請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99393完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴欣勇 | zh_TW |
| dc.contributor.advisor | Hsin-Yung Yen | en |
| dc.contributor.author | 陳彥綾 | zh_TW |
| dc.contributor.author | Yen-Ling Chen | en |
| dc.date.accessioned | 2025-09-10T16:09:00Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-31 | - |
| dc.identifier.citation | 1 Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010). https://doi.org:10.1016/j.cell.2010.01.022
2 Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10, 826-837 (2010). https://doi.org:10.1038/nri2873 3 Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013-1022 (2014). https://doi.org:10.1016/j.cell.2014.04.007 4 Franchi, L., Eigenbrod, T., Muñoz-Planillo, R. & Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10, 241-247 (2009). https://doi.org:10.1038/ni.1703 5 Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10, 417-426 (2002). https://doi.org:10.1016/s1097-2765(02)00599-3 6 Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278-286 (2012). https://doi.org:10.1038/nature10759 7 Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19, 477-489 (2019). https://doi.org:10.1038/s41577-019-0165-0 8 Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 (2010). https://doi.org:10.1038/nature08938 9 Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237-241 (2006). https://doi.org:10.1038/nature04516 10 Heneka, M. T., McManus, R. M. & Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 19, 610-621 (2018). https://doi.org:10.1038/s41583-018-0055-7 11 Codolo, G. et al. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS One 8, e55375 (2013). https://doi.org:10.1371/journal.pone.0055375 12 Putnam, C. D., Broderick, L. & Hoffman, H. M. The discovery of NLRP3 and its function in cryopyrin-associated periodic syndromes and innate immunity. Immunol Rev 322, 259-282 (2024). https://doi.org:10.1111/imr.13292 13 Otálora-Alcaraz, A. et al. The NLRP3 inflammasome: A central player in multiple sclerosis. Biochem Pharmacol 232, 116667 (2025). https://doi.org:10.1016/j.bcp.2024.116667 14 Meier, D. T., de Paula Souza, J. & Donath, M. Y. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 68, 3-16 (2025). https://doi.org:10.1007/s00125-024-06306-1 15 Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183, 787-791 (2009). https://doi.org:10.4049/jimmunol.0901363 16 Franchi, L., Eigenbrod, T. & Núñez, G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183, 792-796 (2009). https://doi.org:10.4049/jimmunol.0900173 17 Xing, Y. et al. Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. J Immunol 199, 1561-1566 (2017). https://doi.org:10.4049/jimmunol.1700175 18 Hamilton, C. et al. NLRP3 Inflammasome Priming and Activation Are Regulated by a Phosphatidylinositol-Dependent Mechanism. Immunohorizons 6, 642-659 (2022). https://doi.org:10.4049/immunohorizons.2200058 19 O'Keefe, M. E., Dubyak, G. R. & Abbott, D. W. Post-translational control of NLRP3 inflammasome signaling. J Biol Chem 300, 107386 (2024). https://doi.org:10.1016/j.jbc.2024.107386 20 Perregaux, D. & Gabel, C. A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269, 15195-15203 (1994). 21 Walev, I., Reske, K., Palmer, M., Valeva, A. & Bhakdi, S. Potassium-inhibited processing of IL-1 beta in human monocytes. Embo j 14, 1607-1614 (1995). https://doi.org:10.1002/j.1460-2075.1995.tb07149.x 22 Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735-738 (1996). https://doi.org:10.1126/science.272.5262.735 23 Samways, D. S., Li, Z. & Egan, T. M. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8, 6 (2014). https://doi.org:10.3389/fncel.2014.00006 24 Di, A. et al. The TWIK2 Potassium Efflux Channel in Macrophages Mediates NLRP3 Inflammasome-Induced Inflammation. Immunity 49, 56-65.e54 (2018). https://doi.org:10.1016/j.immuni.2018.04.032 25 Stankovic, C. J., Heinemann, S. H., Delfino, J. M., Sigworth, F. J. & Schreiber, S. L. Transmembrane channels based on tartaric acid-gramicidin A hybrids. Science 244, 813-817 (1989). https://doi.org:10.1126/science.2471263 26 Muñoz-Planillo, R. et al. K⁺ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142-1153 (2013). https://doi.org:10.1016/j.immuni.2013.05.016 27 Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14, 1583-1589 (2007). https://doi.org:10.1038/sj.cdd.4402195 28 Gaidt, M. M. et al. Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity 44, 833-846 (2016). https://doi.org:10.1016/j.immuni.2016.01.012 29 Groß, C. J. et al. K(+) Efflux-Independent NLRP3 Inflammasome Activation by Small Molecules Targeting Mitochondria. Immunity 45, 761-773 (2016). https://doi.org:10.1016/j.immuni.2016.08.010 30 Wolf, A. J. et al. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell 166, 624-636 (2016). https://doi.org:10.1016/j.cell.2016.05.076 31 Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221-225 (2011). https://doi.org:10.1038/nature09663 32 Cruz, C. M. et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282, 2871-2879 (2007). https://doi.org:10.1074/jbc.M608083200 33 Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674-677 (2008). https://doi.org:10.1126/science.1156995 34 Courbet, A. et al. Imidazoquinoxaline anticancer derivatives and imiquimod interact with tubulin: Characterization of molecular microtubule inhibiting mechanisms in correlation with cytotoxicity. PLoS One 12, e0182022 (2017). https://doi.org:10.1371/journal.pone.0182022 35 Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12, 222-230 (2011). https://doi.org:10.1038/ni.1980 36 Bauernfeind, F. et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 187, 613-617 (2011). https://doi.org:10.4049/jimmunol.1100613 37 Xu, J. & Núñez, G. The NLRP3 inflammasome: activation and regulation. Trends Biochem Sci 48, 331-344 (2023). https://doi.org:10.1016/j.tibs.2022.10.002 38 Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821-832 (2010). https://doi.org:10.1016/j.cell.2010.01.040 39 Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338-343 (2019). https://doi.org:10.1038/s41586-019-1295-z 40 Moasses Ghafary, S. et al. Identification of NLRP3(PYD) Homo-Oligomerization Inhibitors with Anti-Inflammatory Activity. Int J Mol Sci 23 (2022). https://doi.org:10.3390/ijms23031651 41 Jin, C. & Flavell, R. A. Molecular mechanism of NLRP3 inflammasome activation. J Clin Immunol 30, 628-631 (2010). https://doi.org:10.1007/s10875-010-9440-3 42 Niu, T. et al. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat Commun 12, 5862 (2021). https://doi.org:10.1038/s41467-021-26142-w 43 Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206 (2014). https://doi.org:10.1016/j.cell.2014.02.008 44 Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156, 1207-1222 (2014). https://doi.org:10.1016/j.cell.2014.01.063 45 Boucher, D. et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med 215, 827-840 (2018). https://doi.org:10.1084/jem.20172222 46 Lu, A. et al. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism. Nat Struct Mol Biol 23, 416-425 (2016). https://doi.org:10.1038/nsmb.3199 47 Li, Y. et al. Cryo-EM structures of ASC and NLRC4 CARD filaments reveal a unified mechanism of nucleation and activation of caspase-1. Proc Natl Acad Sci U S A 115, 10845-10852 (2018). https://doi.org:10.1073/pnas.1810524115 48 Broz, P., von Moltke, J., Jones, J. W., Vance, R. E. & Monack, D. M. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471-483 (2010). https://doi.org:10.1016/j.chom.2010.11.007 49 Ross, C., Chan, A. H., Von Pein, J., Boucher, D. & Schroder, K. Dimerization and auto-processing induce caspase-11 protease activation within the non-canonical inflammasome. Life Sci Alliance 1, e201800237 (2018). https://doi.org:10.26508/lsa.201800237 50 Liu, X. et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535, 153-158 (2016). https://doi.org:10.1038/nature18629 51 Xia, S. et al. Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature 593, 607-611 (2021). https://doi.org:10.1038/s41586-021-03478-3 52 Duncan, J. A. et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104, 8041-8046 (2007). https://doi.org:10.1073/pnas.0611496104 53 Wendler, P., Ciniawsky, S., Kock, M. & Kube, S. Structure and function of the AAA+ nucleotide binding pocket. Biochim Biophys Acta 1823, 2-14 (2012). https://doi.org:10.1016/j.bbamcr.2011.06.014 54 Mortimer, L., Moreau, F., MacDonald, J. A. & Chadee, K. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol 17, 1176-1186 (2016). https://doi.org:10.1038/ni.3538 55 Coll, R. C. et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15, 556-559 (2019). https://doi.org:10.1038/s41589-019-0277-7 56 Tapia-Abellán, A. et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol 15, 560-564 (2019). https://doi.org:10.1038/s41589-019-0278-6 57 Jiang, H. et al. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med 214, 3219-3238 (2017). https://doi.org:10.1084/jem.20171419 58 Cocco, M. et al. Development of an Acrylate Derivative Targeting the NLRP3 Inflammasome for the Treatment of Inflammatory Bowel Disease. J Med Chem 60, 3656-3671 (2017). https://doi.org:10.1021/acs.jmedchem.6b01624 59 He, Y., Zeng, M. Y., Yang, D., Motro, B. & Núñez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354-357 (2016). https://doi.org:10.1038/nature16959 60 Xiao, L., Magupalli, V. G. & Wu, H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature 613, 595-600 (2023). https://doi.org:10.1038/s41586-022-05570-8 61 Andreeva, L. et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184, 6299-6312.e6222 (2021). https://doi.org:10.1016/j.cell.2021.11.011 62 Hochheiser, I. V. et al. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature 604, 184-189 (2022). https://doi.org:10.1038/s41586-022-04467-w 63 Ohto, U. et al. Structural basis for the oligomerization-mediated regulation of NLRP3 inflammasome activation. Proc Natl Acad Sci U S A 119, e2121353119 (2022). https://doi.org:10.1073/pnas.2121353119 64 Dekker, C. et al. Crystal Structure of NLRP3 NACHT Domain With an Inhibitor Defines Mechanism of Inflammasome Inhibition. J Mol Biol 433, 167309 (2021). https://doi.org:10.1016/j.jmb.2021.167309 65 Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21, 248-255 (2015). https://doi.org:10.1038/nm.3806 66 Park, H. H. et al. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25, 561-586 (2007). https://doi.org:10.1146/annurev.immunol.25.022106.141656 67 Bae, J. Y. & Park, H. H. Crystal structure of NALP3 protein pyrin domain (PYD) and its implications in inflammasome assembly. J Biol Chem 286, 39528-39536 (2011). https://doi.org:10.1074/jbc.M111.278812 68 Fu, J. & Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu Rev Immunol 41, 301-316 (2023). https://doi.org:10.1146/annurev-immunol-081022-021207 69 Andreeva, L. et al. NLRP3 cages revealed by full-length mouse NLRP3 structure control pathway activation. Cell 184, 6299-6312 e6222 (2021). https://doi.org:10.1016/j.cell.2021.11.011 70 Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71-76 (2018). https://doi.org:10.1038/s41586-018-0761-3 71 Fry, A. M., Bayliss, R. & Roig, J. Mitotic Regulation by NEK Kinase Networks. Front Cell Dev Biol 5, 102 (2017). https://doi.org:10.3389/fcell.2017.00102 72 Paik, S., Kim, J. K., Silwal, P., Sasakawa, C. & Jo, E. K. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol 18, 1141-1160 (2021). https://doi.org:10.1038/s41423-021-00670-3 73 Hu, Z. et al. Structural and biochemical basis for induced self-propagation of NLRC4. Science 350, 399-404 (2015). https://doi.org:10.1126/science.aac5489 74 Zhang, L. et al. Cryo-EM structure of the activated NAIP2-NLRC4 inflammasome reveals nucleated polymerization. Science 350, 404-409 (2015). https://doi.org:10.1126/science.aac5789 75 Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193-1206 (2014). https://doi.org:10.1016/j.cell.2014.02.008 76 Hochheiser, I. V. et al. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Sci Adv 8, eabn7583 (2022). https://doi.org:10.1126/sciadv.abn7583 77 Lu, A. & Wu, H. Structural mechanisms of inflammasome assembly. Febs j 282, 435-444 (2015). https://doi.org:10.1111/febs.13133 78 Ferrao, R. & Wu, H. Helical assembly in the death domain (DD) superfamily. Curr Opin Struct Biol 22, 241-247 (2012). https://doi.org:10.1016/j.sbi.2012.02.006 79 de Alba, E. Structure and interdomain dynamics of apoptosis-associated speck-like protein containing a CARD (ASC). J Biol Chem 284, 32932-32941 (2009). https://doi.org:10.1074/jbc.M109.024273 80 Oroz, J., Barrera-Vilarmau, S., Alfonso, C., Rivas, G. & de Alba, E. ASC Pyrin Domain Self-associates and Binds NLRP3 Protein Using Equivalent Binding Interfaces. J Biol Chem 291, 19487-19501 (2016). https://doi.org:10.1074/jbc.M116.741082 81 Stutz, A. et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med 214, 1725-1736 (2017). https://doi.org:10.1084/jem.20160933 82 Zhao, W. et al. AKT Regulates NLRP3 Inflammasome Activation by Phosphorylating NLRP3 Serine 5. J Immunol 205, 2255-2264 (2020). https://doi.org:10.4049/jimmunol.2000649 83 Song, N. et al. NLRP3 Phosphorylation Is an Essential Priming Event for Inflammasome Activation. Mol Cell 68, 185-197.e186 (2017). https://doi.org:10.1016/j.molcel.2017.08.017 84 Akbal, A. et al. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell Mol Immunol 19, 1201-1214 (2022). https://doi.org:10.1038/s41423-022-00922-w 85 Song, N. & Li, T. Regulation of NLRP3 Inflammasome by Phosphorylation. Front Immunol 9, 2305 (2018). https://doi.org:10.3389/fimmu.2018.02305 86 Zhang, Z. et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J Exp Med 214, 2671-2693 (2017). https://doi.org:10.1084/jem.20162040 87 Bornancin, F. & Dekker, C. A phospho-harmonic orchestra plays the NLRP3 score. Front Immunol 14, 1281607 (2023). https://doi.org:10.3389/fimmu.2023.1281607 88 Samim Khan, S. et al. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 210, 115496 (2023). https://doi.org:10.1016/j.bcp.2023.115496 89 Sandall, C. F. & MacDonald, J. A. Effects of phosphorylation on the NLRP3 inflammasome. Arch Biochem Biophys 670, 43-57 (2019). https://doi.org:10.1016/j.abb.2019.02.020 90 Tamara, S., den Boer, M. A. & Heck, A. J. R. High-Resolution Native Mass Spectrometry. Chem Rev 122, 7269-7326 (2022). https://doi.org:10.1021/acs.chemrev.1c00212 91 Heck, A. J. Native mass spectrometry: a bridge between interactomics and structural biology. Nat Methods 5, 927-933 (2008). https://doi.org:10.1038/nmeth.1265 92 Kebarle, P. & Verkerk, U. H. Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom Rev 28, 898-917 (2009). https://doi.org:10.1002/mas.20247 93 Kostelic, M. M. et al. UniDecCD: Deconvolution of Charge Detection-Mass Spectrometry Data. Anal Chem 93, 14722-14729 (2021). https://doi.org:10.1021/acs.analchem.1c03181 94 Lu, J. et al. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes. J Am Soc Mass Spectrom 26, 2141-2151 (2015). https://doi.org:10.1007/s13361-015-1235-6 95 van de Waterbeemd, M. et al. High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles. Nat Methods 14, 283-286 (2017). https://doi.org:10.1038/nmeth.4147 96 Ben-Nissan, G. et al. Triple-Stage Mass Spectrometry Unravels the Heterogeneity of an Endogenous Protein Complex. Anal Chem 89, 4708-4715 (2017). https://doi.org:10.1021/acs.analchem.7b00518 97 Banerjee, S. & Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. Int J Anal Chem 2012, 282574 (2012). https://doi.org:10.1155/2012/282574 98 Wilm, M. Principles of electrospray ionization. Mol Cell Proteomics 10, M111.009407 (2011). https://doi.org:10.1074/mcp.M111.009407 99 Nguyen, G. T. H. et al. Nanoscale Ion Emitters in Native Mass Spectrometry for Measuring Ligand-Protein Binding Affinities. ACS Cent Sci 5, 308-318 (2019). https://doi.org:10.1021/acscentsci.8b00787 100 Fort, K. L. et al. Expanding the structural analysis capabilities on an Orbitrap-based mass spectrometer for large macromolecular complexes. Analyst 143, 100-105 (2017). https://doi.org:10.1039/c7an01629h 101 Wörner, T. P. et al. Resolving heterogeneous macromolecular assemblies by Orbitrap-based single-particle charge detection mass spectrometry. Nat Methods 17, 395-398 (2020). https://doi.org:10.1038/s41592-020-0770-7 102 Rose, R. J., Damoc, E., Denisov, E., Makarov, A. & Heck, A. J. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 9, 1084-1086 (2012). https://doi.org:10.1038/nmeth.2208 103 Urban, J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 1199, 338857 (2022). https://doi.org:10.1016/j.aca.2021.338857 104 Riley, N. M. & Coon, J. J. Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling. Anal Chem 88, 74-94 (2016). https://doi.org:10.1021/acs.analchem.5b04123 105 Minic, Z., Dahms, T. E. S. & Babu, M. Chromatographic separation strategies for precision mass spectrometry to study protein-protein interactions and protein phosphorylation. J Chromatogr B Analyt Technol Biomed Life Sci 1102-1103, 96-108 (2018). https://doi.org:10.1016/j.jchromb.2018.10.022 106 Muntel, J. et al. Surpassing 10 000 identified and quantified proteins in a single run by optimizing current LC-MS instrumentation and data analysis strategy. Mol Omics 15, 348-360 (2019). https://doi.org:10.1039/c9mo00082h 107 Kim, M. S. & Pandey, A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics 12, 530-542 (2012). https://doi.org:10.1002/pmic.201100517 108 Smith, B. J., Martins-de-Souza, D. & Fioramonte, M. A Guide to Mass Spectrometry-Based Quantitative Proteomics. Methods Mol Biol 1916, 3-39 (2019). https://doi.org:10.1007/978-1-4939-8994-2_1 109 Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895-1904 (2003). https://doi.org:10.1021/ac0262560 110 Kreuzer, J., Edwards, A. & Haas, W. Multiplexed quantitative phosphoproteomics of cell line and tissue samples. Methods Enzymol 626, 41-65 (2019). https://doi.org:10.1016/bs.mie.2019.07.027 111 Locard-Paulet, M., Bouyssié, D., Froment, C., Burlet-Schiltz, O. & Jensen, L. J. Comparing 22 Popular Phosphoproteomics Pipelines for Peptide Identification and Site Localization. J Proteome Res 19, 1338-1345 (2020). https://doi.org:10.1021/acs.jproteome.9b00679 112 Wu, X., Liu, Y. K., Iliuk, A. B. & Tao, W. A. Mass spectrometry-based phosphoproteomics in clinical applications. Trends Analyt Chem 163 (2023). https://doi.org:10.1016/j.trac.2023.117066 113 Elliott, J. M., Rouge, L., Wiesmann, C. & Scheer, J. M. Crystal structure of procaspase-1 zymogen domain reveals insight into inflammatory caspase autoactivation. J Biol Chem 284, 6546-6553 (2009). https://doi.org:10.1074/jbc.M806121200 114 Shen, C. et al. Phase separation drives RNA virus-induced activation of the NLRP6 inflammasome. Cell 184, 5759-5774.e5720 (2021). https://doi.org:10.1016/j.cell.2021.09.032 115 Zou, G. et al. Signal-induced NLRP3 phase separation initiates inflammasome activation. Cell Res 35, 437-452 (2025). https://doi.org:10.1038/s41422-025-01096-6 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99393 | - |
| dc.description.abstract | 含NOD結構域、亮氨酸重複序列(LRR)與pyrin結構域(PYD)的蛋白質3(NLRP3)發炎體是先天免疫系統中的關鍵成分,負責調控與細胞焦亡(pyroptosis)相關的發炎性細胞激素釋放。NLRP3可感受來自病原相關分子模式(PAMPs)與損傷相關分子模式(DAMPs)等多種刺激後,組裝形成具mega-Dalton量級的大型複合體,進而招募並活化前體pro-caspase-1,促進介白素的成熟與分泌。儘管目前已廣泛研究NLRP3活化所造成的生理與免疫反應,但其初始活化所需的分子機制與關鍵調控因子,仍未被充分釐清。
為鑑別驅動NLRP3活化的關鍵因子,我們應用了高解析度native質譜(native mass spectrometry, nMS)技術,此技術能在溶液中直接監測多重蛋白質間與蛋白-配體間的交互作用。藉由比對活化前後NLRP3交互作用體(interactome)之變化,我們進一步探索其活化的潛在調控機制。首先,我們建立螢光標記NLRP3細胞影像平台,並證實異源表現的NLRP3在受到多種刺激後,仍具備形成puncta的能力,為其活化的表徵之一。其次,我們成功取得重組NLRP3的native質譜圖譜,並觀察到其在靜止狀態下會形成高階寡聚結構。第三,當NLRP3蛋白來自於經預先刺激的細胞時,僅觀察到單體與二聚體形式,顯示NLRP3活化伴隨高階寡聚體的解聚。綜合以上結果,我們推論NLRP3可能透過高階寡聚體的形成抑制其自體活化,而複合體的解離則為其活化的關鍵步驟。此外,我們也觀察到NLRP3的磷酸化狀態可能調控其聚集與活化能力。未來研究將著重於探討NLRP3的磷酸化與其寡聚體組成變化之間的關係,期望進一步揭示其活化的分子機制。 | zh_TW |
| dc.description.abstract | The NOD-, leucine-rich repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a critical component of the innate immune system, mediating pyroptosis-associated cytokine release. In response to a diverse array of stimuli, including pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), NLRP3 assembles into a mega-Dalton complex that recruits and activates pro-caspase-1, subsequently driving the maturation and secretion of interleukins. While the biological and physiological outcomes of NLRP3 activation have been extensively studied, the primary molecular mechanisms or key modulators directly triggering its activation remain elusively unclear.
To identify the key factors initiating NLRP3 activation, we employed high-resolution native mass spectrometry (nMS), a technique capable of directly monitoring multiplex protein-protein and protein-ligand interactions in solution. The idea is to probe the changes in NLRP3 interactome associated with its activation for further investigation. In summary, we first demonstrated that exogenously expressed NLRP3 retains its ability to form puncta—a hallmark of NLRP3 activation—in response to various stimuli. Secondly, we successfully acquired the native mass spectrum of recombinant NLRP3 and revealed its high order oligomerization at the rest state. Thirdly, only monomeric and dimeric NLRP3 was observed when proteins were purified from the cells pre-treated with the activation stimuli. Collectively, our results speculate that NLRP3 suppresses its auto-activation via formation of oligomeric complexes and disassembly of these complexes is essential for activation. Additionally, we observed that NLRP3 phosphorylation may regulate its assembly and activation. My future studies will focus on elucidating the relation between the stoichiometric modulation of NLRP3 and its phosphorylation, with the ultimate goal of advancing our understanding of the molecular mechanisms governing NLRP3 activation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:09:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:09:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
中文摘要 ii ABSTRACT iii CONTENTS v FIGURES x TABLES xiv ABBREVIATIONS xv Chapter 1 INTRODUCTION 1 1.1 Biological Function of Inflammasome 1 1.1.1 The Role of Inflammasome in Innate Immune System 1 1.1.2 The Role of NLRP3 Inflammasome in Diseases 4 1.2 Activation Mechanism of NLRP3 Inflammasome 6 1.2.1 Stage 1 : Priming and Licensing 6 1.2.2 Stage 2 : NLRP3 Activation in Response to DAMPs and PAMPs 7 1.2.3 The Assembly of NLRP3 Inflammasome and Its Downstream Signals 12 1.2.4 The Function of ATPase Activity of NLRP3 16 1.3 Structure and Function Investigation of NLRP3 18 1.3.1 NLRP3 Monomer and NLRP3 Auto-inhibitory Cage 18 1.3.2 The Active Structure of NLRP3 Inflammasome Disc 24 1.3.3 Structure Basis of NLRP3 Induce ASC Filament Formation 28 1.4 Role of Phosphorylation in NLRP3 Inflammasome Activation 30 1.4.1 NLRP3 Inflammasome Regulation by Phosphorylation 30 1.5 Mass Spectrometry Analysis for Studying NLRP3 32 1.5.1 Analytical Principles of Native Mass Spectrometry 32 1.5.2 Sample Preparation for Native Mass Spectrometry 35 1.5.3 Q Exactive UHMR Hybrid Quadrupole-Orbitrap Mass Spectrometer 36 1.5.4 Analytical Principles of Phosphoproteomics 39 Chapter 2 Research Aim 42 Chapter 3 MATERIAL AND METHOD 43 3.1 Protein Expression 47 3.1.1 Construct Design 47 3.1.2 Bacmid Preparation and Baculovirus generation 48 3.1.3 Transient Expression by Baculovirus Infection 51 3.1.4 Transient Expression by PEI transfection 52 3.1.5 Transient Expression by Expi293TM Expression System Kit 53 3.1.6 Immunoblotting 55 3.2 Protein Production 57 3.2.1 Purification of MBP-NLRP3 Without Stimulation 57 3.2.2 Purification of MBP-NLRP3 with Gramicidin Treatment 58 3.2.3 Purification of hNLRP3-mVenus by FLAG and Strep Tags 59 3.2.4 Caspae-1 p35 C285A Purification 60 3.3 Confocal Images of NLRP3 Puncta Formation 62 3.3.1 Protein Expression and Inflammasome Stimulation 62 3.3.2 Immunostaining and Fluorescence Microscopy 63 3.3.3 Quantification of Cells with NLRP3 Puncta 63 3.3.4 Fluorescence Recovery After Photobleaching (FRAP) Assay 64 3.4 Native Mass Spectrometry (nMS) Analysis 65 3.5 Phosphorylation profiling of NLRP3 66 3.5.1 Phosphoproteomics Sample Preparation 66 3.5.2 TiO2 Enrichment 68 3.5.3 LC-MS/MS and Data Analysis 69 3.5.4 Label-Free Quantification of Phosphopeptide Abundance 70 3.5.5 Point Mutation of Phosphorylation Sites 71 Chapter 4 RESULT 73 4.1 Optimization of NLRP3 Expression and Purification 73 4.1.1 Strategy of Protein Engineering of NLRP3 73 4.1.2 Optimization of Engineered NLRP3 Expression 76 4.2 Investigation of NLRP3 Puncta Formation and the Impact of Protein Engineering 89 4.3 Live-cell Imaging Reveals Distinct Morphologies of NLRP3 Puncta and Phase Separation Behavior 96 4.4 Subcellular Fractionation and Soluble NLRP3 Purification for Structural Characterization 102 4.4.1 Separate Cellular Components by Differential Centrifugation 102 4.4.2 Purification of Engineered NLRP3 106 4.5 Investigation of NLRP3 Stoichiometry by nMS 112 4.5.1 Native Mass Spectrometry Analysis of Engineered NLRP3 Constructs 112 4.5.2 Changes of Stoichiometry Relate to NLRP3 Activation 116 4.5.3 Discovery of NLRP3 Disassembly Mediated by ATP 119 4.6 Phosphorylation Landscape Analysis of NLRP3 Inflammasome 123 4.6.1 Identification of New Phosphorylation Sites of NLRP3 123 4.6.2 Studying the Changes of Phosphorylation after NLRP3 Activation 126 4.6.3 Effects of Phosphorylation Site Mutations on NLRP3 Activity 130 4.7 Establishment of NLRP3 In-vitro Activity Assay 133 4.7.1 PYD-Caspase-1 Expression Condition Optimization 136 4.7.2 In-vitro Assay for NLRP3 Activation 140 4.7.3 Signal Amplification by Caspase-1 p35 C285A 144 Chapter 5 DISCUSSION 153 5.1 Summary of Major Findings 153 5.2 NLRP3 Puncta Formation and Evidence for LLPS-like Behavior 156 5.3 Native Mass Spectrometry Reveals a Phosphorylation-Linked Mechanism of ATP-Induced NLRP3 Complex Dissociation 159 REFERENCE 161 SUPPLEMENTORY TABLES 171 | - |
| dc.language.iso | en | - |
| dc.subject | native質譜 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 寡聚化 | zh_TW |
| dc.subject | 發炎體 | zh_TW |
| dc.subject | NLRP3 | zh_TW |
| dc.subject | NLRP3 | en |
| dc.subject | inflammasome | en |
| dc.subject | oligomerization | en |
| dc.subject | phosphorylation | en |
| dc.subject | native mass spectrometry | en |
| dc.title | 質譜分析揭示NLRP3發炎體早期活化過程中的化學計量調控與磷酸化的關聯性 | zh_TW |
| dc.title | Mass spectrometry reveals the stoichiometric regulation and phosphorylation associated with early stage activation of NLRP3 inflammasome | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳瑞華;邱繼輝;曾文逸 | zh_TW |
| dc.contributor.oralexamcommittee | Ruey-Hwa Chen;Kay-Hooi Khoo;Wen-Yi Tseng | en |
| dc.subject.keyword | NLRP3,發炎體,寡聚化,磷酸化,native質譜, | zh_TW |
| dc.subject.keyword | NLRP3,inflammasome,oligomerization,phosphorylation,native mass spectrometry, | en |
| dc.relation.page | 178 | - |
| dc.identifier.doi | 10.6342/NTU202502903 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-02 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科學研究所 | - |
| dc.date.embargo-lift | 2030-07-29 | - |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-07-29 | 12.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
