Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99394
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳蕙芬zh_TW
dc.contributor.advisorWhei-Fen Wuen
dc.contributor.author熊鐿珍zh_TW
dc.contributor.authorYi-Chen Hsiungen
dc.date.accessioned2025-09-10T16:09:12Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citationBaker, T.A., and R.T. Sauer. 2006. ATP-dependent proteases of bacteria: recognition logic and operating principles. Trends Biochem Sci. 31:647-653.
Baytshtok, V., X. Fei, R.A. Grant, T.A. Baker, and R.T. Sauer. 2016. A structurally dynamic region of the HslU intermediate domain controls protein degradation and ATP hydrolysis. Structure. 24:1766-1777.
Baytshtok, V., X. Fei, T.T. Shih, R.A. Grant, J.C. Santos, T.A. Baker, and R.T. Sauer. 2021. Heat activates the AAA+ HslUV protease by melting an axial autoinhibitory plug. Cell Rep. 34:108639.
Beier, A., G. Platzer, T. Höfurthner, A.L. Ptaszek, R.J. Lichtenecker, L. Geist, J.E. Fuchs, D.B. McConnell, M. Mayer, and R. Konrat. 2024. Probing Protein–Ligand Methyl−π Interaction Geometries through Chemical Shift Measurements of Selectively Labeled Methyl Groups. J Med Chem. 67:13187-13196.
Bell, T.A., T.A. Baker, and R.T. Sauer. 2019. Interactions between a subset of substrate side chains and AAA+ motor pore loops determine grip during protein unfolding. Elife. 8.
Bi, E., and J. Lutkenhaus. 1993. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J Bacteriol. 175:1118-1125.
Bi, E., and J. Lutkenhaus. 1990. Analysis of ftsZ mutations that confer resistance to the cell division inhibitor SulA (sfiA). J Bacteriol. 172:5602-5609.
Bochtler, M., L. Ditzel, M. Groll, and R. Huber. 1997. Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci U S A. 94:6070-6074.
Bochtler, M., C. Hartmann, H.K. Song, G.P. Bourenkov, H.D. Bartunik, and R. Huber. 2000. The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature. 403:800-805.
Burby, P.E., and L.A. Simmons. 2020. Regulation of cell division in bacteria by monitoring genome integrity and DNA replication status. J Bacteriol. 202:10.1128/jb. 00408-00419.
Chang, C.Y., Y.T. Weng, L.Y. Hwang, H.T. Hu, P.S. Shih, J.E. Kuan, K.F. Wu, and W.F. Wu. 2019. Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res. 220:21-31.
Chuang, S.E., V. Burland, G. Plunkett III, D.L. Daniels, and F.R. Blattner. 1993. Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene. 134:1-6.
Cordell, S.C., E.J. Robinson, and J. Lowe. 2003. Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci U S A. 100:7889-7894.
Fernández de Henestrosa, A.R., T. Ogi, S. Aoyagi, D. Chafin, J.J. Hayes, H. Ohmori, and R. Woodgate. 2000. Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol. 35:1560-1572.
Freudl, R., G. Braun, N. Honoré, and S. Cole. 1987. Evolution of the enterobacterial sulA gene: a component of the SOS system encoding an inhibitor of cell division. Gene. 52:31-40.
Goldberg, A.L. 1992. The mechanism and functions of ATP‐dependent proteases in bacterial and animal cells. Eur J Biochem. 203:9-23.
Gottesman, S. 2003. Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol. 19:565-587.
Gottesman, S., E. Halpern, and P. Trisler. 1981. Role of sulA and sulB in filamentation by lon mutants of Escherichia coli K-12. J Bacteriol. 148:265-273.
Gottesman, S., E. Roche, Y.N. Zhou, and R.T. Sauer. 1998. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12:1338-1347.
Gur, E., D. Biran, and E.Z. Ron. 2011. Regulated proteolysis in Gram-negative bacteria—how and when? Nat Rev Microbiol. 9:839-848.
Gur, E., and R.T. Sauer. 2008. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 22:2267-2277.
Guzman, L.M., D. Belin, M.J. Carson, and J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 177:4121-4130.
Haeusser, D.P., and W. Margolin. 2016. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol. 14:305-319.
Hashimoto-Gotoh, T., M. Yamaguchi, K. Yasojima, A. Tsujimura, Y. Wakabayashi, and Y. Watanabe. 2000. A set of temperature sensitive-replication/-segregation and temperature resistant plasmid vectors with different copy numbers and in an isogenic background (chloramphenicol, kanamycin, lacZ, repA, par, polA). Gene. 241:185-191.
Herman, C., D. Thevenet, P. Bouloc, G.C. Walker, and R. D'Ari. 1998. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 12:1348-1355.
Hoskins, J.R., S.Y. Kim, and S. Wickner. 2000. Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem. 275:35361-35367.
Hsieh, F.C., C.T. Chen, Y.T. Weng, S.S. Peng, Y.C. Chen, L.Y. Huang, H.T. Hu, Y.L. Wu, N.C. Lin, and W.F. Wu. 2011. Stepwise activity of ClpY (HslU) mutants in the processive degradation of Escherichia coli ClpYQ (HslUV) protease substrates. J Bacteriol. 193:5465-5476.
Hsieh, F.C., L.K. Chang, C.H. Tsai, J.E. Kuan, K.F. Wu, C. Wu, and W.F. Wu. 2020. Roles of double-loop (130~159 aa and 175~209 aa) in ClpY(HslU)-I domain for SulA substrate degradation by ClpYQ(HslUV) protease in Escherichia coli. J Gen Appl Microbiol. 66:297-306.
Hwang, L.Y., H.T. Hu, C.H. Tsai, and W.F. Wu. 2014. The Escherichia coli ClpYQ protease recognizes the C-terminal tail of SulA. Taiwan J Agric Chem Food Sci.:52:51-11.
Ishii, Y., and F. Amano. 2001. Regulation of SulA cleavage by Lon protease by the C-terminal amino acid of SulA, histidine. Biochem J. 358:473-480.
Ishii, Y., S. Sonezaki, Y. Iwasaki, Y. Miyata, K. Akita, Y. Kato, and F. Amano. 2000. Regulatory role of C-terminal residues of SulA in its degradation by Lon protease in Escherichia coli. J Bacteriol. 127:837-844.
Kanemori, M., H. Yanagi, and T. Yura. 1999. The ATP-dependent HslVU/ClpQY protease participates in turnover of cell division inhibitor SulA in Escherichia coli. J Bacteriol. 181:3674-3680.
Kasal, M.R., H.C. Kotamarthi, M.M. Johnson, H.M. Stephens, M.J. Lang, R.T. Sauer, and T.A. Baker. 2023. Lon degrades stable substrates slowly but with enhanced processivity, redefining the attributes of a successful AAA+ protease. Cell Rep. 42:113061.
Khattar, M.M. 1997. Overexpression of the hslVU operon suppresses SOS-mediated inhibition of cell division in Escherichia coli. FEBS Lett. 414:402-404.
Kuo, M.S., K.P. Chen, and W.F. Wu. 2004. Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology. 150:437-446.
Kwon, A.R., C.B. Trame, and D.B. McKay. 2004. Kinetics of protein substrate degradation by HslUV. J Struct Biol. 146:141-147.
Lau-Wong, I.C., T. Locke, M.J. Ellison, T.L. Raivio, and L.S. Frost. 2008. Activation of the Cpx regulon destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. Mol Microbiol. 67:516-527.
Lee, J.W., E. Park, M.S. Jeong, Y.J. Jeon, S.H. Eom, J.H. Seol, and C.H. Chung. 2009. HslVU ATP-dependent protease utilizes maximally six among twelve threonine active sites during proteolysis. J Biol Chem. 284:33475-33484.
Lee, Y.Y., C.F. Chang, C.L. Kuo, M.C. Chen, C.H. Yu, P.I. Lin, and W.F. Wu. 2003. Subunit oligomerization and substrate recognition of the Escherichia coli ClpYQ (HslUV) protease implicated by in vivo protein-protein interactions in the yeast two-hybrid system. J Bacteriol. 185:2393-2401.
Lien, H.Y., R.S. Shy, S.S. Peng, Y.L. Wu, Y.T. Weng, H.H. Chen, P.C. Su, W.F. Ng, Y.C. Chen, P.Y. Chang, and W.F. Wu. 2009a. Characterization of the Escherichia coli ClpY (HslU) substrate recognition site in the ClpYQ (HslUV) protease using the yeast two-hybrid system. J Bacteriol. 191:4218-4231.
Lien, H.Y., C.H. Yu, C.M. Liou, and W.F. Wu. 2009b. Regulation of clpQY (hslVU) Gene Expression in Escherichia coli. Open Microbiol J. 3:29-39.
Lin, C.H., C.H. Tsai, C.C. Chou, and W.F. Wu. 2023. A Transient π–π or Cation–π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in Escherichia coli. Int. J. Mol. Sci. 24:17353.
Mahmoud, S.A., B. Aldikacti, and P. Chien. 2022. ATP hydrolysis tunes specificity of a AAA+ protease. Cell Rep. 40.
Mahmoud, S.A., and P. Chien. 2018. Regulated proteolysis in bacteria. Annu Rev Biochem. 87:677-696.
McClellan, A.J., S. Tam, D. Kaganovich, and J. Frydman. 2005. Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol. 7:736-741.
Merdanovic, M., T. Clausen, M. Kaiser, R. Huber, and M. Ehrmann. 2011. Protein quality control in the bacterial periplasm. Annu Rev Microbiol. 65:149-168.
Missiakas, D., F. Schwager, J. Betton, C. Georgopoulos, and S. Raina. 1996. Identification and characterization of HsIV HsIU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15:6899-6909.
Mizusawa, S., and S. Gottesman. 1983. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci U S A. 80:358-362.
Mukherjee, A., C. Cao, and J. Lutkenhaus. 1998. Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A. 95:2885-2890.
Narberhaus, F., M. Obrist, F. Führer, and S. Langklotz. 2009. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol.160:652-659.
Nishio, M. 2011. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys Chem Chem Phys. 13:13873-13900.
Nishio, M., Y. Umezawa, M. Hirota, and Y. Takeuchi. 1995. The CH/π interaction: significance in molecular recognition. Tetrahedron. 51:8665-8701.
Park, E., J.W. Lee, S.H. Eom, J.H. Seol, and C.H. Chung. 2008. Binding of MG132 or deletion of the Thr active sites in HslV subunits increases the affinity of HslV protease for HslU ATPase and makes this interaction nucleotide-independent. J Biol Chem. 283:33258-33266.
Park, E., Y.M. Rho, O.j. Koh, S.W. Ahn, I.S. Seong, J.J. Song, O. Bang, J.H. Seol, J. Wang, and S.H. Eom. 2005. Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem. 280:22892-22898.
Platzer, G., M. Mayer, A. Beier, S. Brüschweiler, J.E. Fuchs, H. Engelhardt, L. Geist, G. Bader, J. Schörghuber, and R. Lichtenecker. 2020. PI by NMR: probing CH–π interactions in protein–ligand complexes by NMR spectroscopy. Angew Chem Int Ed. 132:14971-14978.
Rohrwild, M., G. Pfeifer, U. Santarius, S.A. Müller, H.C. Huang, A. Engel, W. Baumeister, and A.L. Goldberg. 1997. The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nat Struct Biol. 4:133-139.
Sakaki, S., K. Kato, T. Miyazaki, Y. Musashi, K. Ohkubo, H. Ihara, and C. Hirayama. 1993. Structures and binding energies of benzene–methane and benzene–benzene complexes. An ab initio SCF/MP2 study. J Chem Soc, Faraday Trans.89:659-664.
Sauer, R.T., D.N. Bolon, B.M. Burton, R.E. Burton, J.M. Flynn, R.A. Grant, G.L. Hersch, S.A. Joshi, J.A. Kenniston, and I. Levchenko. 2004. Sculpting the proteome with AAA+ proteases and disassembly machines. Cell. 119:9-18.
Scheiner, S. 2025. Methyl‐π Interactions. Nature of Bonding and Limits of Strength. Chem Eur J.31:e202404712.
Schirmer, E.C., J.R. Glover, M.A. Singer, and S. Lindquist. 1996. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci. 21:289-296.
Seong, I.S., J.Y. Oh, S.J. Yoo, J.H. Seol, and C.H. Chung. 1999. ATP-dependent degradation of SulA, a cell division inhibitor, by the HslVU protease in Escherichia coli. FEBS Lett. 456:211-214.
Shih, T.T., R.T. Sauer, and T.A. Baker. 2024. How the double-ring ClpAP protease motor grips the substrate to unfold and degrade stable proteins. J Biol Chem. 300.
Song, H.K., C. Hartmann, R. Ramachandran, M. Bochtler, R. Behrendt, L. Moroder, and R. Huber. 2000. Mutational studies on HslU and its docking mode with HslV. Proc Natl Acad Sci U S A. 97:14103-14108.
Sousa, M.C., C.B. Trame, H. Tsuruta, S.M. Wilbanks, V.S. Reddy, and D.B. McKay. 2000. Crystal and solution structures of an HslUV protease–chaperone complex. Cell. 103:633-643.
Sundar, S., T.A. Baker, and R.T. Sauer. 2012. The I domain of the AAA+ HslUV protease coordinates substrate binding, ATP hydrolysis, and protein degradation. Protein Sci. 21:188-198.
Ting, W.W., S.I. Tan, and I.S. Ng. 2020. Development of chromosome-based T7 RNA polymerase and orthogonal T7 promoter circuit in Escherichia coli W3110 as a cell factory. Bioresour. Bioprocess. 7:1-13.
Umezawa, Y., and M. Nishio. 2002. Thymine-methyl/π interaction implicated in the sequence-dependent deformability of DNA. Nucleic Acids Res. 30:2183-2192.
Wang, J., J.J. Song, M. Franklin, S. Kamtekar, Y. Im, S. Rho, I.S. Seong, C. Lee, C.H. Chung, and S.H. Eom. 2001. Crystal structures of the HslVU peptidase–ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure. 9:177-184.
Wang, L., M. Elliott, and T. Elliott. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J Bacteriol. 181:1211-1219.
Wu, W.F., Y. Zhou, and S. Gottesman. 1999. Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J Bacteriol. 181:3681-3687.
Xiao, Y., and R.J. Woods. 2023. Protein–Ligand CH− π Interactions: Structural Informatics, Energy Function Development, and Docking Implementation. J Chem Theory Comput. 19:5503-5515.
Yakamavich, J.A., T.A. Baker, and R.T. Sauer. 2008. Asymmetric nucleotide transactions of the HslUV protease. J Mol Biol. 380:946-957.
Yamada-Inagawa, T., T. Okuno, K. Karata, K. Yamanaka, and T. Ogura. 2003. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem. 278:50182-50187.
Zolkiewski, M. 2006. A camel passes through the eye of a needle: protein unfolding activity of Clp ATPases. Mol Microbiol. 61:1094-1100.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99394-
dc.description.abstractATP 依賴性蛋白酶ClpYQ為細菌細胞內重要的蛋白質降解系統之一,參與蛋白質品質管控與壓力反應等重要生理過程。先前研究已證實 ClpYQ 能有效辨識並降解細胞分裂抑制蛋白質SulA,且其初期辨識與抓握可能仰賴 π–π 或 cation–π 等非共價交互作用。然而,根據不同菌株的蛋白質序列分析,SulA中負責與ClpY作用的關鍵位點F143在部分菌種中為疏水性殘基Leucine,這暗示了π–π 或 cation–π 並非唯一的辨識模式,ClpY 與 SulA 間可能存在其他交互機制,其中 methyl–π 作用力的參與尚未被深入探討。為驗證此假設,本研究針對ClpY中的Y91以及SulA中的F143進行點突變,以具大型疏水性側鏈的胺基酸(如 Leu、Val、Met、Ile)取代,並結合in vivo與in vitro系統,從突變蛋白質之活性、生理功能、交互作用能力與降解效率等面向進行系統性分析,探討methyl–π交互作用是否為其中一種可能的機制。體內實驗結果顯示,ClpY Y91突變為疏水性胺基酸時,其蛋白酶活性完全喪失,無法辨識並降解SulA,顯示該位點需保留具有環狀結構的芳香族或咪唑類胺基酸(如 Tyr、Phe、Trp、His),以維持與SulA的有效辨識與交互作用。另一方面,當SulA F143位點若被大型疏水性胺基酸(如 Leu、Val、Met、Ile)取代時,這些突變蛋白質不僅保有原有的細胞抑制活性,其降解效率也與野生型相近,僅在半衰期上略有差異;而在體外免疫沉澱及降解試驗中,ClpY Y91以疏水性胺基酸取代時,無法與SulA形成有效的交互作用,也未觀察到明顯的降解現象。只有ClpY Y91F、Y91H和Y91W可有效與SulA及SulA F143L* 發生共沉澱,且在ClpQ與ATP存在下,這些ClpY突變蛋白酶均可有效降解SulA及SulA F143L*。此結果顯示,突變後的methyl基團仍能與ClpY形成有效的交互作用,進而啟動蛋白質降解機制。本研究結果支持 ClpY 與 SulA 之間可能透過選擇性 methyl–π 非共價作用進行辨識與結合的假設,並指出該作用模式需仰賴 ClpY 提供芳香環結構,由SulA 所提供之疏水性 methyl 基團形成交互作用界面。本研究結果,進一步釐清 ClpYQ 辨識基質的機制,並為探討蛋白酶與基質之間的非共價交互作用提供新的分子辨識觀點。zh_TW
dc.description.abstractThe ATP-dependent protease ClpYQ is one of the major protein degradation systems in bacterial cells, playing a critical role in protein quality control and stress responses. Previous studies have demonstrated that ClpYQ efficiently recognizes and degrades the cell division inhibitor SulA, with initial substrate recognition and engagement potentially mediated by non-covalent interactions such as π–π or cation–π interactions between 143rd-SulA and 91st-ClpY dual residues. However, sequence analyses of SulA homologs from different bacterial species reveal that the key ClpY-interacting residue F143 in SulA is replaced by a hydrophobic residue (e.g., Leucine) in some species. This suggests that π–π or cation–π interactions may not be the sole mode of recognition/gripping, and other mechanisms, such as methyl–π interactions, may also be involved. However, the role of methyl–π interactions remains largely unexplored. To test this hypothesis, this study employed site-directed mutagenesis targeting Tyr91 in ClpY and Phe143 in SulA, systematically substituting them with bulky hydrophobic amino acids (such as Leu, Val, Met, and Ile). Using both in vivo and in vitro experiment tests, we conducted comprehensive analyses of their physiological function, mutual interaction capability, and corresponding degradation efficiency to investigate whether methyl–π interactions contribute to substrate recognition/gripping. Our in vivo results revealed that when Tyr91 in ClpY was mutated to non-aromatic hydrophobic amino acids, its protease activity was completely abolished, and SulA was neither recognized nor degraded. This indicates that a ring-containing residue (such as Tyr, Phe, Trp, or His) maintain effective recognition and interaction with SulA. On the other hand, when Phe143 in SulA was replaced with bulky hydrophobic residues (e.g., Leu, Val, Met, or Ile), these SulA mutants not only retained most of their lethal activity in cells, but also rendered the efficient degradation efficiencies comparable to that of the wild-type, with only minor differences in half-life. As well, the in vitro pull-down and degradation assays, when Tyr91 in ClpY was substituted with hydrophobic amino acids, it failed to form effective interactions with SulA, and no significant degradation was observed. Only ClpY Y91F, ClpY Y91H and ClpY Y91W efficiently co-immunoprecipitated with the wild-type SulA and SulA F143L* and in the presence ClpQ and ATP, these ClpY variants were also able to efficiently degrade both substrates. These findings suggest that the substituted methyl groups of 143rd-SulA can still engage in effective interactions with the ring structure of 91st-ClpY to trigger an efficient degradation. Together, these results support the hypothesis that ClpY may recognize and bind SulA via selective methyl–π non-covalent interactions and highlight the requirement of an aromatic ring structure in ClpY to form an interaction interface with the hydrophobic methyl groups of SulA. This study further elucidates the substrate recognition mechanism of ClpYQ and offers a new perspective on the molecular basis of non-covalent interactions between proteases and their substrates.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:09:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:09:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 vi
表次 viii
圖次 ix
附錄 x
壹、前言 1
一、 蛋白質品質調控系統 1
二、ATP依賴性蛋白酶 2
三、ClpYQ 蛋白酶 3
四、細胞分裂抑制物SulA 6
五、ClpYQ蛋白酶與基質SulA之相關研究 8
六、甲基-π交互作用力(Methyl-π interaction) 15
七、研究動機與目的 17
貳、材料與方法 18
一、實驗材料
(一)菌株與質體 18
(二)藥品與試劑 19
(三)器材與設備 20
(四)分析軟體 20
二、實驗方法.. 20
(一)一般實驗方法 20
(二)大腸桿菌選殖基因表現系統 24
(三)西方墨點分析(Western blotting) 28
(四) In vitro蛋白質表現系統 34
(五) In vitro實驗系統 39
參、結果 42
一、In vivo系統下試驗結果 42
(一) ClpY突變蛋白質活性試驗 43
(二) ClpY突變蛋白質降解SulA試驗 44
(三) SulA突變蛋白質活性試驗 45
(四)以生長情況評估ClpYQ降解SulA突變蛋白質試驗 46
(五)以西方墨點分析評估ClpYQ降解SulA突變蛋白質試驗 47
(六) SulA突變蛋白質半衰期試驗 48
二、In vitro系統下試驗結果 49
(一) ClpY突變蛋白質與SulA突變蛋白質之交互作用試驗 50
(二) ClpY突變蛋白酶降解SulA突變蛋白質試驗 51
肆、討論 54
一、In vivo下ClpY突變蛋白質之活性與降解能力 54
二、In vivo下SulA突變蛋白質之活性與ClpYQ降解情形 55
三、In vitro下ClpY與SulA之交互作用與降解分析 56
四、ClpY與SulA之間可能存在methyl–π 的交互作用 58
伍、結論 61
陸、參考文獻 62
-
dc.language.isozh_TW-
dc.subjectATP依賴性蛋白酶zh_TW
dc.subjectClpYQzh_TW
dc.subjectSulAzh_TW
dc.subject疏水性胺基酸zh_TW
dc.subjectmethyl–π作用力zh_TW
dc.subjectATP-dependent proteaseen
dc.subjectmethyl–π interactionen
dc.subjecthydrophobic amino acidsen
dc.subjectSulAen
dc.subjectClpYQen
dc.title大腸桿菌ClpYQ蛋白酶利用Methyl−π交互作用對基質SulA辨識與降解之研究zh_TW
dc.titleStudy on the role of methyl-π interactions in SulA recognition and degradation by ClpYQ protease in Escherichia colien
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳昭瑩;羅凱尹;徐駿森;蔡智瑄zh_TW
dc.contributor.oralexamcommitteeChao-Ying Chen;Kai-Yin Lo;Chun-Hua Hsu;Chih-Hsuan Tsaien
dc.subject.keywordATP依賴性蛋白酶,ClpYQ,SulA,疏水性胺基酸,methyl–π作用力,zh_TW
dc.subject.keywordATP-dependent protease,ClpYQ,SulA,hydrophobic amino acids,methyl–π interaction,en
dc.relation.page96-
dc.identifier.doi10.6342/NTU202503189-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-lift2030-07-31-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.71 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved