Wangikar, Pramod P. (2020). A library of tunable, portable, and inducer-free promoters derived from cyanobacteria. ACS synthetic biology, 9(7), 1790–1801. Singh, Abhay K, Bhattacharyya-Pakrasi, Maitrayee, Elvitigala, Thanura, Ghosh, Bijoy, Aurora, Rajeev, & Pakrasi, Himadri B. (2009). A systems-level analysis of the effects of light quality on the metabolism of a cyanobacterium. Plant physiology, 151(3), 1596–1608. Singh, Jay Shankar, Kumar, Arun, Rai, Amar N, & Singh, Devendra P. (2016). Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in microbiology, 7, 529. Six, Christophe, Thomas, Jean-Claude, Garczarek, Laurence, Ostrowski, Martin, Dufresne, Alexis, Blot, Nicolas, Scanlan, David J, & Partensky, Frédéric. (2007). Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome biology, 8, 1–22. Solhaug, Knut Asbjørn, Xie, Li, & Gauslaa, Yngvar. (2014). Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant and Cell Physiology, 55(8), 1404–1414. Stucken, Karina, Ilhan, Judith, Roettger, Mayo, Dagan, Tal, & Martin, William F. (2012a). Transformation and conjugal transfer of foreign genes into the filamentous multicellular cyanobacteria (subsection V) Fischerella and Chlorogloeopsis. Current microbiology, 65, 552–560. Stucken, Karina, Ilhan, Judith, Roettger, Mayo, Dagan, Tal, & Martin, William F. (2012b). Transformation and Conjugal Transfer of Foreign Genes into the Filamentous Multicellular Cyanobacteria (Subsection V) Fischerella and Chlorogloeopsis. Current Microbiology, 65(5), 552–560. https://doi.org/10.1007/s00284-012-0193-5 Sun, Dongchang. (2018). Pull in and push out: mechanisms of horizontal gene transfer in bacteria. Frontiers in microbiology, 9, 2154. Sun, Yueyang, Xu, Mengran, Wang, Baiyang, Xia, Chenyang, He, Zhiming, Lu, Bowen, Cui, Jiyun, Liao, Qiancheng, Xu, Qi, & Gan, Fei. (2025). A Robust and Orthogonal Far-Red Light Sensor for Gene Expression Control in Escherichia coli. ACS synthetic biology. Tabor, Jeffrey J, Levskaya, Anselm, & Voigt, Christopher A. (2011). Multichromatic control of gene expression in Escherichia coli. Journal of molecular biology, 405(2), 315–324. Tandeau de Marsac, Nicole. (2003). Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis research, 76, 193–205. Taton, Arnaud, Unglaub, Federico, Wright, Nicole E, Zeng, Wei Yue, Paz-Yepes, Javier, Brahamsha, Bianca, Palenik, Brian, Peterson, Todd C, Haerizadeh, Farzad, & Golden, Susan S. (2014). Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic acids research, 42(17), e136–e136. Till, Petra, Toepel, Jörg, Bühler, Bruno, Mach, Robert L, & Mach-Aigner, Astrid R. (2020). Regulatory systems for gene expression control in cyanobacteria. Applied microbiology and biotechnology, 104(5), 1977–1991. Tyystjärvi, Taina, Tuominen, Ilona, Herranen, Mirkka, Aro, Eva-Mari, & Tyystjärvi, Esa. (2002). Action spectrum of psbA gene transcription is similar to that of photoinhibition in Synechocystis sp. PCC 6803. FEBS letters, 516(1-3), 167–171. Ungerer, Justin, & Pakrasi, Himadri B. (2016). Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Scientific reports, 6(1), 39681. Vasudevan, Ravendran, Gale, Grant AR, Schiavon, Alejandra A, Puzorjov, Anton, Malin, John, Gillespie, Michael D, Vavitsas, Konstantinos, Zulkower, Valentin, Wang, Baojun, & Howe, Christopher J. (2019). CyanoGate: a modular cloning suite for engineering cyanobacteria based on the plant MoClo syntax. Plant physiology, 180(1), 39–55. Wang, Chih-Yu, Fu, Chun-Chong, & Liu, Yung-Chuan. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1), 21–25. Wilde, Annegret, Churin, Yuri, Schubert, Hendrik, & Börner, Thomas. (1997). Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities. FEBS letters, 406(1-2), 89–92. Wolk, C Peter, Fan, Qing, Zhou, Ruanbao, Huang, Guocun, Lechno-Yossef, Sigal, Kuritz, Tanya, & Wojciuch, Elizabeth. (2007). Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120. Archives of microbiology, 188, 551–563. Wyman, M, & Fay, P. (1986). Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) II. The influence of light quality. Proceedings of the Royal society of London. Series B. Biological sciences, 227(1248), 381–393. Xia, Peng‐Fei, Ling, Hua, Foo, Jee Loon, & Chang, Matthew Wook. (2019). Synthetic biology toolkits for metabolic engineering of cyanobacteria. Biotechnology journal, 14(6), 1800496. Xu, Yu, Alvey, Richard M, Byrne, Patrick O, Graham, Joel E, Shen, Gaozhong, & Bryant, Donald A. (2011). Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. Photosynthesis research protocols, 273–293. Yu, Jingjie, Liberton, Michelle, Cliften, Paul F, Head, Richard D, Jacobs, Jon M, Smith, Richard D, Koppenaal, David W, Brand, Jerry J, & Pakrasi, Himadri B. (2015). Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific reports, 5(1), 8132. Zavřel, Tomáš, Segečová, Anna, Kovács, László, Lukeš, Martin, Novák, Zoltán, Pohland, Anne-Christin, Szabó, Milán, Somogyi, Boglárka, Prášil, Ondřej, & Červený, Jan. (2024). A comprehensive study of light quality acclimation in Synechocystis sp. PCC 6803. Plant and Cell Physiology, 65(8), 1285–1297. Zhao, Chi, Gan, Fei, Shen, Gaozhong, & Bryant, Donald A. (2015). RfpA, RfpB, and RfpC are the master control elements of far-red light photoacclimation (FaRLiP). Frontiers in microbiology, 6, 1303. Zittelli, G Chini, Mugnai, G, Milia, M, Cicchi, B, Benavides, AM Silva, Angioni, A, Addis, P, & Torzillo, G. (2022). Effects of blue, orange and white lights on growth, chlorophyll fluorescence, and phycocyanin production of Arthrospira platensis cultures. Algal Research, 61, 102583. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99405 | - |
| dc.description.abstract | 利用藍綠菌作為平台的合成生物學近年來蓬勃發展。透過於藍綠菌中誘導表現特定基因,可調控生產生技產品的時機和產量。然而,化學誘導成本高且現有的光誘導啟動子僅適用於少數藍綠菌菌株。本研究旨在開發可廣泛應用於藍綠菌的光誘導表達系統。本研究以Chlorogloeopsis fritschii PCC 9212 作為平台,探討兩種光調控啟動子系統。首先,我們針對遠紅光誘導啟動子PchlFJSC1,設計不同長度的截短版本,並以黃色螢光蛋白作為報導基因評估其在遠紅光下的誘導能力。結果顯示完整啟動子表現活性最佳,截短版本雖仍具活性但誘導效果下降,顯示上游序列能增強啟動子活性。其次,我們分析不同色光對C. fritschii PCC 9212光合色素及相關基因表現的影響,藉此尋找可被藍光誘導的基因。結果發現藍光能顯著提升藻膽蛋白含量,並影響藻膽蛋白體及光系統二的相關基因表現。綜上所述,本研究不僅進一步分析了遠紅光誘導的啟動子系統,也為開發藍光誘導的啟動子提供了基礎,有助於未來藍綠菌光誘導表達系統的建立。 | zh_TW |
| dc.description.abstract | Synthetic biology in cyanobacteria has rapidly advanced. By inducing the expression of specific genes, it is possible to regulate the timing and yield of bioproducts. However, chemical inducers are costly and not eco-friendly, and current light-inducible promoters work only in limited strains. This study aims to develop applicable light-inducible gene expression systems in cyanobacteria. Using Chlorogloeopsis fritschii PCC 9212 as a model, we explored types of light-inducible promoter systems. First, the far-red light-inducible promoter PchlFJSC1 was truncated into several versions and evaluated for inducibility under far-red light using a reporter gene. The full-length promoter showed the strongest activity, while truncated versions had reduced induction, indicating that upstream sequences enhance promoter activity. Second, we examined the effect of different light qualities on pigment content and gene expression to identify potential blue light-responsive genes. Blue light increased phycobiliprotein levels and altered the expression of genes related to phycobilisomes and Photosystem II. This study not only provides further insight into far-red light-inducible promoters but also lays the foundation for developing blue light-inducible promoters, supporting the development of light-inducible systems in cyanobacteria. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:11:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:11:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Synthetic biology in cyanobacteria 1 1.1.1 Basic concept in synthetic biology of cyanobacteria 1 1.1.2 Limitation of synthetic biology of cyanobacteria 2 1.1.3 Regulation of gene expression in cyanobacteria 3 1.2 Photoacclimation in cyanobacteria 5 1.2.1 Far-red light Photoacclimation 5 1.2.2 Blue light photoacclimation 7 1.3 Construction of overexpression system in C. fritschii PCC 9212 9 1.3.1 Overexpression system 9 1.3.2 FRL-inducible promoter 10 1.4 Aim of this study 11 Chapter 2 Material and methods 12 2.1 Strains and growth conditions 12 2.2 Growth curve, pigment extraction 13 2.3 Absorbance and fluorescence spectra 15 2.4 RNA extraction and gene expression profiling 15 2.4.1 RNA extraction 15 2.4.2 Reverse transcription PCR 16 2.4.3 Quantitative real-time PCR 17 2.5 Selection of promoters 17 2.6 Cloning methods 18 2.6.1 Design of the plasmids, primers, and expression constructs 18 2.6.2 DNA source 18 2.6.3 Polymerase Chain Reaction (PCR) 18 2.6.4 Plasmid extraction 19 2.6.5 Chemical competent cell and transformation of E. coli 19 2.6.6 Restriction enzyme digestion and DNA fragments ligation 20 2.6.7 Colony PCR and sequencing 21 2.7 Construction of plasmids 21 2.8 Conjugative transformation of cyanobacteria 22 2.9 Promoter assay of cyanobacteria 23 Chapter 3 Results 25 3.1 Blue light did not significantly inhibit the growth of C. fritschii PCC 9212 25 3.2 Blue light enhances phycobilisome absorption and preferential energy transfer to PSII in C. fritschii PCC 9212 26 3.3 Blue light induces an increase in PBS content without altering Chl a or carotenoids levels in C. fritschii PCC 9212 27 3.4 Blue light affected the transcript level of the genes related to PSII and PBSin C. fritschii PCC 9212 28 3.5 Truncation of the FRL-inducible promoter reduces expression strength 30 Chapter 4 Discussion 32 4.1 Distinct photoacclimation of C. fritschii PCC 9212 to blue light 32 4.1.1 Growth rate and PSI: PSII ratio 32 4.1.2 Phycobilisome content and gene expression 33 4.2 Loss of upstream regulatory elements reduces far-red light-induced promoter activity 35 4.3 Unfinished work 37 4.4 Future work 38 Chapter 5 Conclusions 40 Figures 41 Tables 64 Supplementary Data 84 References 91 | - |
| dc.language.iso | en | - |
| dc.subject | 遠紅光馴化 | zh_TW |
| dc.subject | 藍綠菌 | zh_TW |
| dc.subject | 光誘導啟動子 | zh_TW |
| dc.subject | 藍光馴化 | zh_TW |
| dc.subject | 合成生物學 | zh_TW |
| dc.subject | Chlorogloeopsis fritschii PCC 9212 | zh_TW |
| dc.subject | 遠紅光 | zh_TW |
| dc.subject | 藍光 | zh_TW |
| dc.subject | synthetic biology | en |
| dc.subject | Chlorogloeopsis fritschii PCC 9212 | en |
| dc.subject | light-inducible promoter | en |
| dc.subject | cyanobacteria | en |
| dc.subject | blue light photoacclimation | en |
| dc.subject | far-red light photoacclimation (FaRLiP) | en |
| dc.subject | blue light | en |
| dc.subject | far-red light | en |
| dc.title | 探討藍綠菌 Chlorogloeopsis fritschii PCC 9212 之光誘導調控系統 | zh_TW |
| dc.title | Investigating Light-Inducible Systems in Cyanobacterium Chlorogloeopsis fritschii PCC 9212 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 周信宏 ;謝旭亮;朱修安 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hung Chou;Hsu-Liang Hsieh;Hsiu-An Chu | en |
| dc.subject.keyword | 遠紅光,藍光,遠紅光馴化,藍光馴化,藍綠菌,光誘導啟動子,Chlorogloeopsis fritschii PCC 9212,合成生物學, | zh_TW |
| dc.subject.keyword | far-red light,blue light,far-red light photoacclimation (FaRLiP),blue light photoacclimation,cyanobacteria,light-inducible promoter,Chlorogloeopsis fritschii PCC 9212,synthetic biology, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202502040 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-25 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | 2030-07-22 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.91 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
