Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99400
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許麗zh_TW
dc.contributor.advisorLi Xuen
dc.contributor.author田明潤zh_TW
dc.contributor.authorMing-Jun Tienen
dc.date.accessioned2025-09-10T16:10:19Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citation[1] Q. Bian, "Waste heat: the dominating root cause of current global warming," Environmental Systems Research, vol. 9, no. 1, pp. 1-11, 2020.
[2] L. L. N. LABORATORY. "Energy Flow Chart." https://flowcharts.llnl.gov/commodities/energy (accessed 2025).
[3] T. J. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz (no. 70). W. Engelmann, 1895.
[4] W. A. Salah and M. Abuhelwa, "Review of thermoelectric cooling devices recent applications," Journal of Engineering Science and Technology, vol. 15, no. 1, pp. 455-476, 2020.
[5] D. Zhao and G. Tan, "A review of thermoelectric cooling: Materials, modeling and applications," Applied thermal engineering, vol. 66, no. 1-2, pp. 15-24, 2014.
[6] J. He and T. M. Tritt, "Advances in thermoelectric materials research: Looking back and moving forward," Science, vol. 357, no. 6358, p. eaak9997, 2017.
[7] M. d’Angelo, C. Galassi, and N. Lecis, "Thermoelectric materials and applications: A review," Energies, vol. 16, no. 17, p. 6409, 2023.
[8] M. Jonson and G. D. Mahan, "Mott's formula for the thermopower and the Wiedemann-Franz law," Physical Review B, vol. 21, no. 10, pp. 4223-4229, 05/15/ 1980.
[9] Z. Ma et al., "Review of experimental approaches for improving zT of thermoelectric materials," Materials Science in Semiconductor Processing, vol. 121, p. 105303, 2021.
[10] Z. Chen, X. Zhang, and Y. Pei, "Manipulation of Phonon Transport in Thermoelectrics," Advanced Materials, vol. 30, no. 17, p. 1705617, 2018.
[11] K. Giri, Y.-L. Wang, T.-H. Chen, and C.-H. Chen, "Challenges and strategies to optimize the figure of merit: Keeping eyes on thermoelectric metamaterials," Materials Science in Semiconductor Processing, vol. 150, p. 106944, 2022.
[12] M. Takashiri, Y. Asai, and K. Yamauchi, "Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing," Nanotechnology, vol. 27, no. 33, p. 335703, 2016.
[13] I. T. Witting et al., "The Thermoelectric Properties of Bismuth Telluride," Advanced Electronic Materials, vol. 5, no. 6, p. 1800904, 2019.
[14] D. L. Greenaway and G. Harbeke, "Band structure of bismuth telluride, bismuth selenide and their respective alloys," Journal of Physics and Chemistry of Solids, vol. 26, no. 10, pp. 1585-1604, 1965.
[15] X. Tang, Z. Li, W. Liu, Q. Zhang, and C. Uher, "A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond," Interdisciplinary Materials, vol. 1, no. 1, pp. 88-115, 2022.
[16] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11, p. 386, 1954.
[17] S. Yang, K. Cho, J. Yun, J. Choi, and S. Kim, "Thermoelectric characteristics of γ-Ag2Te nanoparticle thin films on flexible substrates," Thin Solid Films, vol. 641, pp. 65-68, 2017.
[18] D. Yin et al., "Controllable colloidal synthesis of tin (II) chalcogenide nanocrystals and their solution‐processed flexible thermoelectric thin films," Small, vol. 14, no. 33, p. 1801949, 2018.
[19] T. Varghese et al., "High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals," Scientific reports, vol. 6, no. 1, p. 33135, 2016.
[20] X. Mu et al., "Enhanced electrical properties of stoichiometric Bi0. 5Sb1. 5Te3 film with high-crystallinity via layer-by-layer in-situ Growth," Nano Energy, vol. 33, pp. 55-64, 2017.
[21] P. Nuthongkum, R. Sakdanuphab, M. Horprathum, and A. Sakulkalavek, "[Bi]:[Te] Control, Structural and Thermoelectric Properties of Flexible BixTeyThin Films Prepared by RF Magnetron Sputtering at Different Sputtering Pressures," Journal of Electronic Materials, vol. 46, no. 11, pp. 6444-6450, 2017.
[22] S. Kianwimol, R. Sakdanuphab, N. Chanlek, A. Harnwunggmoung, and A. Sakulkalavek, "Effect of annealing temperature on thermoelectric properties of bismuth telluride thick film deposited by DC magnetron sputtering," Surface and Coatings Technology, vol. 393, p. 125808, 2020.
[23] Y. S. Wudil, M. A. Gondal, S. G. Rao, S. Kunwar, and A. Q. Alsayoud, "Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study," Ceramics International, vol. 46, no. 15, pp. 24162-24172, 2020.
[24] A. E. Shupenev, I. S. Korshunov, and A. G. Grigoryants, "On the Pulsed-Laser Deposition of Bismuth-Telluride Thin Films on Polyimide Substrates," Semiconductors, vol. 54, no. 3, pp. 378-382, 2020.
[25] P. Huu Le, L. T. C. Tuyen, and S.-R. Jian, "Nanostructuring Bi2Te3-Based Thermoelectric Thin-Films Grown Using Pulsed Laser Deposition," in Materials at the Nanoscale, A. Mallik Ed. Rijeka: IntechOpen, 2021.
[26] L. M. Goncalves, P. Alpuim, A. G. Rolo, and J. H. Correia, "Thermal co-evaporation of Sb2Te3 thin-films optimized for thermoelectric applications," Thin Solid Films, vol. 519, no. 13, pp. 4152-4157, 2011.
[27] P. Fan et al., "High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation," Journal of Alloys and Compounds, vol. 819, p. 153027, 2020.
[28] H.-L. Zhuang, J. Yu, and J.-F. Li, "Nanocomposite Strategy toward Enhanced Thermoelectric Performance in Bismuth Telluride," Small Science, vol. 5, no. 3, p. 2400284, 2025.
[29] M. Zhang et al., "Identifying the manipulation of individual atomic-scale defects for boosting thermoelectric performances in artificially controlled Bi2Te3 films," ACS nano, vol. 15, no. 3, pp. 5706-5714, 2021.
[30] M. Takashiri, S. Tanaka, and K. Miyazaki, "Improved thermoelectric performance of highly-oriented nanocrystalline bismuth antimony telluride thin films," Thin Solid Films, vol. 519, no. 2, pp. 619-624, 2010.
[31] N. Kuang, Z. Zuo, W. Wang, R. Liu, and Z. Zhao, "Optimized thermoelectric properties and geometry parameters of annular thin-film thermoelectric generators using n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thin films for energy harvesting," Sensors and Actuators A: Physical, vol. 332, p. 113030, 2021.
[32] A. Soni et al., "Interface driven energy filtering of thermoelectric power in spark plasma sintered Bi2Te2. 7Se0. 3 nanoplatelet composites," Nano letters, vol. 12, no. 8, pp. 4305-4310, 2012.
[33] Y. Dou, X. Qin, D. Li, L. Li, T. Zou, and Q. Wang, "Enhanced thermopower and thermoelectric performance through energy filtering of carriers in (Bi2Te3) 0.2 (Sb2Te3) 0.8 bulk alloy embedded with amorphous SiO2 nanoparticles," Journal of Applied Physics, vol. 114, no. 4, 2013.
[34] Z. Chen, H. Lv, Q. Zhang, H. Wang, and G. Chen, "Construction of a cement–rebar nanoarchitecture for a solution‐processed and flexible film of a Bi2Te3/CNT hybrid toward low thermal conductivity and high thermoelectric performance," Carbon Energy, vol. 4, no. 1, pp. 115-128, 2022.
[35] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," nature, vol. 432, no. 7016, pp. 488-492, 2004.
[36] P. F. Moonen, I. Yakimets, and J. Huskens, "Fabrication of transistors on flexible substrates: from mass‐printing to high‐resolution alternative lithography strategies," Advanced materials, vol. 24, no. 41, pp. 5526-5541, 2012.
[37] D. J. Joe et al., "Laser–Material Interactions for Flexible Applications," Advanced Materials, vol. 29, no. 26, p. 1606586, 2017.
[38] H. Palneedi et al., "Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances," Advanced Materials, vol. 30, no. 14, p. 1705148, 2018.
[39] H. Lee et al., "All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers," Journal of Materials Chemistry A, vol. 3, no. 16, pp. 8339-8345, 2015.
[40] T. Jeon et al., "Laser crystallization of organic–inorganic hybrid perovskite solar cells," ACS nano, vol. 10, no. 8, pp. 7907-7914, 2016.
[41] L. Fan et al., "Rapid growth of high-performance Bi2Te3 thin films by laser annealing at room temperature," Applied Surface Science, vol. 639, p. 158164, 2023.
[42] M. d’Angelo, D. Crimella, C. Galassi, N. Lecis, and A. G. Demir, "Annealing of bismuth telluride-based thick films by laser irradiation," Optik, vol. 311, p. 171930, 2024.
[43] S. J. Kim, J. H. We, and B. J. Cho, "A wearable thermoelectric generator fabricated on a glass fabric," Energy & Environmental Science, vol. 7, no. 6, pp. 1959-1965, 2014.
[44] 謝世泓, "雷射退火技術應用於柔性基板上的P型碲化鉍薄膜之熱電性質改善," 碩士論文, 國立臺灣大學機械工程學研究所, 台北市, 2021.
[45] E. Symeou, C. Nicolaou, T. Kyratsi, and J. Giapintzakis, "Enhanced thermoelectric properties in vacuum-annealed Bi0. 5Sb1. 5Te3 thin films fabricated using pulsed laser deposition," Journal of Applied Physics, vol. 125, no. 21, 2019.
[46] P. Yuan and D. Gu, "Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments," Journal of Physics D: Applied Physics, vol. 48, no. 3, p. 035303, 2015.
[47] H. Cui, I. B. Bhat, and R. Venkatasubramanian, "Optical constants of Bi2Te3 and Sb2Te3 measured using spectroscopic ellipsometry," Journal of Electronic Materials, vol. 28, no. 10, pp. 1111-1114, 1999.
[48] M. J. Carter, A. El-Desouky, M. A. Andre, P. Bardet, and S. LeBlanc, "Pulsed laser melting of bismuth telluride thermoelectric materials," Journal of Manufacturing Processes, vol. 43, pp. 35-46, 2019.
[49] G. Bolling, "Some thermal data for Bi2Te3," The Journal of Chemical Physics, vol. 33, no. 1, pp. 305-306, 1960.
[50] D. K. Schroder, Semiconductor material and device characterization. John Wiley & Sons, 2015.
[51] S. P. Kikken, "Measuring film resistivity: understanding and refining the four-point probe set-up," 2018.
[52] F. M. Smits, "Measurement of sheet resistivities with the four‐point probe," Bell System Technical Journal, vol. 37, no. 3, pp. 711-718, 1958.
[53] M. Kannan, "Scanning electron microscopy: Principle, components and applications," A textbook on fundamentals and applications of nanotechnology, pp. 81-92, 2018.
[54] F. Werner, "Hall measurements on low-mobility thin films," Journal of Applied Physics, vol. 122, no. 13, 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99400-
dc.description.abstract隨著穿戴式電子設備的快速發展,對於具有輕薄、可撓與低功耗特性的微型發電模組需求日益增加,而熱電元件作為一種可直接將熱能轉換為電能的技術,展現出應用於能源回收與自供電裝置的潛力。然而,傳統製程裡的高溫退火難以直接應用於柔性基版上。為解決此問題本研究以磁控濺鍍機在柔性PET基板上沉積P型碲化鉍薄膜,並透過532 nm連續波雷射進行大氣環境下之退火,探討不同雷射製程參數對薄膜熱電性能之影響,並成功製作出柔性能源採集裝置。
研究中藉由改變雷射強度、掃描速度、線重疊率及掃描次數等參數,研究薄膜退火的能量閾值、電性、微觀結構與熱電性質。在最佳參數條件下,能在不損壞薄膜的情況下,將電導率由未退火之11.3 S/cm提升至980.4 S/cm,增幅達87倍;遷移率從2.8 cm^2/Vs增加至46.4 cm^2/Vs,載子濃度也提升至1.32×10^20 cm^-3。熱電性質方面,席貝克係數由66 μV/K 增至183 μV/K,提升約2.8倍;功率因數由0.05 μW/cmK^2增至23 μW/cmK^2,提升超過460倍,顯示雷射退火後碲化鉍晶粒成長,晶體缺陷密度大幅降低。夾層設計的柔性元件有效降低彎曲對薄膜負面的影響在彎曲測試中,經過1000次、彎曲半徑8 mm的彎曲循環後,電導率仍維持初始值之88%,展現良好之可撓性。
本研究成功實現一項快速、低熱損且可於大氣環境中退火柔性基板上的碲化鉍薄膜之技術,在經過功率因數最佳化後,具有應用於柔性微型熱電元件的潛力,為將來能源回收與永續願景帶來貢獻。
zh_TW
dc.description.abstractWith the rapid development of wearable electronic devices, there is an increasing demand for lightweight, flexible, and low-power micro energy harvesting modules. Thermoelectric generators, which directly convert heat into electricity, have emerged as promising candidates for energy recycling and self-powered systems. However, conventional high-temperature annealing processes are difficult to apply directly on flexible substrates. To address this issue, this study employed magnetron sputtering to deposit P-type bismuth telluride thin films on flexible PET substrates, followed by annealing using a 532 nm continuous-wave laser under ambient conditions. The effects of various laser processing parameters on the thermoelectric properties of the films were systematically investigated and a flexible energy harvesting device was successfully fabricated.
By varying laser intensity, scanning speed, line overlap ratio, and scan times, the study examined the annealing energy threshold, electrical performance, microstructure, and thermoelectric characteristics of the films. Under optimal conditions, the electrical conductivity increased from 11.3 S/cm to 980.4 S/cm, representing an 87 times enhancement. The carrier mobility rose from 2.8 to 46.4 cm²/Vs, and the carrier concentration reached 1.32 × 10²⁰ cm⁻³. In terms of thermoelectric performance, the Seebeck coefficient increased from 66 μV/K to 183 μV/K, and the power factor improved dramatically from 0.05 to 23 μW/cm·K²—an enhancement of over 460 times—indicating significant grain growth and reduced defect density due to laser annealing.
Furthermore, the layered design of the flexible device effectively mitigated the adverse effects of bending on the thin film. After 1000 bending cycles at a radius of 8 mm, the electrical conductivity retained 88% of its initial value, demonstrating excellent flexibility.
This study successfully demonstrated a rapid, low-thermal-budget laser annealing method for Bi2Te3 thin films under ambient conditions. The optimized power factor performance highlights the potential of this technique for application in flexible micro thermoelectric generators (µ-TEGs), contributing to future energy harvesting and sustainability goals.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:10:19Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:10:19Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 x
表次 xvi
Chapter 1 緒論 1
1.1 前言 1
1.2 熱電原理介紹 2
1.2.1 席貝克效應 ( Seebeck effect ) 3
1.2.2 帕爾帖效應 ( Peltier effect ) 4
1.2.3 湯姆森效應 ( Thomson effect ) 5
1.2.4 無因次熱電參數 5
Chapter 2 文獻回顧與研究動機 10
2.1 碲化鉍 ( Bismuth Telluride ) 材料特性 10
2.2 碲化鉍薄膜製程 12
2.2.1 濺鍍沉積 (Sputtering deposition) 13
2.2.2 脈衝雷射沉積 ( Pulsed laser deposition, PLD ) 14
2.2.3 熱共蒸鍍 ( Thermal co-evaporation ) 16
2.3 熱電性能優化 17
2.3.1 退火加工 ( Annealing) 18
2.3.2 能量過濾效應 ( Energy filtering effect ) 19
2.3.3 介面聲子散射效應 ( Interfacial phonon scattering effect ) 22
2.4 雷射應用於柔性電子裝置 24
2.5 雷射製程於碲化鉍薄膜之應用 28
2.6 柔性熱電發電機 ( Thermoelectric generator, TEG ) 29
2.7 研究動機與目的 30
Chapter 3 實驗流程與方法介紹 32
3.1 實驗方法與步驟 32
3.1.1 未退火碲化鉍薄膜製備 33
3.1.2 白金電極製備 34
3.1.3 雷射退火實驗 35
3.2 實驗雷射機台架設與介紹 37
3.2.1 連續波雷射光路 37
3.2.2 振鏡掃瞄系統 40
3.2.3 雷射功率設定 41
Chapter 4 結果與討論 45
4.1 連續波雷射系統參數 45
4.1.1 光班大小與雷射強度 45
4.1.2 重疊率、滯留時間 46
4.2 未退火碲化鉍薄膜的基本性質 48
4.2.1 濺鍍時間和基板厚度的影響 48
4.2.2 厚度量測分析 49
4.2.3 電性分析 50
4.3 雷射退火加工後薄膜性質的改變 51
4.3.1 雷射強度對電性的影響 51
4.3.2 改變掃描速度對電性的影響 52
4.3.3 改變線重疊率對電性的影響 54
4.3.4 改變掃描次數對電性的影響 56
4.3.5 薄膜的表面型貌 58
4.3.6 熱電薄膜EDS分析 61
4.3.7 熱電性質分析 64
4.4 彎曲測試 67
4.5 雷射退火溫度場模擬 69
4.5.1 模型設定 70
4.5.2 移動雷射光束加熱的設定 70
4.5.3 初始條件和邊界條件 71
4.5.4 模擬結果 72
Chapter 5 結論與未來展望 75
5.1 結論 75
5.2 未來展望 75
參考文獻 77
附錄 82
-
dc.language.isozh_TW-
dc.subject碲化鉍熱電薄膜zh_TW
dc.subject連續波雷射退火zh_TW
dc.subject濺鍍沉積zh_TW
dc.subject柔性基板zh_TW
dc.subject功率因數zh_TW
dc.subjectBismuth Telluride thermoelectric filmen
dc.subjectPower factoren
dc.subjectFlexible substrateen
dc.subjectSputtering depositionen
dc.subjectContinuous wave laser annealingen
dc.titleP型碲化鉍熱電薄膜的雷射退火技術於柔性能源採集裝置之應用zh_TW
dc.titleLaser Annealing of Bi2-xTe3Sbx Thermoelectric Thin Film for Flexible Energy Harvesting Devicesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee孫珍理;黃振康zh_TW
dc.contributor.oralexamcommitteeChen-li Sun;Chen-Kang Huangen
dc.subject.keyword碲化鉍熱電薄膜,連續波雷射退火,濺鍍沉積,柔性基板,功率因數,zh_TW
dc.subject.keywordBismuth Telluride thermoelectric film,Continuous wave laser annealing,Sputtering deposition,Flexible substrate,Power factor,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202502048-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2028-07-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved