請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 韓玉山 | zh_TW |
| dc.contributor.advisor | Yu-San Han | en |
| dc.contributor.author | 張書民 | zh_TW |
| dc.contributor.author | Shu-Min Chang | en |
| dc.date.accessioned | 2025-09-10T16:08:06Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Andrade, T. P., Cruz-Flores, R., Mai, H. N., & Dhar, A. K. (2022). Novel infectious myonecrosis virus (IMNV) variant is associated with recent disease outbreaks in Penaeus vannamei shrimp in Brazil. Aquaculture, 554, 738159.
Burge, E. J., Madigan, D. J., Burnett, L. E., & Burnett, K. G. (2007). Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio. Fish & shellfish immunology, 22, 327-339. Cha, J. H., Rahimnejad, S., Yang, S. Y., Kim, K. W., & Lee, K. J. (2013). Evaluations of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture, 402, 50-57. Chan, C. H., Chen, L. H., Chen, K. Y., Chen, I. H., Lee, K. T. et al. (2024). Single-strain probiotics enhance growth, anti-pathogen immunity, and resistance to Nocardia seriolae in grey mullet (Mugil cephalus) via gut microbiota modulation. Animal Microbiome, 6, 67. Chen, Y., Mitra, A., Rahimnejad, S., Chi, S., Kumar, V. et al. (2024). Retrospect of fish meal substitution in Pacific white shrimp (Litopenaeus vannamei) feed: Alternatives, limitations and future prospects. Reviews in Aquaculture, 16, 382-409. Chen, Y. Y., Chen, J. C., Lin, Y. C., Putra, D. F., Kitikiew, S., Li et al. (2014). Shrimp that have received carrageenan via immersion and diet exhibit immunocompetence in phagocytosis despite a post-plateau in immune parameters. Fish & Shellfish Immunology, 36, 352-366. Cheng, W., Chiu, C. S., Guu, Y. K., Tsai, S. T., & Liu, C. H. (2013). Expression of recombinant phytase of B. acillus subtilis E 20 in E. scherichia coli HMS 174 and improving the growth performance of white shrimp, Litopenaeus vannamei, juveniles by using phytase‐pretreated soybean meal‐containing diet. Aquaculture Nutrition, 19, 117-127. Chien, C. C., Lin, T. Y., Chi, C. C., & Liu, C. H. (2020). Probiotic, Bacillus subtilis E20 alters the immunity of white shrimp, Litopenaeus vannamei via glutamine metabolism and hexosamine biosynthetic pathway. Fish & Shellfish Immunology, 98, 176-185. Farfante, I. P., & Kensley, B. F. (1997). Penaeoid and sergestoid shrimps and prawns of the world: keys and diagnoses for the families and genera (Vol. 175, pp. 1-233). Paris: Editions du Muséum. Food and Agriculture Organization of the United Nations & World Health Organization. (2006). Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria: Report of a Joint FAO/WHO Expert Consultation, 1–4 October 2001, Córdoba, Argentina (FAO Food and Nutrition Paper No. 85). FAO. Geirnaert, A., Calatayud, M., Grootaert, C., Laukens, D., Devriese, S. et al. (2017). Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Scientific reports, 7, 11450. Gobi, N., Vaseeharan, B., Chen, J. C., Rekha, R., Vijayakumar, S., Anjugam, M., & Iswarya, A. (2018). Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish & shellfish immunology, 74, 501-508. Hong, H. A., Duc, L. H., & Cutting, S. M. (2005). The use of bacterial spore formers as probiotics. FEMS microbiology reviews, 29, 813-835. Horn, M. (2008). Chlamydiae as symbionts in eukaryotes. Annual Review Microbiology, 62, 113-131. Huang, H. H., Li, C. Y., Lei, Y. J., Zhou, B. L., Kuang, W. Q. et al. (2023). Effects of Bacillus strain added as initial indigenous species into the biofloc system rearing Litopenaeus vannamei juveniles on biofloc preformation, water quality and shrimp growth. Aquaculture, 569, 739375. Islam, S. M., Rohani, M. F., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquaculture Reports, 21, 100800. Ivars-Martínez, E., D'Auria, G., Rodríguez-Valera, F., Sánchez-Porro, C., Ventosa, A. et al. (2008). Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Molecular Ecology, 17, 4092–4106. Jayasree, S. (2009). Identification of immune cells interacting with Vibrio spp. and its in vitro post-phagocytic killing mechanism of haemocytes in the penaeid shrimp, Penaeus indicus H. Milne Edwards. Journal of fish diseases, 32 4, 359-65 . Ji, P. F., Yao, C. L., & Wang, Z. Y. (2009). Immune response and gene expression in shrimp (Litopenaeus vannamei) hemocytes and hepatopancreas against some pathogen-associated molecular patterns. Fish & Shellfish Immunology, 27, 563-570. Jiang, H., & Kanost, M. R. (2000). The clip-domain family of serine proteinases in arthropods. Insect biochemistry and molecular biology, 30, 95-105. Jiménez-Vega, F., Vargas-Albores, F., & Söderhäll, K. (2005). Characterisation of a serine proteinase from Penaeus vannamei haemocytes. Fish & shellfish immunology, 18, 101-108. Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P. et al. (2006). Introduction to the Proteobacteria. In E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, & F. Thompson (Eds.), The Prokaryotes: A Handbook on the Biology of Bacteria (3rd ed., Vol. 2, pp. 3-37). Springer. Kewcharoen, W., & Srisapoome, P. (2019). Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish & shellfish immunology, 94, 175-189. Kuo, L. C., & Lee, K. T. (2008). Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. Journal of Agricultural and Food Chemistry, 56, 119-125. Lalloo, R., Moonsamy, G., Ramchuran, S., Görgens, J., & Gardiner, N. (2010). Competitive exclusion as a mode of action of a novel Bacillus cereus aquaculture biological agent. Letters in Applied Microbiology, 50, 563-570. Lara-Anguiano, G. F., Esparza-Leal, H. M., Sainz‐Hernández, J. C., Palafox, J. T. P., Valenzuela-Quiñónez, W. et al. (2013). Effects of inorganic and organic fertilization on physicochemical parameters, bacterial concentrations, and shrimp growth in Litopenaeus vannamei cultures with zero water exchange. Journal of the World Aquaculture Society, 44, 499-510. Lee, S., Katya, K., Park, Y., Won, S., Seong, M., & Bai, S. C. (2017). Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish & shellfish immunology, 61, 201-210. Li, J., Wu, Z. B., Zhang, Z., Zha, J. W., Qu, S. Y.et al. (2019). Effects of potential probiotic Bacillus velezensis K2 on growth, immunity and resistance to Vibrio harveyi infection of hybrid grouper (Epinephelus lanceolatus♂× E. fuscoguttatus♀). Fish & Shellfish Immunology, 93, 1047-1055. Lin, Y. T., Hung, Y. C., Chen, L. H., Lee, K. T., & Han, Y. S. (2024). Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels. Fish & Shellfish Immunology, 149, 109556. Liu, C. H., Chiu, C. S., Ho, P. L., & Wang, S. W. (2009). Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease‐producing probiotic, Bacillus subtilis E20, from natto. Journal of applied microbiology, 107, 1031-1041. Liu, H., Wang, S., Cai, Y., Guo, X., Cao, Z. et al. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish & shellfish immunology, 60, 326-333. Liu, Y., Hou, F., Wang, X., & Liu, X. (2015). Recombinant expression and characterization of a serine protease inhibitor (Lvserpin7) from the Pacific white shrimp, Litopenaeus vannamei. Fish & shellfish immunology, 42, 256-263. Martínez Cruz, P., Ibáñez, A. L., Monroy Hermosillo, O. A., & Ramírez Saad, H. C. (2012). Use of probiotics in aquaculture. International scholarly research notices, 2012, 916845. Martinez-Guryn, K., Hubert, N., Frazier, K., Urlass, S., Musch, M. W. et al. (2018). Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids. Cell host & microbe, 23, 458-469. Moriarty, D. J. (1999). Disease control in shrimp aquaculture with probiotic bacteria. In Proceedings of the 8th international symposium on microbial ecology (pp. 237-243). Atlantic Canada Society for Microbial Ecology, Halifax, Canada. Munkongwongsiri, N., Prachumwat, A., Eamsaard, W., Lertsiri, K., Flegel, T. et al. (2022). Propionigenium and Vibrio species identified as possible component causes of shrimp white feces syndrome (WFS) associated with the microsporidian Enterocytozoon hepatopenaei. Journal of invertebrate pathology, 192, 107784 Nakano, M. M., Dailly, Y. P., Zuber, P., & Clark, D. P. (1997). Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. Journal of bacteriology, 179, 6749-6755. Naylor, R. L., Hardy, R. W., Bureau, D. P., Chiu, A., Elliott, M., et al. (2009). Feeding aquaculture in an era of finite resources. Proceedings of the National Academy of Sciences, 106, 15103-15110. Nealson, K. H., & Scott, J. (2006). Ecophysiology of the genus Shewanella. In The prokaryotes (pp. 1133-1151). Springer. Pan, C. Y., Wang, Y. D., & Chen, J. Y. (2013). Immunomodulatory effects of dietary Bacillus coagulans in grouper (Epinephelus coioides) and zebrafish (Danio rerio) infected with Vibrio vulnificus. Aquaculture international, 21, 1155-1168. Park, S., Jung, Y. T., Won, S. M., Park, J. M., & Yoon, J. H. (2014). Thalassobius aquaeponti sp. nov., an alphaproteobacterium isolated from seawater. Antonie van Leeuwenhoek, 106, 535-542. Patil, P. K., Geetha, R., Ravisankar, T., Avunje, S., Solanki, H. G. et al. (2021). Economic loss due to diseases in Indian shrimp farming with special reference to Enterocytozoon hepatopenaei (EHP) and white spot syndrome virus (WSSV). Aquaculture, 533, 736231. Peñalosa‐Martinell, D., Araneda‐Padilla, M., Dumas, S., Martinez‐Díaz, S., & Vela‐Magaña, M. (2021). The use of probiotics in larval whiteleg shrimp (Litopenaeus vannamei) production: A marginal analysis of bioeconomic feasibility. Aquaculture Research, 52, 943-951. Pujalte, M. J., Lucena, T., Ruvira, M. A., Arahal, D. R., & Macián, M. C. (2014). The family rhodobacteraceae. In The prokaryotes (pp. 439-512). Springer. Qiao, G., Xu, DH, Wang, Z., Jang, IK, Qi, Z., Zhang, M., & Kim, SK (2015). Comparison of immune response of Pacific white shrimp, Litopenaeus vannamei, after multiple and single infections with WSSV and Vibrio anguillarum. Fish & Shellfish Immunology, 44, 257-264. Rocha-Ramírez, L. M., Pérez-Solano, R. A., Castañón-Alonso, S. L., Moreno Guerrero, S. S., Ramírez Pacheco, A. et al. (2017). Probiotic Lactobacillus strains stimulate the inflammatory response and activate human macrophages. Journal of immunology research, 2017, 4607491. Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W. et al. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430-440. Roux, M. M., Pain, A., Klimpel, K. R., & Dhar, A. K. (2002). The lipopolysaccharide and β-1, 3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). Journal of virology, 76, 7140-7149. Sampaio, A., Silva, V., Poeta, P., & Aonofriesei, F. (2022). Vibrio spp.: Life strategies, ecology, and risks in a changing environment. Diversity, 14, 97. Shen, W. Y., Fu, L. L., Li, W. F., & Zhu, Y. R. (2010). Effect of dietary supplementation with Bacillus subtilis on the growth, performance, immune response and antioxidant activities of the shrimp (Litopenaeus vannamei). Aquaculture Research, 41, 1691-1698. Shih, L., Wu, P. J., & Shieh, C. J. (2005). Microbial production of a poly (γ-glutamic acid) derivative by Bacillus subtilis. Process Biochemistry, 40, 2827-2832. Soto-Rodríguez, S. A., Gómez‐Gil, B., Lozano‐Olvera, R., Betancourt‐Lozano, M., & Morales-Covarrubias, M. S. (2015). Field and experimental evidence of vibrio parahaemolyticus as the causative agent of acute hepatopancreatic necrosis disease of cultured shrimp (Litopenaeus vannamei) in northwestern mexico. Applied and Environmental Microbiology, 81, 1689-1699. Thurlow, C. M., Williams, M. A., Carrias, A., Ran, C., Newman, M. et al. (2019). Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture, 503, 347-356. Tinh, N. T. N., Dierckens, K., Sorgeloos, P., & Bossier, P. (2008). A review of the functionality of probiotics in the larviculture food chain. Marine Biotechnology, 10, 1-12. Tsai, C. Y., Chi, C. C., & Liu, C. H. (2019). The growth and apparent digestibility of white shrimp, Litopenaeus vannamei, are increased with the probiotic, Bacillus subtilis. Aquaculture Research, 50, 1475-1481. Tuan, V., Dantas-Lima, J., Thuong, K., Li, W., Grauwet, K., Bossier, P., & Nauwynck, H. (2016). Differences in uptake and killing of pathogenic and non-pathogenic bacteria by haemocyte subpopulations of penaeid shrimp, Litopenaeus vannamei, (Boone). Journal of fish diseases, 39, 163-174 . Udayan, S., Buttó, L. F., Rossini, V., Velmurugan, J., Martinez-Lopez, M. et al. (2021). Macrophage cytokine responses to commensal Gram-positive Lactobacillus salivarius strains are TLR2-independent and Myd88-dependent. Scientific Reports, 11, 5896. Vargas-Albores, F., Yepiz-Plascencia, G., Jiménez-Vega, F., & Ávila-Villa, A. (2004). Structural and functional differences of Litopenaeus vannamei crustins. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 138, 415-422. Villarreal, H. (2023). Shrimp farming advances, challenges, and opportunities. Journal of the World Aquaculture Society, 54, 1092-1095. Wang, L., Zhang, J., Guo, Z., Kwok, L., Ma, C. et al. (2014). Effect of oral consumption of probiotic Lactobacillus planatarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition, 30, 776-783. Wang, R., Lee, S. Y., Cerenius, L., & Söderhäll, K. (2001). Properties of the prophenoloxidase activating enzyme of the freshwater crayfish, Pacifastacus leniusculus. European Journal of Biochemistry, 268, 895-902. Wang, Y. B., Xu, Z. R., & Xia, M. S. (2005). The effectiveness of commercial probiotics in northern white shrimp Penaeus vannamei ponds. Fisheries science, 71, 1036-1041. Wang, Y. C., Chang, P. S., & Chen, H. Y. (2007). Tissue expressions of nine genes important to immune defence of the Pacific white shrimp Litopenaeus vannamei. Fish & shellfish immunology, 23, 1161-1177. Zhang, X., Fu, L., Deng, B., Liang, Q., Zheng, J. et al. (2013). Bacillus subtilis SC02 supplementation causes alterations of the microbial diversity in grass carp water. World Journal of Microbiology and Biotechnology, 29, 1645-1653. Zhou, J., Fang, W., Yang, X., Zhou, S., Hu, L. et al. (2012). A Nonluminescent and Highly Virulent Vibrio harveyi Strain Is Associated with “Bacterial White Tail Disease” of Litopenaeus vannamei Shrimp. PLoS ONE, 7, e29961. Zokaeifar, H., Balcázar, J. L., Saad, C. R., Kamarudin, M. S., Sijam, K., et al. (2012). Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish & shellfish immunology, 33, 683-689. Zuo, Z. H., Shang, B. J., Shao, Y. C., Li, W. Y., & Sun, J. S. (2019). Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish & shellfish immunology, 86, 160-168. 丁雲源,2005。白蝦養殖發展史。水試所特刊,第6期,頁3-4。 農業部漁業署,2024。中華民國台閩地區漁業統計年報 (中華民國112年)。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99388 | - |
| dc.description.abstract | 白蝦 (Litopenaeus vannamei) 是目前全球產量最大的甲殼類養殖物種,面對高飼料成本、自然資源枯竭與疾病爆發等多重挑戰。因此,學界與業界聚焦於改善飼料效率與降低環境風險,其中益生菌的應用為最具潛力的解決方案之一。枯草芽孢桿菌 (Bacillus subtilis) 具備抗逆境能力強、消化酶活性及抑菌能力等優勢,且新菌株功能性研究仍持續進行。先前研究證實 B. subtilis natto NTU‑18 菌株可有效提升烏魚 (Mugil cephalus) 及日本鰻 (Anguilla japonica) 的生長與免疫表現。為探討該菌株於白蝦養殖之潛力,本研究設置空白對照組與添加濃度分別為 0.1%、0.5% 及 2% 的三個處理組,每組各三重複,進行為期 35 天的養殖實驗,透過成長表現、血球免疫基因表現及腸道菌相分析,評估其應用效果。結果顯示,0.5% 組在 FBW、WGR 及 FCR 上均有顯著提升 (p < 0.05)。血球免疫基因表現方面,0.5% 及 2% 組的 Lysozyme 與 LGBP 表現量低於對照組,顯示當添加濃度達一定水平,可減緩病原侵擾;此外,serine proteinase (proPO的前驅物) 在所有添加組中顯著高於對照組 (p < 0.05),而 proPO 水準則維持一致,顯示免疫系統提升準備並維持良好調節能力。腸道菌相上,各添加組的 α‑diversity 均呈上升趨勢,且 2% 組 Shewanella 屬豐度顯著增加。綜合上述結果,適量添加 B. subtilis natto NTU‑18 可降低免疫應激、改善腸道菌相,並進而提升白蝦生長表現。 | zh_TW |
| dc.description.abstract | White shrimp (Litopenaeus vannamei) is the most widely farmed crustacean species globally, facing multiple challenges such as high feed costs, depletion of natural resources, and disease outbreaks. So, researchers and the industry are focusing on improving feed efficiency and reducing environmental risks, with the use of probiotics being one of the most promising solutions. Bacillus subtilis is resistant to tough conditions, helps with digestive enzyme activity, and has antibacterial properties, with research into the functions of new strains still going on. Previous research has confirmed that the B. subtilis natto NTU-18 strain can effectively improve the growth and immune performance of Mugil cephalus and Anguilla japonica. To explore the potential of this strain in white shrimp farming, this study set up a blank control group and three treatment groups with concentration levels of 0.1%, 0.5%, and 2%, each with three replicates, and conducted a 35-day farming experiment to evaluate its application effects through growth performance, hemolymphocyte immune gene expression, and intestinal microbiota analysis. The results showed that the 0.5% group had significantly higher FBW, WGR, and FCR (p < 0.05). In terms of hemolymphocyte immune gene expression, the expression levels of lysozyme and LGBP in the 0.5% and 2% groups were lower than those in the control group, indicating that when a certain concentration level is added, the invasion of pathogens can be reduced. Additionally, serine proteinase (the precursor of proPO) was significantly higher in all probiotic-added groups compared to the control group (p < 0.05), while proPO levels remained consistent, indicating that the immune system is enhanced and maintains good regulating capacity. In terms of gut microbiota, α-diversity increased in all probiotic-added groups, and the abundance of the genus Shewanella significantly increased in the 2% group. In summary, appropriate addition of B. subtilis natto NTU-18 reduces immune stress, improves gut microbiota, and further enhances the growth performance of white shrimp. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:08:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:08:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 I
中文摘要 II Abstract III 目次 V 表次 VII 圖次 VIII 第一章、前言 1 1.1南美白對蝦 (Litopenaeus vannamei) 1 1.1.1 分類學 1 1.1.2 生活習性 1 1.1.3養殖現況 1 1.2 白蝦的免疫 2 1.2.1 細胞型免疫 (cellular immune response) 2 1.2.1.1 脫顆粒作用 (degranulation) 2 1.2.1.2 吞噬作用 (phagocytosis) 3 1.2.1.3 胞封作用 (encapsulation) 3 1.2.1.4 細胞凋亡 (apoptosis) 3 1.2.2 體液型免疫 (humoral immune response) 4 1.2.2.1 原酚氧化酵素系統 (prophenoloxidase system, proPO system) 4 1.3 白蝦養殖面臨的挑戰 5 1.4 水產益生菌 6 1.4.1 芽孢桿菌屬 7 1.4.2 枯草芽孢桿菌 7 1.5 枯草桿菌在水產養殖的應用 8 1.5.1 枯草桿菌對水環境改善 8 1.5.2枯草桿菌用於飼料添加 8 第二章、材料方法 10 2.1 益生菌飼料製作及檢測 10 2.1.1 益生菌飼料製作方法 10 2.1.2 益生菌飼料活菌數檢測 10 2.2 養殖實驗 11 2.2.1 白蝦苗蓄養階段 11 2.2.2 實驗設置 11 2.2.3 蝦生長指標計算 11 2.3 免疫基因表現量測定 12 2.3.1 血球樣本採集及total RNA萃取 12 2.3.2 血球RNA反轉錄體製做 12 2.3.3 免疫基因表現量測定 (qPCR) 13 2.4 蝦腸道菌相分析 13 2.4.1 腸道gDNA萃取及定序 13 2.4.2 基因序列資料處理 14 2.5 統計分析 14 第三章、實驗結果 15 3.1 飼料活菌數檢測 15 3.2 生長表現 15 3.3 免疫相關基因表達 16 3.4 腸道菌相樣本稀釋曲線 (rarefaction curve) 17 3.5 門 (phylum) 層級的腸道菌群相對豐度 17 3.6 屬 (genus) 層級的腸道菌群相對豐度 18 3.7 Alpha多樣性 (α-diversity) 18 3.8 Beta多樣性 (β-diversity) 18 3.9 LEfSe線性判別分析 (Linear discriminant analysis Effeect Size) 19 第四章、討論 20 4.1 B. subtilis natto NTU-18對於白蝦的生長表現 20 4.2 B. subtilis natto NTU-18對於白蝦的血球免疫基因表現的影響 21 4.3 B. subtilis natto NTU-18應用於白蝦飼料的所影響的關鍵菌種 22 結論 23 參考文獻 24 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 白蝦 | zh_TW |
| dc.subject | 益生菌 | zh_TW |
| dc.subject | 枯草桿菌 | zh_TW |
| dc.subject | 生長表現 | zh_TW |
| dc.subject | 免疫基因 | zh_TW |
| dc.subject | 腸道菌相 | zh_TW |
| dc.subject | Bacillus subtilis natto NTU-18 | zh_TW |
| dc.subject | probiotics | en |
| dc.subject | Bacillus subtilis natto NTU-18 | en |
| dc.subject | intestinal microbiota | en |
| dc.subject | immune genes | en |
| dc.subject | growth performance | en |
| dc.subject | Bacillus subtilis | en |
| dc.subject | white shrimp | en |
| dc.title | 納豆枯草桿菌NTU-18對於南美白對蝦生長、腸道菌相與免疫相關基因表達的影響 | zh_TW |
| dc.title | Effect of Bacillus subtilis natto NTU-18 on growth, intestinal microbiome and immune gene expression of Litopenaeus vannamei. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李昆達;陳立涵;黃美瑩 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Ta Lee;Li-Han Chen;Mei-Ying Huang | en |
| dc.subject.keyword | 白蝦,益生菌,枯草桿菌,生長表現,免疫基因,腸道菌相,Bacillus subtilis natto NTU-18, | zh_TW |
| dc.subject.keyword | white shrimp,probiotics,Bacillus subtilis,growth performance,immune genes,intestinal microbiota,Bacillus subtilis natto NTU-18, | en |
| dc.relation.page | 40 | - |
| dc.identifier.doi | 10.6342/NTU202503200 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 漁業科學研究所 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
