Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99399
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜育銘zh_TW
dc.contributor.advisorYu-Ming Tuen
dc.contributor.author許丞皓zh_TW
dc.contributor.authorCheng-Hao Hsuen
dc.date.accessioned2025-09-10T16:10:08Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-25-
dc.identifier.citation[1] Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of the Total Environment 473-474 (2014) 619-41. https://doi.org/10.1016/j.scitotenv.2013.12.065.
[2] M. Keerthana Devi, N. Karmegam, S. Manikandan, R. Subbaiya, H. Song, E.E. Kwon, B. Sarkar, N. Bolan, W. Kim, J. Rinklebe, M. Govarthanan, Removal of nanoplastics in water treatment processes: A review, Science of the Total Environment 845 (2022) 157168. https://doi.org/10.1016/j.scitotenv.2022.157168.
[3] M. Mofijur, S.F. Ahmed, S.M.A. Rahman, S.Y. Arafat Siddiki, A. Islam, M. Shahabuddin, H.C. Ong, T.M.I. Mahlia, F. Djavanroodi, P.L. Show, Source, distribution and emerging threat of micro- and nanoplastics to marine organism and human health: Socio-economic impact and management strategies, Environmental Research 195 (2021) 110857. https://doi.org/10.1016/j.envres.2021.110857.
[4] P. Farrell, K. Nelson, Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.), Environmental Pollution 177 (2013) 1-3. https://doi.org/10.1016/j.envpol.2013.01.046.
[5] R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. Von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science 313(5790) (2006) 1072-1077.
[6] W. Kern, The evolution of silicon wafer cleaning technology, Journal of the Electrochemical Society 137(6) (1990) 1887.
[7] T. Ehmann, C. Mantler, D. Jensen, R. Neufang, Monitoring the Quality of Ultra-Pure Water in the Semiconductor Industry by Online Ion Chromatography, Microchimica Acta 154(1-2) (2005) 15-20. https://doi.org/10.1007/s00604-005-0427-3.
[8] Q. Wang, N. Huang, H. Cai, X. Chen, Y. Wu, Water strategies and practices for sustainable development in the semiconductor industry, Water Cycle 4 (2023) 12-16. https://doi.org/10.1016/j.watcyc.2022.12.001.
[9] T. Hillie, M. Hlophe, Nanotechnology and the challenge of clean water, Nature nanotechnology 2(11) (2007) 663-664.
[10] W. Fu, W. Zhang, Microwave-enhanced membrane filtration for water treatment, Journal of Membrane Science 568 (2018) 97-104. https://doi.org/10.1016/j.memsci.2018.09.064.
[11] H.T. Madsen, E.G. Søgaard, J. Muff, Reduction in energy consumption of electrochemical pesticide degradation through combination with membrane filtration, Chemical Engineering Journal 276 (2015) 358-364. https://doi.org/10.1016/j.cej.2015.04.098.
[12] A.I. Osman, Z. Chen, A.M. Elgarahy, M. Farghali, I.M.A. Mohamed, A.K. Priya, H.B. Hawash, P.S. Yap, Membrane Technology for Energy Saving: Principles, Techniques, Applications, Challenges, and Prospects, Advanced Energy and Sustainability Research 5(5) (2024) 2400011. https://doi.org/10.1002/aesr.202400011.
[13] B. Van der Bruggen, C. Vandecasteele, Distillation vs. membrane filtration: overview of process evolutions in seawater desalination, Desalination 143(3) (2002) 207-218.
[14] P. Côté, J. Peeters, S. Smoot, T. Young, Cost-effectiveness of membrane bioreactors treatment system for low-level phosphorus reduction from municipal wastewater, Water Practice and Technology 9(3) (2014) 316-323. https://doi.org/10.2166/wpt.2014.033.
[15] X. Xu, Y. Yang, T. Liu, B. Chu, Cost-effective polymer-based membranes for drinking water purification, Giant 10 (2022) 100099. https://doi.org/10.1016/j.giant.2022.100099.
[16] H. Wang, H. Zhou, Understand the basics of membrane filtration, Chemical Engineering Progress 109(4) (2013) 33-40.
[17] N. AlSawaftah, W. Abuwatfa, N. Darwish, G. Husseini, A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation, Water 13(9) (2021) 1327. https://doi.org/10.3390/w13091327.
[18] H. Xiang, X. Min, C.-J. Tang, M. Sillanpää, F. Zhao, Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review, Journal of Water Process Engineering 49 (2022) 103023. https://doi.org/10.1016/j.jwpe.2022.103023.
[19] A.I. Schäfer, A.G. Fane, T.D. Waite, Fouling effects on rejection in the membrane filtration of natural waters, Desalination 131(1-3) (2000) 215-224. https://doi.org/10.1016/s0011-9164(00)90020-1.
[20] A.I. Cirillo, G. Tomaiuolo, S. Guido, Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities, Micromachines (Basel) 12(7) (2021) 820. https://doi.org/10.3390/mi12070820.
[21] J. Wang, A. Cahyadi, B. Wu, W. Pee, A.G. Fane, J.W. Chew, The roles of particles in enhancing membrane filtration: A review, Journal of Membrane Science 595 (2020) 117570. https://doi.org/10.1016/j.memsci.2019.117570.
[22] A. Marshall, P. Munro, G. Trägårdh, The effect of protein fouling in microfiltration and ultrafiltration on permeate flux, protein retention and selectivity: A literature review, Desalination 91(1) (1993) 65-108.
[23] W.R. Bowen, J.I. Calvo, A. Hernández, Steps of membrane blocking in flux decline during protein microfiltration, Journal of Membrane Science 101(1-2) (1995) 153-165. https://doi.org/10.1016/0376-7388(94)00295-a.
[24] R.F. Boyd, A.L. Zydney, Analysis of protein fouling during ultrafiltration using a two-layer membrane model, Biotechnol Bioeng 59(4) (1998) 451-60. https://doi.org/10.1002/(sici)1097-0290(19980820)59:4.
[25] A. Gul, J. Hruza, F. Yalcinkaya, Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review, Polymers (Basel) 13(6) (2021) 846. https://doi.org/10.3390/polym13060846.
[26] M. Singh, E. Fuenmayor, E. Hinchy, Y. Qiao, N. Murray, D. Devine, Digital Twin: Origin to Future, Applied System Innovation 4(2) (2021) 36. https://doi.org/10.3390/asi4020036.
[27] J. Kim, F.A. DiGiano, Fouling models for low-pressure membrane systems, Separation and Purification Technology 68(3) (2009) 293-304. https://doi.org/10.1016/j.seppur.2009.05.018.
[28] H. Yang, X. Yu, J. Liu, Z. Tang, T. Huang, Z. Wang, Q. Zhong, Z. Long, L. Wang, A Concise Review of Theoretical Models and Numerical Simulations of Membrane Fouling, Water 14(21) (2022) 3537. https://doi.org/10.3390/w14213537.
[29] J.-M. Laine, C. Campos, I. Baudin, M.-L. Janex, Understanding membrane fouling: a review of over a decade of research, Water Science and Technology: Water Supply 3(5-6) (2003) 155-164.
[30] G. Hagen, Ueber die Bewegung des Wassers in engen cylindrischen Röhren, Annalen der Physik 122(3) (1839) 423-442. https://doi.org/10.1002/andp.18391220304.
[31] J.L. Poiseuille, Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamètres, Imprimerie Royale, Paris, 1844.
[32] S.P. Sutera, R. Skalak, The history of Poiseuille's law, Annual review of fluid mechanics 25(1) (1993) 1-20.
[33] H. Darcy. In Dalmont, V., Ed., Les Fontaines Publiques de la Ville de Dijon Exposition et Application des Principes a Suivre et des Formulesa Employer dans les Questions de Distribution d’Eau, Paris, 1856.
[34] G.O. Brown, Henry Darcy and the making of a law, Water Resources Research 38(7) (2002) 11-1-11-12. https://doi.org/10.1029/2001wr000727.
[35] J. Kozeny, Ueber kapillare leitung des wassers im boden, Sitzungsberichte der Akademie der Wissenschaften in Wien 136 (1927) 271.
[36] P.C. Carman, Fluid flow through granular beds, Transactions of the Institution of Chemical Engineers 15 (1937) 150-156.
[37] M. Rehman, M.B. Hafeez, M. Krawczuk, A Comprehensive Review: Applications of the Kozeny–Carman Model in Engineering with Permeability Dynamics, Archives of Computational Methods in Engineering (2024) 3843-3855. https://doi.org/10.1007/s11831-024-10094-7.
[38] D.J. Miller, S. Kasemset, D.R. Paul, B.D. Freeman, Comparison of membrane fouling at constant flux and constant transmembrane pressure conditions, Journal of Membrane Science 454 (2014) 505-515. https://doi.org/10.1016/j.memsci.2013.12.027.
[39] A. Fane, C. Fell, A review of fouling and fouling control in ultrafiltration, Desalination 62 (1987) 117-136.
[40] V.B. Brião, C.R.G. Tavares, Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration, Brazilian Journal of Chemical Engineering 29 (2012) 393-407. https://doi.org/https://doi.org/10.1590/S0104-66322012000200019
[41] L. Song, M. Elimelech, Theory of concentration polarization in crossflow filtration, Journal of the Chemical Society, Faraday Transactions 91(19) (1995) 3389-3398.
[42] M.C. Porter, Concentration polarization with membrane ultrafiltration, Industrial & Engineering Chemistry Product Research and Development 11(3) (1972) 234-248.
[43] S. Sablani, M. Goosen, R. Al-Belushi, M. Wilf, Concentration polarization in ultrafiltration and reverse osmosis: a critical review, Desalination 141(3) (2001) 269-289.
[44] P.H. Hermans, H.L. Bredée, zur Kenntnis der Filtrations gesetzehaben, Recueil des Travaux Chimiques des Pays-Bas 54 (1935) 680-700.
[45] P.H. Hermans, H.L. Bredée, Principles of the mathematic treatment of constant-pressure filtration, Journal of the Society of Chemical Industry 55T(2) (1936) 1-4. https://doi.org/10.1002/jctb.5000550219.
[46] E. Iritani, N. Katagiri, Developments of Blocking Filtration Model in Membrane Filtration, KONA Powder and Particle Journal 33(0) (2016) 179-202. https://doi.org/10.14356/kona.2016024.
[47] V.E. Gonsalves, A Critical Investigation on the Viscose Filtration Process, Recueil des Travaux Chimiques des Pays‐Bas 69(7) (1950) 873-903. https://doi.org/https://doi.org/10.1002/recl.19500690711.
[48] H.P. Grace, Structure and performance of filter media. II. Performance of filter media in liquid service, AIChE Journal 2(3) (1956) 316-336. https://doi.org/10.1002/aic.690020308.
[49] J. Hermia, Constant pressure blocking filtration laws – Application to power-law non-Newtonian fluids, Transactions of the Institution of Chemical Engineers 60 (1982) 183-187.
[50] C.C. Ho, A.L. Zydney, A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration, Journal of Colloid and Interface Science 232(2) (2000) 389-399. https://doi.org/10.1006/jcis.2000.7231.
[51] M. Shirato, T. Aragaki, E. Iritani, T. Funahashi, Constant rate and variable pressure-variable rate filtration of power-law non-newtonian fluids, Journal of Chemical Engineering of Japan 13(6) (1980) 473-478. https://doi.org/10.1252/jcej.13.473.
[52] E.H. Hsu, L.T. Fan, Experimental study of deep bed filtration: A stochastic treatment, AIChE Journal 30(2) (1984) 267-273. https://doi.org/10.1002/aic.690300215.
[53] E. Iritani, H. Sumi, T. Murase, Analysis of filtration rate in clarification filtration of power-law non-Newtonian fluids-solids mixtures under constant pressure by stochastic model, Journal of Chemical Engineering of Japan 24(5) (1991) 581-586. https://doi.org/10.1252/jcej.24.581.
[54] M. Hlavacek, F. Bouchet, Constant flowrate blocking laws and an example of their application to dead-end microfiltration of protein solutions, Journal of Membrane Science 82(3) (1993) 285-295. https://doi.org/10.1016/0376-7388(93)85193-z.
[55] G. Belfort, N. Nagata, Fluid mechanics and cross-flow filtration: some thoughts, Desalination 53(1-3) (1985) 57-79.
[56] A.B. Koltuniewicz, R.W. Field, T.C. Arnot, Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: Experimental study and analysis of flux decline, Journal of membrane science 102 (1995) 193-207.
[57] A.B. Koĺtuniewicz, R. Field, Process factors during removal of oil-in-water emulsions with cross-flow microfiltration, Desalination 105(1-2) (1996) 79-89.
[58] E.E. Chang, S.-Y. Yang, C.-P. Huang, C.-H. Liang, P.-C. Chiang, Assessing the fouling mechanisms of high-pressure nanofiltration membrane using the modified Hermia model and the resistance-in-series model, Separation and Purification Technology 79(3) (2011) 329-336. https://doi.org/10.1016/j.seppur.2011.03.017.
[59] H. Zeggar, J. Touir, S. El-Ghzizel, F. Elazhar, M. Tahaikt, D. Dhiba, A. Elmidaoui, M. Taky, Characterization of ion transfer and modeling of fouling in nanofiltration and reverse osmosis membranes, Desalination and Water Treatment 240 (2021) 2-13. https://doi.org/10.5004/dwt.2021.27542.
[60] W. Bowen, J. Calvo, A. Hernandez, Steps of membrane blocking in flux decline during protein microfiltration, Journal of membrane science 101(1-2) (1995) 153-165.
[61] K.-J. Hwang, C.-Y. Liao, K.-L. Tung, Analysis of particle fouling during microfiltration by use of blocking models, Journal of Membrane Science 287(2) (2007) 287-293. https://doi.org/10.1016/j.memsci.2006.11.004.
[62] E. Iritani, N. Katagiri, T. Takenaka, Y. Yamashita, Membrane pore blocking during cake formation in constant pressure and constant flux dead-end microfiltration of very dilute colloids, Chemical Engineering Science 122 (2015) 465-473. https://doi.org/10.1016/j.ces.2014.09.052.
[63] C. Tien, B.V. Ramarao, Revisiting the laws of filtration: An assessment of their use in identifying particle retention mechanisms in filtration, Journal of Membrane Science 383(1-2) (2011) 17-25. https://doi.org/10.1016/j.memsci.2011.07.019.
[64] K. Sekiguchi, K.-i. Katsumata, H. Segawa, T. Nakanishi, A. Yasumori, Effects of particle size, concentration and pore size on the loading density of silica nanoparticle monolayer arrays on anodic aluminum oxide substrates prepared by the spin-coating method, Materials Chemistry and Physics 277 (2022) 125465. https://doi.org/10.1016/j.matchemphys.2021.125465.
[65] I. Ben Hassan, C. Lafforgue, A. Ayadi, P. Schmitz, In situ 3D characterization of monodispersed spherical particle deposition on microsieve using confocal laser scanning microscopy, Journal of Membrane Science 454 (2014) 283-297. https://doi.org/10.1016/j.memsci.2013.12.003.
[66] S. Bancel, W.-S. Hu, Topographical imaging of macroporous microcarriers using laser scanning confocal microscopy, Journal of fermentation and bioengineering 81(5) (1996) 437-444.
[67] A. Valencia, C. Le Men, C. Ellero, C. Lafforgue-Baldas, P. Schmitz, J.F. Morris, Direct observation at the microscale of particle deposition during the first stage of the microfiltration process, Journal of Membrane Science 599 (2020) 117823. https://doi.org/10.1016/j.memsci.2020.117823.
[68] J.H. Ferziger, M. Perić, R.L. Street, Computational Methods for Fluid Dynamics, fourth ed., Springer, New York, 2020.
[69] A.D. Caballero, S. Laín, A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta, Cardiovascular Engineering and Technology 4(2) (2013) 103-130. https://doi.org/10.1007/s13239-013-0146-6.
[70] J.F. Thompson, Grid generation techniques in computational fluid dynamics, AIAA Journal 22(11) (1984) 1505-1523. https://doi.org/10.2514/3.8812.
[71] M.H. Zawawi, A. Saleha, A. Salwa, N.H. Hassan, N.M. Zahari, M.Z. Ramli, Z.C. Muda, A review: Fundamentals of computational fluid dynamics (CFD), AIP Conference Proceedings 2030 (2018) 020252.
[72] N. Ashgriz, J. Mostaghimi, An introduction to computational fluid dynamics, Fluid flow handbook 1 (2002) 1-49.
[73] H. Medina, A. Beechook, J. Saul, S. Porter, S. Aleksandrova, S. Benjamin, Open source computational fluid dynamics using OpenFOAM, Royal Aeronautical Society, General Aviation Conference, London (2015).
[74] M.M. Bhatti, M. Marin, A. Zeeshan, S.I. Abdelsalam, Editorial: Recent Trends in Computational Fluid Dynamics, Frontiers in Physics 8 (2020) 593111. https://doi.org/10.3389/fphy.2020.593111.
[75] A. Parasyris, C. Brady, D.B. Das, M. Discacciati, Computational Modeling of Coupled Free and Porous Media Flow for Membrane-based Filtration Systems: A Review, Journal of Applied Membrane Science & Technology 23(3) (2019). https://doi.org/10.11113/amst.v23n3.158.
[76] M. Sahami, J. Jamaati, M. Bahiraei, A computational model for predicting filtration performance of 3D-magnetic filters under different channel geometries, particle sizes and flow conditions, Colloids and Surfaces A: Physicochemical and Engineering Aspects 611 (2021). https://doi.org/10.1016/j.colsurfa.2020.125844.
[77] F. Lin, P.-C. Chen, T.-C. Huang, G.-S. Lin, K.-L. Tung, 3D in-situ simulation and particle tracing of gas filtration process for ultrafine particles removal using a hollow fiber membrane, Journal of Membrane Science 632 (2021) 119380. https://doi.org/10.1016/j.memsci.2021.119380.
[78] Model & Simulate in Filtration, Math2Market GmbH. https://www.math2market.com/geodict-software/geodict-base-modules/simulation/filterdict.html.
[79] D.M. Botín-Sanabria, A.-S. Mihaita, R.E. Peimbert-García, M.A. Ramírez-Moreno, R.A. Ramírez-Mendoza, J.d.J. Lozoya-Santos, Digital Twin Technology Challenges and Applications: A Comprehensive Review, Remote Sensing 14(6) (2022). https://doi.org/10.3390/rs14061335.
[80] E.J. Tuegel, A.R. Ingraffea, T.G. Eason, S.M. Spottswood, Reengineering Aircraft Structural Life Prediction Using a Digital Twin, International Journal of Aerospace Engineering 2011 (2011) 1-14. https://doi.org/10.1155/2011/154798.
[81] M.F. Bado, D. Tonelli, F. Poli, D. Zonta, J.R. Casas, Digital Twin for Civil Engineering Systems: An Exploratory Review for Distributed Sensing Updating, Sensors (Basel) 22(9) (2022). https://doi.org/10.3390/s22093168.
[82] M. Javaid, A. Haleem, R. Suman, Digital Twin applications toward Industry 4.0: A Review, Cognitive Robotics 3 (2023) 71-92. https://doi.org/10.1016/j.cogr.2023.04.003.
[83] A. Rasheed, O. San, T. Kvamsdal, Digital Twin: Values, Challenges and Enablers From a Modeling Perspective, IEEE Access 8 (2020) 21980-22012. https://doi.org/10.1109/access.2020.2970143.
[84] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, F. Sui, Digital twin-driven product design, manufacturing and service with big data, The International Journal of Advanced Manufacturing Technology 94(9-12) (2017) 3563-3576. https://doi.org/10.1007/s00170-017-0233-1.
[85] R.W. Field, D. Wu, J.A. Howell, B.B. Gupta, Critical flux concept for microfiltration fouling, Journal of Membrane Science 100(3) (1995) 259-272.
[86] E.M. Hoek, M. Elimelech, Cake-enhanced concentration polarization: a new fouling mechanism for salt-rejecting membranes, Environmental Science & Technology 37(24) (2003) 5581-5588.
[87] P. Apel, Track etching technique in membrane technology, Radiation measurements 34(1-6) (2001) 559-566.
[88] E. Ferain, R. Legras, Track-etch templates designed for micro- and nanofabrication, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 208 (2003) 115-122. https://doi.org/10.1016/s0168-583x(03)00637-2.
[89] S.K. Chakarvarti, Track-etch membranes enabled nano-/microtechnology: A review, Radiation Measurements 44(9-10) (2009) 1085-1092. https://doi.org/10.1016/j.radmeas.2009.10.028.
[90] M. Pellach, J. Goldshtein, O. Ziv-Polat, S. Margel, Functionalised, photostable, fluorescent polystyrene nanoparticles of narrow size-distribution, Journal of Photochemistry and Photobiology A: Chemistry 228(1) (2012) 60-67. https://doi.org/10.1016/j.jphotochem.2011.11.012.
[91] S.H. Choi, J. Yang, B.-G. Choi, J. Cho, Fluorescent nano particle application for a membrane surface integrity test: Sensitivity, stability, and reliability of the particles, Desalination and Water Treatment 51(22-24) (2013) 4283-4290. https://doi.org/10.1080/19443994.2013.769488.
[92] Mohammed, A., & Abdullah, A. Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 international conference on hydraulics and pneumatics—HERVEX, Băile Govora (2018) 7-9.
[93] W. Zhou, R. Apkarian, Z.L. Wang, D. Joy, Fundamentals of scanning electron microscopy (SEM), Scanning microscopy for nanotechnology: techniques and applications (2007) 1-40.
[94] M.A. Saghiri, K. Asgar, M. Lotfi, K. Karamifar, A.M. Saghiri, P. Neelakantan, J.L. Gutmann, A. Sheibaninia, Back-scattered and secondary electron images of scanning electron microscopy in dentistry: a new method for surface analysis, Acta Odontologica Scandinavica 70(6) (2012) 603-609.
[95] A. Jena, K. Gupta, Pore volume of nanofiber nonwovens, International Nonwovens Journal (2) (2005) 25-30.
[96] Y. Fang, H.D. Tolley, M.L. Lee, Simple capillary flow porometer for characterization of capillary columns containing packed and monolithic beds, J Chromatogr A 1217(41) (2010) 6405-6412. https://doi.org/10.1016/j.chroma.2010.08.026.
[97] D. Li, M.W. Frey, Y.L. Joo, Characterization of nanofibrous membranes with capillary flow porometry, Journal of Membrane Science 286(1-2) (2006) 104-114. https://doi.org/10.1016/j.memsci.2006.09.020.
[98] A. Jena, K. Gupta, Characterization of pore structure of filtration media, Fluid Particle Separation Journal 4(3) (2002) 227-241.
[99] M. Halisch, E. Vogt, C. Müller, A. Cano-Odena, D. Pattyn, P. Hellebaut, K. van der Kamp. Capillary flow porometry-assessment of an alternative method for the determination of flow relevant parameters of porous rocks. In Proceedings of International Symposium of the Society of Core Analysts, Napa Valley, California (2013) 16-19.
[100] W.I. Goldburg, Dynamic light scattering, American Journal of Physics 67(12) (1999) 1152-1160. https://doi.org/10.1119/1.19101.
[101] J. Stetefeld, S.A. McKenna, T.R. Patel, Dynamic light scattering: a practical guide and applications in biomedical sciences, Biophysical Reviews 8(4) (2016) 409-427. https://doi.org/10.1007/s12551-016-0218-6.
[102] R. Sandhu, N. Singh, J. Dhankhar, G. Kama, R. Sharma, Dynamic light scattering (DLS) technique, principle, theoretical considerations and applications, Nanotechnological and Biochemical Techniques for assessing the Quality and Safety of Milk and Milk Products (2018) 135-137.
[103] E. Elizondo, E. Moreno, I. Cabrera, A. Cordoba, S. Sala, J. Veciana, N. Ventosa, Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine, Progress in Molecular Biology and Translational Science 104 (2011) 1-52. https://doi.org/10.1016/B978-0-12-416020-0.00001-2.
[104] A. Sze, D. Erickson, L. Ren, D. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow, Journal of Colloid and Interface Science 261(2) (2003) 402-10. https://doi.org/10.1016/S0021-9797(03)00142-5.
[105] J.D. Clogston, A.K. Patri, Zeta potential measurement, Characterization of Nanoparticles Intended for Drug Delivery, Humana Press, Totowa, New Jersey (2010) 63–70.
[106] S. Bhattacharjee, DLS and zeta potential - What they are and what they are not?, J Control Release 235 (2016) 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017.
[107] D.C. Grahame, The electrical double layer and the theory of electrocapillarity, Chemical Reviews 41(3) (1947) 441-501.
[108] M. Azimian, C. Kühnle, A. Wiegmann, Design and Optimization of Fibrous Filter Media Using Lifetime Multipass Simulations, Chemical Engineering & Technology 41(5) (2018) 928-935. https://doi.org/10.1002/ceat.201700585.
[109] S. Linden, T. Cvjetkovic, E. Glatt, A. Wiegmann, An integrated approach to compute physical properties of core samples, Proceedings of the International Symposium of the Society of Core Analysts, (2014) 6.
[110] S. Linden, L. Cheng, A. Wiegmann, Specialized methods for direct numerical simulations in porous media, Math2Market GmbH (2018) 2018-01.
[111] S. Linden, A. Wiegmann, H. Hagen, The LIR space partitioning system applied to the Stokes equations, Graphical Models 82 (2015) 58-66. https://doi.org/10.1016/j.gmod.2015.06.003.
[112] Sven Linden, Barbara Planas (2019). GeoDict 2019 User Guide. FlowDict handbook. Math2Market GmbH, Germany.
[113] A. Wiegmann, (2016) GeoDict and FilterDict: Software for the virtual material design of new filter media, Tech. Rep., Math2Market GmbH, Germany.
[114] Sebastian Rief, Barbara Planas (2019). GeoDict 2019 User Guide. FilterDict handbook. Math2Market GmbH, Germany.
[115] O. Iliev, Z. Lakdawala, G. Printsypar, On a multiscale approach for filter efficiency simulations, Computers & Mathematics with Applications 67(12) (2014) 2171-2184. https://doi.org/10.1016/j.camwa.2014.02.022.
[116] A.M.Winslow, Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, Journal of computational physics 2 (1966) 149-172.
[117] D.T.a.R.H.S. Winterton, The Direct Measurement of Normal and Retarded van der Waals Forces, Royal Society 312(1511) (1969) 435-450.
[118] HTTP04700 Isopore Membrane Filter, Millipore. https://www.merckmillipore.com/TW/zh/product/Isopore-Membrane-Filter,MM_NF-HTTP04700?ReferrerURL=https%3A%2F%2Fwww.google.com%2F.
[119] ATTP04700 Isopore Membrane Filter, Millipore. https://www.merckmillipore.com/TW/zh/product/Isopore-Membrane-Filter,MM_NF-ATTP04700?ReferrerURL=https%3A%2F%2Fwww.google.com%2F.
[120] I.H. Huisman, P. Prádanos, J.I. Calvo, A. Hernández, Electroviscous effects, streaming potential, and zeta potential in polycarbonate track-etched membranes, Journal of Membrane Science 178(1-2) (2000) 79-92.
[121] R. Paoli, M. Bulwan, O. Castano, E. Engel, J.C. Rodriguez-Cabello, A. Homs-Corbera, J. Samitier, Layer-by-layer modification effects on a nanopore's inner surface of polycarbonate track-etched membranes, RSC Advances 10(59) (2020) 35930-35940. https://doi.org/10.1039/d0ra05322h.
[122] J. Visser, On Hamaker constants: A comparison between Hamaker constants and Lifshitz-van der Waals constants, Advances in colloid and interface science 3(4) (1972) 331-363.
[123] R. P. Chhabra, Non-Newtonian fluids: an introduction, Rheology of Complex Fluids, Springer, New York, 2010, pp.281-304.
[124] S. Todisco, L. PeÑA, E. Drioli, P. Tallarico, Analysis of the Fouling Mechanism in Microfiltration of Orange Juice, Journal of Food Processing and Preservation 20(6) (1996) 453-466. https://doi.org/10.1111/j.1745-4549.1996.tb00759.x.
[125] T. Murase, T. Ohn, New decline pattern of filtrate flux in cross‐flow microfiltration of dilute suspension, AIChE Journal 42(7) (1996) 1938-1944. https://doi.org/10.1002/aic.690420714.
[126] H. Förster UV/Vis spectroscopy. Springer, Berlin Heidelberg (2004) 337–426. https://doi.org/10.1007/b94239.
[127] I. Oshina, J. Spigulis, Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations, J Biomed Opt 26(10) (2021) 100901. https://doi.org/10.1117/1.JBO.26.10.100901.
[128] M. Leibowitz, A. Weinreb, Effects of Fluorescence and Energy Transfer in Polystyrene under Excitation in the Vacuum Ultraviolet, The Journal of Chemical Physics 46(12) (1967) 4652-4659. https://doi.org/10.1063/1.1840616.
[129] K.N. Shinde, S.J. Dhoble, H.C. Swart, K. Park, Phosphate Phosphors for Solid-State Lighting, Springer Science & Business Media, New York, 2012.
[130] J. Enderlein, I. Gregor, D. Patra, T. Dertinger, U.B. Kaupp, Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration, Chemphyschem 6(11) (2005) 2324-2336. https://doi.org/10.1002/cphc.200500414.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99399-
dc.description.abstract顆粒污染是膜過濾技術面臨的重大挑戰,嚴重影響其性能與使用壽命。傳統的阻塞過濾理論將污染機制分為四種模式,針對不同的粒徑與孔徑關係,分別對應特定的阻塞指數。然而,在實際過濾實驗中,觀察到的阻塞指數常無法完全以傳統模型解釋。為此,本研究引入數位孿生概念,透過數值模擬與實驗數據整合,有效驗證觀測現象並預測複雜污染行為。
本研究以掃描式電子顯微鏡影像為基礎,運用GeoDict®軟體建立軌跡蝕刻聚碳酸酯膜的三維模型,並透過孔徑、孔隙率與純水通量的模擬與實驗對比,驗證所建模方法的可行性與準確性。進一步於0.4與0.8微米孔徑的膜上,針對五種粒徑進行過濾測試,探討粒徑與孔徑比值對堵塞與通量的影響。
阻塞指數分析揭示污染機制之轉變趨勢:當指數先下降後回升至零,顯示系統進入濾餅過濾階段。在此過渡階段觀察到的負值指數,與模擬中顯示的表面部分堵塞相互印證,進一步確認污染狀態的演變過程。
針對粒徑孔徑比值進行延伸模擬,結合理論通量與實驗結果,發現當粒徑大於孔徑時,比值越高,通量越大,而當比值接近1時,通量最低;相反地,粒徑小於孔徑的粒子可順利穿透薄膜,污染影響較小,通量較穩定。此外,相較於粒徑孔徑比值,孔徑對通量的影響更為顯著。
本研究建立之模擬平台可用於早期辨識膜堵塞情形,並支援過濾效能的預測性評估。研究成果對於工廠中粒子去除之廢水處理應用具有實用價值,亦為過濾阻塞行為的理論建構與後續模擬發展奠定基礎。
zh_TW
dc.description.abstractParticle fouling represents a significant challenge in membrane filtration, substantially affecting performance and long-term stability. Based on the relationship between particle size and pore size, traditional blocking filtration laws categorize particle fouling into four mechanisms, each defined by a specific blocking index. However, experimental observations frequently reveal deviations from these idealized values. To address this limitation, this study introduces the Digital Twin concept, which integrates numerical simulation and experimental validation to investigate the dynamics of particle-induced membrane fouling and predict complex fouling behaviors.
Three-dimensional (3D) membrane structures were reconstructed from scanning electron microscopy (SEM) images using GeoDict® software. The feasibility and accuracy of the simulation model were validated by comparing pore size, porosity, and pure water permeance between the simulation and experiments. Filtration tests involving five different particle sizes were conducted using membranes with pore diameters of 0.4 and 0.8 μm to investigate the effects of particle-to-pore size ratio on flow rate and fouling behavior.
The analysis of the blocking index revealed transitions in fouling mechanisms: a drop followed by a return to zero indicated the onset of cake formation. Negative values observed during the transition consistent with partial surface blockage in the simulation, confirming changes in fouling stages.
Extended simulations of different particle-to-pore size ratios, combined with theoretical flow rate analysis and experimental data, showed that when particle size exceeded pore size, a higher ratio resulted in a greater initial flow rate, while the flow rate was lowest when the ratio approached unity. By contrast, particles smaller than the pore size passed through the membrane more easily, leading to minimal fouling and more stable flow rates. Moreover, pore size was found to have a more significant impact on flow rate than the particle-to-pore size ratio.
The validated Digital Twin framework enables in situ visualization of fouling development, provides early-stage diagnosis of membrane clogging, and supports predictive evaluation of filtration performance. The findings are particularly applicable to the treatment of wastewater involving nanoparticle removal in the semiconductor industry and contribute to advancing theoretical understanding and simulation of fouling dynamics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:10:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:10:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Content v
List of Figures vii
List of Tables xi
Chapter. 1 Introduction 1
Chapter. 2 Literature Review 6
2.1 Fouling Theories and Blocking Filtration Laws 6
2.2 Modified Blocking Filtration Laws and Blocking Index Diagrams 19
2.3 Effects of Particle Size Ratio and Flow Rate 25
2.4 Computational Fluid Dynamics 29
2.5 GeoDict Simulation 31
2.6 Digital Twin Concept 34
2.7 Motivation and Research Objectives 37
2.7.1 Motivation 37
2.7.2 Research Objectives 38
Chapter. 3 Methodology 41
3.1 Experimental Setup 41
3.2 Materials 43
3.2.1 Membranes 43
3.2.2 Particles 43
3.3 Measuring Equipment 45
3.3.1 Scanning Electron Microscope 45
3.3.2 Pore Size Distribution 46
3.3.3 Particle Size Distribution 49
3.3.4 Zeta Potential Measurement 50
3.4 Simulation Framework 52
3.5 Flow Field and Pressure Drop Analysis 55
3.6 Particle Motion Analysis and Collision Model 62
Chapter. 4 Results and Discussion 67
4.1 Verification of the GeoDict Simulation Models 67
4.2 Parameters for the GeoDict Simulation 74
4.3 Comparison of the Flow Rate between Experiment and Simulation 79
4.4 Blocking Index Diagram for Constant Pressure Filtration 96
4.5 Particle Blocking Behaviors of Size Ratio through Simulation 106
Chapter. 5 Conclusion and Future Outlook 118
References 121
Appendices 132
A.1 Application of Blocking Filtration Laws 132
A.2 Potential Measuring Equipment for This Study 134
A.2.1 Ultraviolet–visible (UV-Vis) Spectroscopy 134
A.2.2 Photoluminescence (PL) 134
A.3 Parameters Used in GeoDict Simulations in This Study 136
-
dc.language.isoen-
dc.subject微過濾zh_TW
dc.subject顆粒汙染zh_TW
dc.subject阻塞過濾定律zh_TW
dc.subject粒徑孔徑比值zh_TW
dc.subjectGeoDictzh_TW
dc.subject多尺度模擬zh_TW
dc.subject數位孿生zh_TW
dc.subjectGeoDicten
dc.subjectDigital Twinen
dc.subjectmulti-scale simulationen
dc.subjectblocking filtration lawen
dc.subjectmicrofiltrationen
dc.subjectparticle foulingen
dc.subjectparticle-to-pore size ratioen
dc.title以阻塞過濾定律與三維數位孿生模型探討薄膜微過濾之粒子污染現象zh_TW
dc.titleParticle Fouling in Membrane Microfiltration: Insights from Blocking Filtration Laws and 3D Digital Twin Modelen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee康敦彥;侯嘉洪zh_TW
dc.contributor.oralexamcommitteeDun-Yen Kang;Chia-Hung Houen
dc.subject.keyword微過濾,顆粒汙染,阻塞過濾定律,粒徑孔徑比值,GeoDict,多尺度模擬,數位孿生,zh_TW
dc.subject.keywordmicrofiltration,particle fouling,blocking filtration law,particle-to-pore size ratio,GeoDict,multi-scale simulation,Digital Twin,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202502256-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-29-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-07-22-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.55 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved