Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99387Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 閔明源 | zh_TW |
| dc.contributor.advisor | Ming-Yuan Min | en |
| dc.contributor.author | 洪瑋辰 | zh_TW |
| dc.contributor.author | Wei-Chen Hung | en |
| dc.date.accessioned | 2025-09-10T16:07:55Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Agashkov, K., Krotov, V., Krasniakova, M., Shevchuk, D., Andrianov, Y., Zabenko, Y., Safronov, B. V., Voitenko, N., & Belan, P. (2019). Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep, 9(1), 19231. https://doi.org/10.1038/s41598-019-55462-7
Aghajanian, G. K., Kogan, J. H., & Moghaddam, B. (1994). Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res, 636(1), 126–130. https://doi.org/10.1016/0006-8993(94)90186-4 Akaoka, H., & Aston-Jones, G. (1991). Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J Neurosci, 11(12), 3830–3839. https://doi.org/10.1523/JNEUROSCI.11-12-03830.1991 Akopian, A. N., Sivilotti, L., & Wood, J. N. (1996). A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature, 379(6562), 257–262. https://doi.org/10.1038/379257a0 Alba-Delgado, C., Llorca-Torralba, M., Horrillo, I., Ortega, J. E., Mico, J. A., Sanchez-Blazquez, P., Meana, J. J., & Berrocoso, E. (2013). Chronic pain leads to concomitant noradrenergic impairment and mood disorders. Biol Psychiatry, 73(1), 54–62. https://doi.org/10.1016/j.biopsych.2012.06.033 Alba-Delgado, C., Mico, J. A., & Berrocoso, E. (2021). Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry, 105, 110121. https://doi.org/10.1016/j.pnpbp.2020.110121 Aliprandi, A., Longoni, M., Stanzani, L., Tremolizzo, L., Vaccaro, M., Begni, B., Galimberti, G., Garofolo, R., & Ferrarese, C. (2005). Increased plasma glutamate in stroke patients might be linked to altered platelet release and uptake. J Cereb Blood Flow Metab, 25(4), 513–519. https://doi.org/10.1038/sj.jcbfm.9600039 Angulo, M. C., Kozlov, A. S., Charpak, S., & Audinat, E. (2004). Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J Neurosci, 24(31), 6920–6927. https://doi.org/10.1523/JNEUROSCI.0473-04.2004 Araque, A., Parpura, V., Sanzgiri, R. P., & Haydon, P. G. (1998). Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci, 10(6), 2129–2142. https://doi.org/10.1046/j.1460-9568.1998.00221.x Aston-Jones, G., & Bloom, F. E. (1981). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci, 1(8), 876–886. https://doi.org/10.1523/JNEUROSCI.01-08-00876.1981 Aston-Jones, G., & Cohen, J. D. (2005a). Adaptive gain and the role of the locus coeruleus-norepinephrine system in optimal performance. J Comp Neurol, 493(1), 99–110. https://doi.org/10.1002/cne.20723 Aston-Jones, G., & Cohen, J. D. (2005b). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci, 28, 403–450. https://doi.org/10.1146/annurev.neuro.28.061604.135709 Aston-Jones, G., Rajkowski, J., & Cohen, J. (1999). Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry, 46(9), 1309–1320. https://doi.org/10.1016/s0006-3223(99)00140-7 Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci, 14(7), 4467–4480. https://doi.org/10.1523/JNEUROSCI.14-07-04467.1994 Aston-Jones, G., Shipley, M. T., Chouvet, G., Ennis, M., van Bockstaele, E., Pieribone, V., Shiekhattar, R., Akaoka, H., Drolet, G., Astier, B., & et al. (1991). Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog Brain Res, 88, 47–75. https://doi.org/10.1016/s0079-6123(08)63799-1 Aston-Jones, G., Zhu, Y., & Card, J. P. (2004). Numerous GABAergic afferents to locus ceruleus in the pericerulear dendritic zone: possible interneuronal pool. J Neurosci, 24(9), 2313–2321. https://doi.org/10.1523/JNEUROSCI.5339-03.2004 Ataoglu, E., Tiftik, T., Kara, M., Tunc, H., Ersoz, M., & Akkus, S. (2013). Effects of chronic pain on quality of life and depression in patients with spinal cord injury. Spinal Cord, 51(1), 23–26. https://doi.org/10.1038/sc.2012.51 Baldwin, K. T., Murai, K. K., & Khakh, B. S. (2024). Astrocyte morphology. Trends Cell Biol, 34(7), 547–565. https://doi.org/10.1016/j.tcb.2023.09.006 Baraibar, A. M., Belisle, L., Marsicano, G., Matute, C., Mato, S., Araque, A., & Kofuji, P. (2023). Spatial organization of neuron-astrocyte interactions in the somatosensory cortex. Cereb Cortex, 33(8), 4498–4511. https://doi.org/10.1093/cercor/bhac357 Bardoni, R., Ghirri, A., Zonta, M., Betelli, C., Vitale, G., Ruggieri, V., Sandrini, M., & Carmignoto, G. (2010). Glutamate-mediated astrocyte-to-neuron signalling in the rat dorsal horn. J Physiol, 588(Pt 5), 831–846. https://doi.org/10.1113/jphysiol.2009.180570 Bari, B. A., Chokshi, V., & Schmidt, K. (2020). Locus coeruleus-norepinephrine: basic functions and insights into Parkinson's disease. Neural Regen Res, 15(6), 1006–1013. https://doi.org/10.4103/1673-5374.270297 Baskozos, G., Hebert, H. L., Pascal, M. M., Themistocleous, A. C., Macfarlane, G. J., Wynick, D., Bennett, D. L., & Smith, B. H. (2023). Epidemiology of neuropathic pain: an analysis of prevalence and associated factors in UK Biobank. Pain Rep, 8(2), e1066. https://doi.org/10.1097/PR9.0000000000001066 Bazargani, N., & Attwell, D. (2016). Astrocyte calcium signaling: the third wave. Nat Neurosci, 19(2), 182–189. https://doi.org/10.1038/nn.4201 Beckley, J. T., Aman, T. K., Ackley, M. A., Kazdoba, T. M., Lewis, M. C., Smith, A. C., Farley, B. J., Dai, J., Deats, W., Hoffmann, E., Robichaud, A. J., Doherty, J. J., & Quirk, M. C. (2024). Pharmacological characterization of SAGE-718, a novel positive allosteric modulator of N-methyl-d-aspartate receptors. Br J Pharmacol, 181(7), 1028–1050. https://doi.org/10.1111/bph.16235 Bennett, G. J. (2012). What is spontaneous pain and who has it? J Pain, 13(10), 921–929. https://doi.org/10.1016/j.jpain.2012.05.008 Bernard, R., Kerman, I. A., Thompson, R. C., Jones, E. G., Bunney, W. E., Barchas, J. D., Schatzberg, A. F., Myers, R. M., Akil, H., & Watson, S. J. (2011). Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry, 16(6), 634–646. https://doi.org/10.1038/mp.2010.44 Beyer, F., Ludje, W., Karpf, J., Saher, G., & Beckervordersandforth, R. (2021). Distribution of Aldh1L1-CreER(T2) Recombination in Astrocytes Versus Neural Stem Cells in the Neurogenic Niches of the Adult Mouse Brain. Front Neurosci, 15, 713077. https://doi.org/10.3389/fnins.2021.713077 Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 361(6407), 31–39. https://doi.org/10.1038/361031a0 Bonin, R. P., Bories, C., & De Koninck, Y. (2014). A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain, 10, 26. https://doi.org/10.1186/1744-8069-10-26 Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci, 20(3), 791–802. https://doi.org/10.1111/j.1460-9568.2004.03526.x Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci, 28(11), 574–582. https://doi.org/10.1016/j.tins.2005.09.002 Bozzo, L., & Chatton, J. Y. (2010). Inhibitory effects of (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA) on the astrocytic sodium responses to glutamate. Brain Res, 1316, 27–34. https://doi.org/10.1016/j.brainres.2009.12.028 Breton-Provencher, V., Drummond, G. T., & Sur, M. (2021). Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits, 15, 638007. https://doi.org/10.3389/fncir.2021.638007 Breton-Provencher, V., & Sur, M. (2019). Active control of arousal by a locus coeruleus GABAergic circuit. Nat Neurosci, 22(2), 218–228. https://doi.org/10.1038/s41593-018-0305-z Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., Thompson, W. J., & Barres, B. A. (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci, 28(1), 264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008 Carrasquillo, Y., & Gereau, R. W. t. (2007). Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci, 27(7), 1543–1551. https://doi.org/10.1523/JNEUROSCI.3536-06.2007 Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., & de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci, 13(12), 1526–1533. https://doi.org/10.1038/nn.2682 Chandler, D. J., Jensen, P., McCall, J. G., Pickering, A. E., Schwarz, L. A., & Totah, N. K. (2019). Redefining Noradrenergic Neuromodulation of Behavior: Impacts of a Modular Locus Coeruleus Architecture. J Neurosci, 39(42), 8239–8249. https://doi.org/10.1523/JNEUROSCI.1164-19.2019 Chandley, M. J., Szebeni, K., Szebeni, A., Crawford, J., Stockmeier, C. A., Turecki, G., Miguel-Hidalgo, J. J., & Ordway, G. A. (2013). Gene expression deficits in pontine locus coeruleus astrocytes in men with major depressive disorder. J Psychiatry Neurosci, 38(4), 276–284. https://doi.org/10.1503/jpn.120110 Chen, S. R., Zhou, H. Y., Byun, H. S., & Pan, H. L. (2013). Nerve injury increases GluA2-lacking AMPA receptor prevalence in spinal cords: functional significance and signaling mechanisms. J Pharmacol Exp Ther, 347(3), 765–772. https://doi.org/10.1124/jpet.113.208363 Cheng, S. J., Chen, C. C., Yang, H. W., Chang, Y. T., Bai, S. W., Chen, C. C., Yen, C. T., & Min, M. Y. (2011). Role of extracellular signal-regulated kinase in synaptic transmission and plasticity of a nociceptive input on capsular central amygdaloid neurons in normal and acid-induced muscle pain mice. J Neurosci, 31(6), 2258–2270. https://doi.org/10.1523/JNEUROSCI.5564-10.2011 Chipman, P. H., Fung, C. C. A., Pazo Fernandez, A., Sawant, A., Tedoldi, A., Kawai, A., Ghimire Gautam, S., Kurosawa, M., Abe, M., Sakimura, K., Fukai, T., & Goda, Y. (2021). Astrocyte GluN2C NMDA receptors control basal synaptic strengths of hippocampal CA1 pyramidal neurons in the stratum radiatum. Elife, 10. https://doi.org/10.7554/eLife.70818 Chiu, D. N., & Jahr, C. E. (2017). Extracellular Glutamate in the Nucleus Accumbens Is Nanomolar in Both Synaptic and Non-synaptic Compartments. Cell Rep, 18(11), 2576–2583. https://doi.org/10.1016/j.celrep.2017.02.047 Cho, W. H., Noh, K., Lee, B. H., Barcelon, E., Jun, S. B., Park, H. Y., & Lee, S. J. (2022). Hippocampal astrocytes modulate anxiety-like behavior. Nat Commun, 13(1), 6536. https://doi.org/10.1038/s41467-022-34201-z Clavreul, S., Dumas, L., & Loulier, K. (2022). Astrocyte development in the cerebral cortex: Complexity of their origin, genesis, and maturation. Front Neurosci, 16, 916055. https://doi.org/10.3389/fnins.2022.916055 Costigan, M., Scholz, J., & Woolf, C. J. (2009). Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci, 32, 1–32. https://doi.org/10.1146/annurev.neuro.051508.135531 Cruccu, G., & Truini, A. (2017). A review of Neuropathic Pain: From Guidelines to Clinical Practice. Pain Ther, 6(Suppl 1), 35–42. https://doi.org/10.1007/s40122-017-0087-0 Csemer, A., Kovacs, A., Maamrah, B., Pocsai, K., Korpas, K., Klekner, A., Szucs, P., Nanasi, P. P., & Pal, B. (2023). Astrocyte- and NMDA receptor-dependent slow inward currents differently contribute to synaptic plasticity in an age-dependent manner in mouse and human neocortex. Aging Cell, 22(9), e13939. https://doi.org/10.1111/acel.13939 Daou, I., Beaudry, H., Ase, A. R., Wieskopf, J. S., Ribeiro-da-Silva, A., Mogil, J. S., & Seguela, P. (2016). Optogenetic Silencing of Nav1.8-Positive Afferents Alleviates Inflammatory and Neuropathic Pain. eNeuro, 3(1). https://doi.org/10.1523/ENEURO.0140-15.2016 Davalos, A., Castillo, J., Serena, J., & Noya, M. (1997). Duration of glutamate release after acute ischemic stroke. Stroke, 28(4), 708–710. https://doi.org/10.1161/01.str.28.4.708 de Ceglia, R., Ledonne, A., Litvin, D. G., Lind, B. L., Carriero, G., Latagliata, E. C., Bindocci, E., Di Castro, M. A., Savtchouk, I., Vitali, I., Ranjak, A., Congiu, M., Canonica, T., Wisden, W., Harris, K., Mameli, M., Mercuri, N., Telley, L., & Volterra, A. (2023). Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature, 622(7981), 120–129. https://doi.org/10.1038/s41586-023-06502-w Decosterd, I., & Woolf, C. J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain, 87(2), 149–158. https://doi.org/10.1016/S0304-3959(00)00276-1 Deng, M., Chen, S. R., & Pan, H. L. (2019). Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci, 76(10), 1889–1899. https://doi.org/10.1007/s00018-019-03047-y Djouhri, L., Fang, X., Okuse, K., Wood, J. N., Berry, C. M., & Lawson, S. N. (2003). The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol, 550(Pt 3), 739–752. https://doi.org/10.1113/jphysiol.2003.042127 Durkee, C., Kofuji, P., Navarrete, M., & Araque, A. (2021). Astrocyte and neuron cooperation in long-term depression. Trends Neurosci, 44(10), 837–848. https://doi.org/10.1016/j.tins.2021.07.004 Dvorkin, R., & Shea, S. D. (2022). Precise and Pervasive Phasic Bursting in Locus Coeruleus during Maternal Behavior in Mice. J Neurosci, 42(14), 2986–2999. https://doi.org/10.1523/JNEUROSCI.0938-21.2022 Eccles, J. C., Schmidt, R., & Willis, W. D. (1963). Pharmacological Studies on Presynaptic Inhibition. J Physiol, 168(3), 500–530. https://doi.org/10.1113/jphysiol.1963.sp007205 Fellin, T., Pascual, O., Gobbo, S., Pozzan, T., Haydon, P. G., & Carmignoto, G. (2004). Neuronal synchrony mediated by astrocytic glutamate through activation of extrasynaptic NMDA receptors. Neuron, 43(5), 729–743. https://doi.org/DOI 10.1016/j.neuron.2004.08.011 Feng, Y. Z., Zhang, T., Rockhold, R. W., & Ho, I. K. (1995). Increased locus coeruleus glutamate levels are associated with naloxone-precipitated withdrawal from butorphanol in the rat. Neurochem Res, 20(6), 745–751. https://doi.org/10.1007/BF01705544 Fernandes, E. C., Pechincha, C., Luz, L. L., Kokai, E., Szucs, P., & Safronov, B. V. (2020). Primary afferent-driven presynaptic inhibition of C-fiber inputs to spinal lamina I neurons. Prog Neurobiol, 188, 101786. https://doi.org/10.1016/j.pneurobio.2020.101786 Finnerup, N. B., Attal, N., Haroutounian, S., McNicol, E., Baron, R., Dworkin, R. H., Gilron, I., Haanpaa, M., Hansson, P., Jensen, T. S., Kamerman, P. R., Lund, K., Moore, A., Raja, S. N., Rice, A. S., Rowbotham, M., Sena, E., Siddall, P., Smith, B. H., & Wallace, M. (2015). Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol, 14(2), 162–173. https://doi.org/10.1016/S1474-4422(14)70251-0 Gao, R., Schneider, A. M., Mulloy, S. M., & Lee, A. M. (2024). Expression pattern of nicotinic acetylcholine receptor subunit transcripts in neurons and astrocytes in the ventral tegmental area and locus coeruleus. Eur J Neurosci, 59(9), 2225–2239. https://doi.org/10.1111/ejn.16109 Gerard, F., & Hansson, E. (2012). Inflammatory activation enhances NMDA-triggered Ca2+ signalling and IL-1beta secretion in primary cultures of rat astrocytes. Brain Res, 1473, 1–8. https://doi.org/10.1016/j.brainres.2012.07.032 Gerasimov, E., Erofeev, A., Borodinova, A., Bolshakova, A., Balaban, P., Bezprozvanny, I., & Vlasova, O. L. (2021). Optogenetic Activation of Astrocytes-Effects on Neuronal Network Function. Int J Mol Sci, 22(17). https://doi.org/10.3390/ijms22179613 Gong, S., Fayette, N., Heinsbroek, J. A., & Ford, C. P. (2022). Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron, 110(7), 1272. https://doi.org/10.1016/j.neuron.2022.03.005 Grewer, C., Gameiro, A., Zhang, Z., Tao, Z., Braams, S., & Rauen, T. (2008). Glutamate forward and reverse transport: from molecular mechanism to transporter-mediated release after ischemia. IUBMB Life, 60(9), 609–619. https://doi.org/10.1002/iub.98 Gueler, N., Kukley, M., & Dietrich, D. (2007). TBOA-sensitive uptake limits glutamate penetration into brain slices to a few micrometers. Neurosci Lett, 419(3), 269–272. https://doi.org/10.1016/j.neulet.2007.04.035 Guerra-Gomes, S., Sousa, N., Pinto, L., & Oliveira, J. F. (2017). Functional Roles of Astrocyte Calcium Elevations: From Synapses to Behavior. Front Cell Neurosci, 11, 427. https://doi.org/10.3389/fncel.2017.00427 Guo, H., & Huang, L. Y. (2001). Alteration in the voltage dependence of NMDA receptor channels in rat dorsal horn neurones following peripheral inflammation. J Physiol, 537(Pt 1), 115–123. https://doi.org/10.1111/j.1469-7793.2001.0115k.x Guo, Y. C., & Yuan, T. F. (2018). Commentary: Astroglial CB(1) Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory. Front Pharmacol, 9, 988. https://doi.org/10.3389/fphar.2018.00988 Hadi, M. A., McHugh, G. A., & Closs, S. J. (2019). Impact of Chronic Pain on Patients' Quality of Life: A Comparative Mixed-Methods Study. J Patient Exp, 6(2), 133–141. https://doi.org/10.1177/2374373518786013 Hamilton, N. B., & Attwell, D. (2010). Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci, 11(4), 227–238. https://doi.org/10.1038/nrn2803 Harada, K., Kamiya, T., & Tsuboi, T. (2015). Gliotransmitter Release from Astrocytes: Functional, Developmental, and Pathological Implications in the Brain. Front Neurosci, 9, 499. https://doi.org/10.3389/fnins.2015.00499 Haroon, E., Miller, A. H., & Sanacora, G. (2017). Inflammation, Glutamate, and Glia: A Trio of Trouble in Mood Disorders. Neuropsychopharmacology, 42(1), 193–215. https://doi.org/10.1038/npp.2016.199 Hawkins, R. A. (2009). The blood-brain barrier and glutamate. Am J Clin Nutr, 90(3), 867S–874S. https://doi.org/10.3945/ajcn.2009.27462BB Hayashi, Y., Shi, S. H., Esteban, J. A., Piccini, A., Poncer, J. C., & Malinow, R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science, 287(5461), 2262–2267. https://doi.org/10.1126/science.287.5461.2262 Hayashida, K., Obata, H., Nakajima, K., & Eisenach, J. C. (2008). Gabapentin acts within the locus coeruleus to alleviate neuropathic pain. Anesthesiology, 109(6), 1077–1084. https://doi.org/10.1097/ALN.0b013e31818dac9c Henneberger, C., Papouin, T., Oliet, S. H., & Rusakov, D. A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature, 463(7278), 232–236. https://doi.org/10.1038/nature08673 Herman, M. A., & Jahr, C. E. (2007). Extracellular glutamate concentration in hippocampal slice. J Neurosci, 27(36), 9736–9741. https://doi.org/10.1523/JNEUROSCI.3009-07.2007 Hickey, L., Li, Y., Fyson, S. J., Watson, T. C., Perrins, R., Hewinson, J., Teschemacher, A. G., Furue, H., Lumb, B. M., & Pickering, A. E. (2014). Optoactivation of locus ceruleus neurons evokes bidirectional changes in thermal nociception in rats. J Neurosci, 34(12), 4148–4160. https://doi.org/10.1523/JNEUROSCI.4835-13.2014 Hirschberg, S., Li, Y., Randall, A., Kremer, E. J., & Pickering, A. E. (2017). Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. Elife, 6. https://doi.org/10.7554/eLife.29808 Holt, M. G. (2023). Astrocyte heterogeneity and interactions with local neural circuits. Essays Biochem, 67(1), 93–106. https://doi.org/10.1042/EBC20220136 Hsieh, C.-Y. (2017). 什麼是神經痛? , 115. https://epaper.ntuh.gov.tw/health/201706/project_2.html Hu, H., Mo, X., Li, X., Fu, X., & Hou, Y. (2018). BAPTA-AM dramatically improves maturation and development of bovine oocytes from grade-3 cumulus-oocyte complexes. Mol Reprod Dev, 85(1), 38–45. https://doi.org/10.1002/mrd.22936 Hu, H. J., Alter, B. J., Carrasquillo, Y., Qiu, C. S., & Gereau, R. W. t. (2007). Metabotropic glutamate receptor 5 modulates nociceptive plasticity via extracellular signal-regulated kinase-Kv4.2 signaling in spinal cord dorsal horn neurons. J Neurosci, 27(48), 13181–13191. https://doi.org/10.1523/JNEUROSCI.0269-07.2007 Hu, H. J., Carrasquillo, Y., Karim, F., Jung, W. E., Nerbonne, J. M., Schwarz, T. L., & Gereau, R. W. t. (2006). The kv4.2 potassium channel subunit is required for pain plasticity. Neuron, 50(1), 89–100. https://doi.org/10.1016/j.neuron.2006.03.010 Hu, H. J., & Gereau, R. W. t. (2003). ERK integrates PKA and PKC signaling in superficial dorsal horn neurons. II. Modulation of neuronal excitability. J Neurophysiol, 90(3), 1680–1688. https://doi.org/10.1152/jn.00341.2003 Hunker, A. C., Soden, M. E., Krayushkina, D., Heymann, G., Awatramani, R., & Zweifel, L. S. (2020). Conditional Single Vector CRISPR/SaCas9 Viruses for Efficient Mutagenesis in the Adult Mouse Nervous System. Cell Rep, 30(12), 4303–4316 e4306. https://doi.org/10.1016/j.celrep.2020.02.092 IASP. (2020). IASP Announces Revised Definition of Pain. Ikeda, H., Heinke, B., Ruscheweyh, R., & Sandkuhler, J. (2003). Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science, 299(5610), 1237–1240. https://doi.org/10.1126/science.1080659 Ikeda, H., Stark, J., Fischer, H., Wagner, M., Drdla, R., Jager, T., & Sandkuhler, J. (2006). Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science, 312(5780), 1659–1662. https://doi.org/10.1126/science.1127233 Jensen, T. S., & Finnerup, N. B. (2014). Allodynia and hyperalgesia in neuropathic pain: clinical manifestations and mechanisms. Lancet Neurol, 13(9), 924–935. https://doi.org/10.1016/S1474-4422(14)70102-4 Ji, R. R., Baba, H., Brenner, G. J., & Woolf, C. J. (1999). Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat Neurosci, 2(12), 1114–1119. https://doi.org/10.1038/16040 Ji, R. R., Gereau, R. W. t., Malcangio, M., & Strichartz, G. R. (2009). MAP kinase and pain. Brain Res Rev, 60(1), 135–148. https://doi.org/10.1016/j.brainresrev.2008.12.011 Ji, R. R., Kohno, T., Moore, K. A., & Woolf, C. J. (2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci, 26(12), 696–705. https://doi.org/10.1016/j.tins.2003.09.017 Jin, X., Li, S., Bondy, B., Zhong, W., Oginsky, M. F., Wu, Y., Johnson, C. M., Zhang, S., Cui, N., & Jiang, C. (2016). Identification of a Group of GABAergic Neurons in the Dorsomedial Area of the Locus Coeruleus. PLoS One, 11(1), e0146470. https://doi.org/10.1371/journal.pone.0146470 Joo, J., Kim, K. J., Lim, J., Choi, S. Y., Koh, W., & Lee, C. J. (2024). Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain. Exp Neurobiol, 33(4), 180–192. https://doi.org/10.5607/en24019 Katano, T., Furue, H., Okuda-Ashitaka, E., Tagaya, M., Watanabe, M., Yoshimura, M., & Ito, S. (2008). N-ethylmaleimide-sensitive fusion protein (NSF) is involved in central sensitization in the spinal cord through GluR2 subunit composition switch after inflammation. Eur J Neurosci, 27(12), 3161–3170. https://doi.org/10.1111/j.1460-9568.2008.06293.x Kimura, M., Suto, T., Eisenach, J. C., & Hayashida, K. (2015). Down-regulation of astroglial glutamate transporter-1 in the locus coeruleus impairs pain-evoked endogenous analgesia in rats. Neurosci Lett, 608, 18–22. https://doi.org/10.1016/j.neulet.2015.09.036 Kimura, M., Suto, T., Morado-Urbina, C. E., Peters, C. M., Eisenach, J. C., & Hayashida, K. (2015). Impaired Pain-evoked Analgesia after Nerve Injury in Rats Reflects Altered Glutamate Regulation in the Locus Coeruleus. Anesthesiology, 123(4), 899–908. https://doi.org/10.1097/ALN.0000000000000796 Kopach, O., Kao, S. C., Petralia, R. S., Belan, P., Tao, Y. X., & Voitenko, N. (2011). Inflammation alters trafficking of extrasynaptic AMPA receptors in tonically firing lamina II neurons of the rat spinal dorsal horn. Pain, 152(4), 912–923. https://doi.org/10.1016/j.pain.2011.01.016 Kovacs, A., & Pal, B. (2017). Astrocyte-Dependent Slow Inward Currents (SICs) Participate in Neuromodulatory Mechanisms in the Pedunculopontine Nucleus (PPN). Front Cell Neurosci, 11, 16. https://doi.org/10.3389/fncel.2017.00016 Kozlov, A. S., Angulo, M. C., Audinat, E., & Charpak, S. (2006). Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A, 103(26), 10058–10063. https://doi.org/10.1073/pnas.0603741103 Krotov, V., Tokhtamysh, A., Kopach, O., Dromaretsky, A., Sheremet, Y., Belan, P., & Voitenko, N. (2017). Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation. Front Cell Neurosci, 11, 342. https://doi.org/10.3389/fncel.2017.00342 Kuo, C. C., Chan, H., Hung, W. C., Chen, R. F., Yang, H. W., & Min, M. Y. (2023). Carbachol increases locus coeruleus activation by targeting noradrenergic neurons, inhibitory interneurons and inhibitory synaptic transmission. Eur J Neurosci, 57(1), 32–53. https://doi.org/10.1111/ejn.15866 Kuo, C. C., Hsieh, J. C., Tsai, H. C., Kuo, Y. S., Yau, H. J., Chen, C. C., Chen, R. F., Yang, H. W., & Min, M. Y. (2020). Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. J Physiol, 598(18), 4003–4029. https://doi.org/10.1113/JP279557 Lalo, U., Pankratov, Y., Kirchhoff, F., North, R. A., & Verkhratsky, A. (2006). NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci, 26(10), 2673–2683. https://doi.org/10.1523/JNEUROSCI.4689-05.2006 Latremoliere, A., & Woolf, C. J. (2009). Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain, 10(9), 895–926. https://doi.org/10.1016/j.jpain.2009.06.012 Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., & Huganir, R. L. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405(6789), 955–959. https://doi.org/10.1038/35016089 Lefton, K. B., Wu, Y., Dai, Y., Okuda, T., Zhang, Y., Yen, A., Rurak, G. M., Walsh, S., Manno, R., Myagmar, B. E., Dougherty, J. D., Samineni, V. K., Simpson, P. C., & Papouin, T. (2025). Norepinephrine signals through astrocytes to modulate synapses. Science, 388(6748), 776–783. https://doi.org/10.1126/science.adq5480 Li, J., & Baccei, M. L. (2019). Neonatal Injury Alters Sensory Input and Synaptic Plasticity in GABAergic Interneurons of the Adult Mouse Dorsal Horn. J Neurosci, 39(40), 7815–7825. https://doi.org/10.1523/JNEUROSCI.0509-19.2019 Li, L., Chen, S. R., Chen, H., Wen, L., Hittelman, W. N., Xie, J. D., & Pan, H. L. (2016). Chloride Homeostasis Critically Regulates Synaptic NMDA Receptor Activity in Neuropathic Pain. Cell Rep, 15(7), 1376–1383. https://doi.org/10.1016/j.celrep.2016.04.039 Lines, J., Baraibar, A., Nanclares, C., Martin, E. D., Aguilar, J., Kofuji, P., Navarrete, M., & Araque, A. (2024). A spatial threshold for astrocyte calcium surge. Elife, 12. https://doi.org/10.7554/eLife.90046 Liss, B., Franz, O., Sewing, S., Bruns, R., Neuhoff, H., & Roeper, J. (2001). Tuning pacemaker frequency of individual dopaminergic neurons by Kv4.3L and KChip3.1 transcription. EMBO J, 20(20), 5715–5724. https://doi.org/10.1093/emboj/20.20.5715 Liu, H., Wang, H., Sheng, M., Jan, L. Y., Jan, Y. N., & Basbaum, A. I. (1994). Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci U S A, 91(18), 8383–8387. https://doi.org/10.1073/pnas.91.18.8383 Liu, Y., Zhou, L. J., Wang, J., Li, D., Ren, W. J., Peng, J., Wei, X., Xu, T., Xin, W. J., Pang, R. P., Li, Y. Y., Qin, Z. H., Murugan, M., Mattson, M. P., Wu, L. J., & Liu, X. G. (2017). TNF-alpha Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury. J Neurosci, 37(4), 871–881. https://doi.org/10.1523/JNEUROSCI.2235-16.2016 Longuemare, M. C., & Swanson, R. A. (1995). Excitatory amino acid release from astrocytes during energy failure by reversal of sodium-dependent uptake. J Neurosci Res, 40(3), 379–386. https://doi.org/10.1002/jnr.490400312 Lu, C. R., Hwang, S. J., Phend, K. D., Rustioni, A., & Valtschanoff, J. G. (2003). Primary afferent terminals that express presynaptic NR1 in rats are mainly from myelinated, mechanosensitive fibers. J Comp Neurol, 460(2), 191–202. https://doi.org/10.1002/cne.10632 Mahmoud, S., Gharagozloo, M., Simard, C., & Gris, D. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells, 8(2). https://doi.org/10.3390/cells8020184 Malarkey, E. B., & Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochem Int, 52(1-2), 142–154. https://doi.org/10.1016/j.neuint.2007.06.005 Malinow, R., & Malenka, R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci, 25, 103–126. https://doi.org/10.1146/annurev.neuro.25.112701.142758 Mariotti, L., Losi, G., Sessolo, M., Marcon, I., & Carmignoto, G. (2016). The inhibitory neurotransmitter GABA evokes long-lasting Ca(2+) oscillations in cortical astrocytes. Glia, 64(3), 363–373. https://doi.org/10.1002/glia.22933 Masliah, E., Alford, M., DeTeresa, R., Mallory, M., & Hansen, L. (1996). Deficient glutamate transport is associated with neurodegeneration in Alzheimer's disease. Ann Neurol, 40(5), 759–766. https://doi.org/10.1002/ana.410400512 McBurney-Lin, J., Vargova, G., Garad, M., Zagha, E., & Yang, H. (2022). The locus coeruleus mediates behavioral flexibility. Cell Rep, 41(4), 111534. https://doi.org/10.1016/j.celrep.2022.111534 McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron, 87(3), 605–620. https://doi.org/10.1016/j.neuron.2015.07.002 McCall, J. G., Siuda, E. R., Bhatti, D. L., Lawson, L. A., McElligott, Z. A., Stuber, G. D., & Bruchas, M. R. (2017). Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior. Elife, 6. https://doi.org/10.7554/eLife.18247 McCormick, D. A., & Huguenard, J. R. (1992). A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol, 68(4), 1384–1400. https://doi.org/10.1152/jn.1992.68.4.1384 Mederos, S., Hernandez-Vivanco, A., Ramirez-Franco, J., Martin-Fernandez, M., Navarrete, M., Yang, A., Boyden, E. S., & Perea, G. (2019). Melanopsin for precise optogenetic activation of astrocyte-neuron networks. Glia, 67(5), 915–934. https://doi.org/10.1002/glia.23580 Medrano, M. C., Gerrikagoitia, I., Martinez-Millan, L., Mendiguren, A., & Pineda, J. (2013). Functional and morphological characterization of glutamate transporters in the rat locus coeruleus. Br J Pharmacol, 169(8), 1781–1794. https://doi.org/10.1111/bph.12235 Min, M. Y., Wu, Y. W., Shih, P. Y., Lu, H. W., Wu, Y., Hsu, C. L., Li, M. J., & Yang, H. W. (2010). Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience, 168(3), 633–645. https://doi.org/10.1016/j.neuroscience.2010.03.063 Moshkforoush, A., Balachandar, L., Moncion, C., Montejo, K. A., & Riera, J. (2021). Unraveling ChR2-driven stochastic Ca2+ dynamics in astrocytes: A call for new interventional paradigms. PLoS Comput Biol, 17(2), e1008648. https://doi.org/10.1371/journal.pcbi.1008648 Murphy-Royal, C., Ching, S., & Papouin, T. (2023). A conceptual framework for astrocyte function. Nat Neurosci, 26(11), 1848–1856. https://doi.org/10.1038/s41593-023-01448-8 Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., & Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A, 100(24), 13940–13945. https://doi.org/10.1073/pnas.1936192100 Nagy, G. G., Al-Ayyan, M., Andrew, D., Fukaya, M., Watanabe, M., & Todd, A. J. (2004). Widespread expression of the AMPA receptor GluR2 subunit at glutamatergic synapses in the rat spinal cord and phosphorylation of GluR1 in response to noxious stimulation revealed with an antigen-unmasking method. J Neurosci, 24(25), 5766–5777. https://doi.org/10.1523/JNEUROSCI.1237-04.2004 Nakamoto, K., Aizawa, F., Kinoshita, M., Koyama, Y., & Tokuyama, S. (2017). Astrocyte Activation in Locus Coeruleus Is Involved in Neuropathic Pain Exacerbation Mediated by Maternal Separation and Social Isolation Stress. Front Pharmacol, 8, 401. https://doi.org/10.3389/fphar.2017.00401 Navarrete, M., & Araque, A. (2010). Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron, 68(1), 113–126. https://doi.org/10.1016/j.neuron.2010.08.043 Navarrete, M., Cuartero, M. I., Palenzuela, R., Draffin, J. E., Konomi, A., Serra, I., Colie, S., Castano-Castano, S., Hasan, M. T., Nebreda, A. R., & Esteban, J. A. (2019). Astrocytic p38alpha MAPK drives NMDA receptor-dependent long-term depression and modulates long-term memory. Nat Commun, 10(1), 2968. https://doi.org/10.1038/s41467-019-10830-9 Octeau, J. C., Gangwani, M. R., Allam, S. L., Tran, D., Huang, S., Hoang-Trong, T. M., Golshani, P., Rumbell, T. H., Kozloski, J. R., & Khakh, B. S. (2019). Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep, 27(8), 2249–2261 e2247. https://doi.org/10.1016/j.celrep.2019.04.078 Okada, Y., Okada, T., Sato-Numata, K., Islam, M. R., Ando-Akatsuka, Y., Numata, T., Kubo, M., Shimizu, T., Kurbannazarova, R. S., Marunaka, Y., & Sabirov, R. Z. (2019). Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev, 71(1), 49–88. https://doi.org/10.1124/pr.118.015917 Oliet, S. H., Malenka, R. C., & Nicoll, R. A. (1996). Bidirectional control of quantal size by synaptic activity in the hippocampus. Science, 271(5253), 1294–1297. https://doi.org/10.1126/science.271.5253.1294 Oliveira, J. F., & Araque, A. (2022). Astrocyte regulation of neural circuit activity and network states. Glia, 70(8), 1455–1466. https://doi.org/10.1002/glia.24178 Ota, Y., Zanetti, A. T., & Hallock, R. M. (2013). The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast, 2013, 185463. https://doi.org/10.1155/2013/185463 Pai, Y. W., Lin, C. H., Lee, I. T., & Chang, M. H. (2018). Prevalence and biochemical risk factors of diabetic peripheral neuropathy with or without neuropathic pain in Taiwanese adults with type 2 diabetes mellitus. Diabetes Metab Syndr, 12(2), 111–116. https://doi.org/10.1016/j.dsx.2017.09.013 Pal, B. (2024). On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res, 19(12), 2602–2612. https://doi.org/10.4103/NRR.NRR-D-23-01723 Papouin, T., Dunphy, J. M., Tolman, M., Dineley, K. T., & Haydon, P. G. (2017). Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron, 94(4), 840–854 e847. https://doi.org/10.1016/j.neuron.2017.04.021 Parent, A., Linden, D. J., Sisodia, S. S., & Borchelt, D. R. (1999). Synaptic transmission and hippocampal long-term potentiation in transgenic mice expressing FAD-linked presenilin 1. Neurobiol Dis, 6(1), 56–62. https://doi.org/10.1006/nbdi.1998.0207 Park, J. S., Voitenko, N., Petralia, R. S., Guan, X., Xu, J. T., Steinberg, J. P., Takamiya, K., Sotnik, A., Kopach, O., Huganir, R. L., & Tao, Y. X. (2009). Persistent inflammation induces GluR2 internalization via NMDA receptor-triggered PKC activation in dorsal horn neurons. J Neurosci, 29(10), 3206–3219. https://doi.org/10.1523/JNEUROSCI.4514-08.2009 Parri, H. R., Gould, T. M., & Crunelli, V. (2001). Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci, 4(8), 803–812. https://doi.org/10.1038/90507 Perea, G., & Araque, A. (2007). Astrocytes potentiate transmitter release at single hippocampal synapses. Science, 317(5841), 1083–1086. https://doi.org/10.1126/science.1144640 Perea, G., Gomez, R., Mederos, S., Covelo, A., Ballesteros, J. J., Schlosser, L., Hernandez-Vivanco, A., Martin-Fernandez, M., Quintana, R., Rayan, A., Diez, A., Fuenzalida, M., Agarwal, A., Bergles, D. E., Bettler, B., Manahan-Vaughan, D., Martin, E. D., Kirchhoff, F., & Araque, A. (2016). Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. Elife, 5. https://doi.org/10.7554/eLife.20362 Perea, G., Navarrete, M., & Araque, A. (2009). Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci, 32(8), 421–431. https://doi.org/10.1016/j.tins.2009.05.001 Perea, G., Yang, A., Boyden, E. S., & Sur, M. (2014). Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat Commun, 5, 3262. https://doi.org/10.1038/ncomms4262 Petreanu, L., Mao, T., Sternson, S. M., & Svoboda, K. (2009). The subcellular organization of neocortical excitatory connections. Nature, 457(7233), 1142–1145. https://doi.org/10.1038/nature07709 Pirttimaki, T. M., Hall, S. D., & Parri, H. R. (2011). Sustained neuronal activity generated by glial plasticity. J Neurosci, 31(21), 7637–7647. https://doi.org/10.1523/JNEUROSCI.5783-10.2011 Pirttimaki, T. M., Sims, R. E., Saunders, G., Antonio, S. A., Codadu, N. K., & Parri, H. R. (2017). Astrocyte-Mediated Neuronal Synchronization Properties Revealed by False Gliotransmitter Release. J Neurosci, 37(41), 9859–9870. https://doi.org/10.1523/JNEUROSCI.2761-16.2017 Poe, G. R., Foote, S., Eschenko, O., Johansen, J. P., Bouret, S., Aston-Jones, G., Harley, C. W., Manahan-Vaughan, D., Weinshenker, D., Valentino, R., Berridge, C., Chandler, D. J., Waterhouse, B., & Sara, S. J. (2020). Locus coeruleus: a new look at the blue spot. Nat Rev Neurosci, 21(11), 644–659. https://doi.org/10.1038/s41583-020-0360-9 Qu, X. X., Cai, J., Li, M. J., Chi, Y. N., Liao, F. F., Liu, F. Y., Wan, Y., Han, J. S., & Xing, G. G. (2009). Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol, 215(2), 298–307. https://doi.org/10.1016/j.expneurol.2008.10.018 Rankin, G., Chirila, A. M., Emanuel, A. J., Zhang, Z., Woolf, C. J., Drugowitsch, J., & Ginty, D. D. (2024). Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV(+) interneurons. Cell Rep, 43(2), 113718. https://doi.org/10.1016/j.celrep.2024.113718 Richner, M., Bjerrum, O. J., Nykjaer, A., & Vaegter, C. B. (2011). The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J Vis Exp(54). https://doi.org/10.3791/3092 Robelet, S., Melon, C., Guillet, B., Salin, P., & Kerkerian-Le Goff, L. (2004). Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson's disease. Eur J Neurosci, 20(5), 1255–1266. https://doi.org/10.1111/j.1460-9568.2004.03591.x Robin, L. M., Oliveira da Cruz, J. F., Langlais, V. C., Martin-Fernandez, M., Metna-Laurent, M., Busquets-Garcia, A., Bellocchio, L., Soria-Gomez, E., Papouin, T., Varilh, M., Sherwood, M. W., Belluomo, I., Balcells, G., Matias, I., Bosier, B., Drago, F., Van Eeckhaut, A., Smolders, I., Georges, F.,…Marsicano, G. (2018). Astroglial CB(1) Receptors Determine Synaptic D-Serine Availability to Enable Recognition Memory. Neuron, 98(5), 935–944 e935. https://doi.org/10.1016/j.neuron.2018.04.034 Ruscheweyh, R., Ikeda, H., Heinke, B., & Sandkuhler, J. (2004). Distinctive membrane and discharge properties of rat spinal lamina I projection neurones in vitro. J Physiol, 555(Pt 2), 527–543. https://doi.org/10.1113/jphysiol.2003.054049 Ruscheweyh, R., & Sandkuhler, J. (2002). Lamina-specific membrane and discharge properties of rat spinal dorsal horn neurones in vitro. J Physiol, 541(Pt 1), 231–244. https://doi.org/10.1113/jphysiol.2002.017756 Sasaki, T., Beppu, K., Tanaka, K. F., Fukazawa, Y., Shigemoto, R., & Matsui, K. (2012). Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc Natl Acad Sci U S A, 109(50), 20720–20725. https://doi.org/10.1073/pnas.1213458109 Schwarz, L. A., Miyamichi, K., Gao, X. J., Beier, K. T., Weissbourd, B., DeLoach, K. E., Ren, J., Ibanes, S., Malenka, R. C., Kremer, E. J., & Luo, L. (2015). Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 524(7563), 88–92. https://doi.org/10.1038/nature14600 Seltzer, Z., Cohn, S., Ginzburg, R., & Beilin, B. (1991). Modulation of neuropathic pain behavior in rats by spinal disinhibition and NMDA receptor blockade of injury discharge. Pain, 45(1), 69–75. https://doi.org/10.1016/0304-3959(91)90166-U Serrano, A., Robitaille, R., & Lacaille, J. C. (2008). Differential NMDA-dependent activation of glial cells in mouse hippocampus. Glia, 56(15), 1648–1663. https://doi.org/10.1002/glia.20717 Sheikhbahaei, S., Turovsky, E. A., Hosford, P. S., Hadjihambi, A., Theparambil, S. M., Liu, B., Marina, N., Teschemacher, A. G., Kasparov, S., Smith, J. C., & Gourine, A. V. (2018). Astrocytes modulate brainstem respiratory rhythm-generating circuits and determine exercise capacity. Nat Commun, 9(1), 370. https://doi.org/10.1038/s41467-017-02723-6 Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int, 51(6-7), 333–355. https://doi.org/10.1016/j.neuint.2007.03.012 Shen, W., Nikolic, L., Meunier, C., Pfrieger, F., & Audinat, E. (2017). An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Sci Rep, 7(1), 11280. https://doi.org/10.1038/s41598-017-11793-x Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K., & Malinow, R. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science, 284(5421), 1811–1816. https://doi.org/10.1126/science.284.5421.1811 Shigetomi, E., Bowser, D. N., Sofroniew, M. V., & Khakh, B. S. (2008). Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci, 28(26), 6659–6663. https://doi.org/10.1523/JNEUROSCI.1717-08.2008 Silva Tortorelli, L., Garad, M., Megemont, M., Haga-Yamanaka, S., Goel, A., & Yang, H. (2024). Variations of neuronal properties in the region of locus coeruleus of mice. Brain Res, 1845, 149289. https://doi.org/10.1016/j.brainres.2024.149289 Singh, P., Jorgacevski, J., Kreft, M., Grubisic, V., Stout, R. F., Jr., Potokar, M., Parpura, V., & Zorec, R. (2014). Single-vesicle architecture of synaptobrevin2 in astrocytes. Nat Commun, 5, 3780. https://doi.org/10.1038/ncomms4780 Sinha, G. P., Prasoon, P., Smith, B. N., & Taylor, B. K. (2021). Fast A-type currents shape a rapidly adapting form of delayed short latency firing of excitatory superficial dorsal horn neurons that express the neuropeptide Y Y1 receptor. J Physiol, 599(10), 2723–2750. https://doi.org/10.1113/JP281033 Snider, W. D., & McMahon, S. B. (1998). Tackling pain at the source: new ideas about nociceptors. Neuron, 20(4), 629–632. https://doi.org/10.1016/s0896-6273(00)81003-x Speggiorin, M., Chiavegato, A., Zonta, M., & Gomez-Gonzalo, M. (2024). Characterization of the Astrocyte Calcium Response to Norepinephrine in the Ventral Tegmental Area. Cells, 14(1). https://doi.org/10.3390/cells14010024 Spike, R. C., Puskar, Z., Andrew, D., & Todd, A. J. (2003). A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur J Neurosci, 18(9), 2433–2448. https://doi.org/10.1046/j.1460-9568.2003.02981.x Srinivasan, R., Lu, T. Y., Chai, H., Xu, J., Huang, B. S., Golshani, P., Coppola, G., & Khakh, B. S. (2016). New Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying Calcium Signals in Astrocyte Processes In Situ and In Vivo. Neuron, 92(6), 1181–1195. https://doi.org/10.1016/j.neuron.2016.11.030 Stirling, L. C., Forlani, G., Baker, M. D., Wood, J. N., Matthews, E. A., Dickenson, A. H., & Nassar, M. A. (2005). Nociceptor-specific gene deletion using heterozygous NaV1.8-Cre recombinase mice. Pain, 113(1-2), 27–36. https://doi.org/10.1016/j.pain.2004.08.015 Sukhotinsky, I., Ben-Dor, E., Raber, P., & Devor, M. (2004). Key role of the dorsal root ganglion in neuropathic tactile hypersensibility. Eur J Pain, 8(2), 135–143. https://doi.org/10.1016/S1090-3801(03)00086-7 Sullivan, S. J., Farrant, M., & Cull-Candy, S. G. (2017). TARP gamma-2 Is Required for Inflammation-Associated AMPA Receptor Plasticity within Lamina II of the Spinal Cord Dorsal Horn. J Neurosci, 37(25), 6007–6020. https://doi.org/10.1523/JNEUROSCI.0772-16.2017 Suto, T., Severino, A. L., Eisenach, J. C., & Hayashida, K. (2014). Gabapentin increases extracellular glutamatergic level in the locus coeruleus via astroglial glutamate transporter-dependent mechanisms. Neuropharmacology, 81, 95–100. https://doi.org/10.1016/j.neuropharm.2014.01.040 Tan, P. H., Yang, L. C., Shih, H. C., Lan, K. C., & Cheng, J. T. (2005). Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther, 12(1), 59–66. https://doi.org/10.1038/sj.gt.3302376 Tang, F., Lane, S., Korsak, A., Paton, J. F., Gourine, A. V., Kasparov, S., & Teschemacher, A. G. (2014). Lactate-mediated glia-neuronal signalling in the mammalian brain. Nat Commun, 5, 3284. https://doi.org/10.1038/ncomms4284 Taylor, B. K., & Westlund, K. N. (2017). The noradrenergic locus coeruleus as a chronic pain generator. J Neurosci Res, 95(6), 1336–1346. https://doi.org/10.1002/jnr.23956 Ting, J. T., Daigle, T. L., Chen, Q., & Feng, G. (2014). Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol, 1183, 221–242. https://doi.org/10.1007/978-1-4939-1096-0_14 Ting, J. T., Lee, B. R., Chong, P., Soler-Llavina, G., Cobbs, C., Koch, C., Zeng, H., & Lein, E. (2018). Preparation of Acute Brain Slices Using an Optimized N-Methyl-D-glucamine Protective Recovery Method. J Vis Exp(132). https://doi.org/10.3791/53825 Todd, A. J. (2010). Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci, 11(12), 823–836. https://doi.org/10.1038/nrn2947 Tsukada, S., Iino, M., Takayasu, Y., Shimamoto, K., & Ozawa, S. (2005). Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons. Neuropharmacology, 48(4), 479–491. https://doi.org/10.1016/j.neuropharm.2004.11.006 Tsukahara, J. S., & Engle, R. W. (2021). Fluid intelligence and the locus coeruleus-norepinephrine system. Proc Natl Acad Sci U S A, 118(46). https://doi.org/10.1073/pnas.2110630118 Uematsu, A., Tan, B. Z., Ycu, E. A., Cuevas, J. S., Koivumaa, J., Junyent, F., Kremer, E. J., Witten, I. B., Deisseroth, K., & Johansen, J. P. (2017). Modular organization of the brainstem noradrenaline system coordinates opposing learning states. Nat Neurosci, 20(11), 1602–1611. https://doi.org/10.1038/nn.4642 Urbano, F. J., & Buno, W. (1998). BAPTA-AM blocks both voltage-gated and Ca2+-activated K+ currents in cultured bovine chromaffin cells. Neuroreport, 9(15), 3403–3407. https://doi.org/10.1097/00001756-199810260-00013 Van Den Herrewegen, Y., Sanderson, T. M., Sahu, S., De Bundel, D., Bortolotto, Z. A., & Smolders, I. (2021). Side-by-side comparison of the effects of Gq- and Gi-DREADD-mediated astrocyte modulation on intracellular calcium dynamics and synaptic plasticity in the hippocampal CA1. Mol Brain, 14(1), 144. https://doi.org/10.1186/s13041-021-00856-w van Hecke, O., Austin, S. K., Khan, R. A., Smith, B. H., & Torrance, N. (2014). Neuropathic pain in the general population: a systematic review of epidemiological studies. Pain, 155(4), 654–662. https://doi.org/10.1016/j.pain.2013.11.013 Verkhratsky, A., & Chvatal, A. (2020). NMDA Receptors in Astrocytes. Neurochem Res, 45(1), 122–133. https://doi.org/10.1007/s11064-019-02750-3 Vikman, K. S., Rycroft, B. K., & Christie, M. J. (2008). Switch to Ca2+-permeable AMPA and reduced NR2B NMDA receptor-mediated neurotransmission at dorsal horn nociceptive synapses during inflammatory pain in the rat. J Physiol, 586(2), 515–527. https://doi.org/10.1113/jphysiol.2007.145581 Volterra, A., & Meldolesi, J. (2005). Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci, 6(8), 626–640. https://doi.org/10.1038/nrn1722 Wang, H., & Zylka, M. J. (2009). Mrgprd-expressing polymodal nociceptive neurons innervate most known classes of substantia gelatinosa neurons. J Neurosci, 29(42), 13202–13209. https://doi.org/10.1523/JNEUROSCI.3248-09.2009 Wang, H. Y., Kuo, Z. C., Fu, Y. S., Chen, R. F., Min, M. Y., & Yang, H. W. (2015). GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats. J Physiol, 593(1), 161–180. https://doi.org/10.1113/jphysiol.2014.281378 Wei, F., Vadakkan, K. I., Toyoda, H., Wu, L. J., Zhao, M. G., Xu, H., Shum, F. W., Jia, Y. H., & Zhuo, M. (2006). Calcium calmodulin-stimulated adenylyl cyclases contribute to activation of extracellular signal-regulated kinase in spinal dorsal horn neurons in adult rats and mice. J Neurosci, 26(3), 851–861. https://doi.org/10.1523/JNEUROSCI.3292-05.2006 Wei, F., & Zhuo, M. (2001). Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J Physiol, 532(Pt 3), 823–833. https://doi.org/10.1111/j.1469-7793.2001.0823e.x Wercberger, R., & Basbaum, A. I. (2019). Spinal cord projection neurons: a superficial, and also deep, analysis. Curr Opin Physiol, 11, 109–115. https://doi.org/10.1016/j.cophys.2019.10.002 Woo, D. H., Han, K. S., Shim, J. W., Yoon, B. E., Kim, E., Bae, J. Y., Oh, S. J., Hwang, E. M., Marmorstein, A. D., Bae, Y. C., Park, J. Y., & Lee, C. J. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell, 151(1), 25–40. https://doi.org/10.1016/j.cell.2012.09.005 Woolf, C. J., & Salter, M. W. (2000). Neuronal plasticity: increasing the gain in pain. Science, 288(5472), 1765–1769. https://doi.org/10.1126/science.288.5472.1765 Woolf, C. J., Shortland, P., & Coggeshall, R. E. (1992). Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature, 355(6355), 75–78. https://doi.org/10.1038/355075a0 Wulff, H. (2008). New light on the "old" chloride channel blocker DIDS. ACS Chem Biol, 3(7), 399–401. https://doi.org/10.1021/cb800140m Xin, Q., Wang, J., Zheng, J., Tan, Y., Jia, X., Ni, Z., Xu, Z., Feng, J., Wu, Z., Li, Y., Li, X. M., Ma, H., & Hu, H. (2025). Neuron-astrocyte coupling in lateral habenula mediates depressive-like behaviors. Cell. https://doi.org/10.1016/j.cell.2025.04.010 Xu-Friedman, M. A., & Regehr, W. G. (2000). Probing fundamental aspects of synaptic transmission with strontium. J Neurosci, 20(12), 4414–4422. https://doi.org/10.1523/JNEUROSCI.20-12-04414.2000 Xu, J., Peng, H., Kang, N., Zhao, Z., Lin, J. H., Stanton, P. K., & Kang, J. (2007). Glutamate-induced exocytosis of glutamate from astrocytes. J Biol Chem, 282(33), 24185–24197. https://doi.org/10.1074/jbc.M700452200 Yamada, Y., Chochi, Y., Takamiya, K., Sobue, K., & Inui, M. (1999). Modulation of the channel activity of the epsilon2/zeta1-subtype N-methyl D-aspartate receptor by PSD-95. J Biol Chem, 274(10), 6647–6652. https://doi.org/10.1074/jbc.274.10.6647 Yamamoto, T., Rossi, S., Stiefel, M., Doppenberg, E., Zauner, A., Bullock, R., & Marmarou, A. (1999). CSF and ECF glutamate concentrations in head injured patients. Acta Neurochir Suppl, 75, 17–19. https://doi.org/10.1007/978-3-7091-6415-0_4 Yamamoto, T., & Yaksh, T. L. (1992). Spinal pharmacology of thermal hyperesthesia induced by constriction injury of sciatic nerve. Excitatory amino acid antagonists. Pain, 49(1), 121–128. https://doi.org/10.1016/0304-3959(92)90198-K Yamao, H., & Matsui, K. (2025). Astrocytic determinant of the fate of long-term memory. Glia, 73(2), 309–329. https://doi.org/10.1002/glia.24636 Yan, X., Jiang, E., Gao, M., & Weng, H. R. (2013). Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain. J Physiol, 591(7), 2001–2019. https://doi.org/10.1113/jphysiol.2012.250522 Yang, F., Feng, L., Zheng, F., Johnson, S. W., Du, J., Shen, L., Wu, C. P., & Lu, B. (2001). GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci, 4(11), 1071–1078. https://doi.org/10.1038/nn734 Yang, J., Vitery, M. D. C., Chen, J., Osei-Owusu, J., Chu, J., & Qiu, Z. (2019). Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron, 102(4), 813–827 e816. https://doi.org/10.1016/j.neuron.2019.03.029 Yang, J., Yu, H., Zhou, D., Zhu, K., Lou, H., Duan, S., & Wang, H. (2015). Na(+)-Ca(2)(+) exchanger mediates ChR2-induced [Ca(2)(+)]i elevation in astrocytes. Cell Calcium, 58(3), 307–316. https://doi.org/10.1016/j.ceca.2015.06.008 Yang, Y., Vidensky, S., Jin, L., Jie, C., Lorenzini, I., Frankl, M., & Rothstein, J. D. (2011). Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia, 59(2), 200–207. https://doi.org/10.1002/glia.21089 Yeh, H. Y., Lee, J. C., Chi, H. H., Chen, C. C., Liu, Q., & Yen, C. T. (2021). Longitudinal intravital imaging nerve degeneration and sprouting in the toes of spared nerve injured mice. J Comp Neurol, 529(12), 3247–3264. https://doi.org/10.1002/cne.25162 Youn, D. H., Gerber, G., & Sather, W. A. (2013). Ionotropic glutamate receptors and voltage-gated Ca(2)(+) channels in long-term potentiation of spinal dorsal horn synapses and pain hypersensitivity. Neural Plast, 2013, 654257. https://doi.org/10.1155/2013/654257 Yu-Ming Wu, W.-C. H., Yun Chang, Ming-Yuan Min, Hsiu-Wen Yang. (2025). Axon collateral pattern of a sparse locus coeruleus norepinephrine neuron in mouse cerebral cortex. bioRxiv. https://doi.org/https://doi.org/10.1101/2025.02.04.636453 Yu, X., Nagai, J., & Khakh, B. S. (2020). Improved tools to study astrocytes. Nat Rev Neurosci, 21(3), 121–138. https://doi.org/10.1038/s41583-020-0264-8 Yuan, L. L., Adams, J. P., Swank, M., Sweatt, J. D., & Johnston, D. (2002). Protein kinase modulation of dendritic K+ channels in hippocampus involves a mitogen-activated protein kinase pathway. J Neurosci, 22(12), 4860–4868. https://doi.org/10.1523/JNEUROSCI.22-12-04860.2002 Zeng, J., Thomson, L. M., Aicher, S. A., & Terman, G. W. (2006). Primary afferent NMDA receptors increase dorsal horn excitation and mediate opiate tolerance in neonatal rats. J Neurosci, 26(46), 12033–12042. https://doi.org/10.1523/JNEUROSCI.2530-06.2006 Zepeda-Morales, K., Bravo, D., Aranguiz-Barrera, J., Ampuero, E., Renard, G. M., Pelissier, T., Hernandez, A., Retamal, J. S., & Constandil, L. (2025). N-methyl-D-aspartate receptor activation is downstream coupled to pannexin 1 opening by Src kinase in dorsal horn neurons: an essential link for mechanical hyperalgesia in nerve-injured rats. Pain, 166(6), 1369–1381. https://doi.org/10.1097/j.pain.0000000000003476 Zhang, Q., Fukuda, M., Van Bockstaele, E., Pascual, O., & Haydon, P. G. (2004). Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A, 101(25), 9441–9446. https://doi.org/10.1073/pnas.0401960101 Zhao, J., Sun, J., Zheng, Y., Zheng, Y., Shao, Y., Li, Y., Fei, F., Xu, C., Liu, X., Wang, S., Ruan, Y., Liu, J., Duan, S., Chen, Z., & Wang, Y. (2022). Activated astrocytes attenuate neocortical seizures in rodent models through driving Na(+)-K(+)-ATPase. Nat Commun, 13(1), 7136. https://doi.org/10.1038/s41467-022-34662-2 Zhao, Y. L., Chen, S. R., Chen, H., & Pan, H. L. (2012). Chronic opioid potentiates presynaptic but impairs postsynaptic N-methyl-D-aspartic acid receptor activity in spinal cords: implications for opioid hyperalgesia and tolerance. J Biol Chem, 287(30), 25073–25085. https://doi.org/10.1074/jbc.M112.378737 Zholudeva, L. V., Abraira, V. E., Satkunendrarajah, K., McDevitt, T. C., Goulding, M. D., Magnuson, D. S. K., & Lane, M. A. (2021). Spinal Interneurons as Gatekeepers to Neuroplasticity after Injury or Disease. J Neurosci, 41(5), 845–854. https://doi.org/10.1523/JNEUROSCI.1654-20.2020 Zhuang, Z. Y., Gerner, P., Woolf, C. J., & Ji, R. R. (2005). ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 114(1-2), 149–159. https://doi.org/10.1016/j.pain.2004.12.022 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99387 | - |
| dc.description.abstract | 神經迴路的調節對於感覺處理、喚醒狀態以及疼痛知覺具有關鍵影響。本論文探討兩種調控機制:腦幹區域的膠質細胞與神經元之間的溝通,以及脊髓中突觸可塑性的變化。
第一部分研究聚焦於藍斑核(locus coeruleus, LC),該區域為中樞神經系統中去甲腎上腺素的主要來源,與喚醒與認知功能密切相關。雖然過去研究指出膠質細胞可能參與調控LC活性,但缺乏直接的功能性證據顯示膠質細胞與LC去甲腎上腺素能(NA)神經元之間存在訊息傳遞。本研究透過選擇性光遺傳活化表現Aldh1l1的星狀膠質細胞,發現其活化會在LC-NA神經元中誘發明顯的內向電流(inward current, IAsc)與自發性興奮性突觸電流(sEPSC)頻率增加。此效應主要由星狀膠質細胞釋放的麩胺酸(glutamate)所引發,並透過活化AMPA與NMDA受體達成,其中包括活化突觸外NMDA受體所產生的慢性內向電流(slow inward currents, SICs)。本研究首次提供星狀膠質細胞透過麩胺酸釋放調控LC去甲腎上腺素能神經元興奮性的電生理證據,揭示膠質細胞參與調節喚醒相關神經活動的機制。 第二部分研究則針對脊髓背角(dorsal horn, DH)中在神經病理性疼痛狀態下的突觸變化。我發現表現Nav1.8的痛覺神經元與脊髓背角第一層(lamina I)中脊髓丘腦傳導神經元(lamina I spinothalamic tract neurons, L1-STTNs)之間的突觸傳遞變化。我們結合光遺傳與逆行追蹤技術,在脊髓切片中進行選擇性刺激與記錄,發現神經損傷(spared nerve injury, SNI)會增強Nav1.8+神經元對L1-STTN的訊息傳遞。此變化伴隨失敗率(failure rate)下降與paired pulse ratio (PPR)改變,顯示為突觸前調節(presynaptic regulation),但未觀察到AMPA/NMDA受體比例改變或單一量子電流振幅變化,亦即未見明顯的突觸後改變。僅有少部分L1-STTN在SNI後顯示ERK磷酸化增加,顯示其突觸後興奮性提升幅度有限。本研究結果指出,神經病理性疼痛狀態下,Nav1.8+傷害感受器與L1-STTNs之間的突觸會產生選擇性的突觸前增強,而非全面性的神經元過度興奮,進一步了解慢性疼痛相關突觸可塑性機制。綜合而言,透過光遺傳學、電生理記錄與神經迴路層級的實驗設計,本研究提供對中樞神經系統適應性與病態狀態下可塑性機制的深入理解。 | zh_TW |
| dc.description.abstract | The modulation of neuronal excitability is essential for regulating sensory processing, arousal, and pain perception. This thesis explores two complementary mechanisms—glial-to-neuronal communication in the brainstem and synaptic plasticity in the spinal cord—that shape excitability within key circuits involved in arousal and nociception.
In the first part of this study, I explored how astrocytes influence noradrenergic (NA) neurons in the locus coeruleus (LC), a brainstem region known as the main source of noradrenaline in the central nervous system and a key player in arousal and cognitive regulation. While earlier studies have hinted that astrocyte activity in the LC may be linked to emotional disturbances and could potentially affect NA neurons by altering extracellular ions or releasing gliotransmitters, direct evidence of astrocyte-to-neuron communication in this area has been lacking. To address this gap, I selectively activated Aldh1l1-expressing astrocytes using optogenetics and recorded the resulting responses in LC-NA neurons. Upon photostimulation, I observed large inward currents and a marked increase in spontaneous EPSC frequency in NA neurons. These effects were driven by astrocyte-derived glutamate, acting primarily through AMPA and NMDA receptors. Notably, there was also an increase in the frequency of slow inward currents (SICs) and a rise in spontaneous phasic firing during and after stimulation, lasting up to 20 minutes. Supporting the role of NMDA receptors in this process, application of the antagonist DL-AP5 significantly reduced SIC activity. Taken together, these findings provide new evidence that astrocytes in the LC can modulate the excitability and synaptic activity of NA neurons through glutamatergic signaling, revealing a previously unrecognized form of astrocyte-to-neuron interaction in this nucleus. In the second part of this study, I examined how synaptic function changes in the dorsal horn (DH) of the spinal cord under neuropathic pain. While it's well accepted that altered synaptic transmission in the DH plays a role in pain sensitization, the specific types of synapses involved are still not fully understood. To explore this, I used optogenetic stimulation and retrograde tracing in spinal cord slices to activate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and recorded from lamina I spinothalamic tract neurons (L1-STTNs). After spared nerve injury (SNI), I found that the EPSCs evoked by NRsNav1.8 (Nav1.8-STTN EPSCs) became stronger. This was associated with a lower synaptic failure rate and changes in paired-pulse ratio, pointing to a presynaptic mechanism. I also noticed an increase in the frequency of spontaneous EPSCs in L1-STTNs, but their amplitude didn’t change. Interestingly, the AMPA/NMDA ratio and the size of unitary EPSCs in Sr²⁺ conditions stayed the same. Apart from these, a small number of L1-STTNs showed increased pERK expression and slightly reduced action potential thresholds after SNI. These results suggest that SNI leads to a selective enhancement of synaptic inputs from NRsNav1.8 onto L1-STTNs, mainly through presynaptic changes, and this may contribute to abnormal sensory transmission in neuropathic pain. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:07:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:07:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract v 目次 vii 圖次 x 表次 xiii Chapter 1 1 Study of Cell-Specific Contributions in Adult Neural Circuits 1 Chapter 2: 5 Glutamate-Mediated Astrocyte-to-Neuron Signaling in the Locus Coeruleus: Mechanisms and Long-Term Modulation 5 2.1. Introduction 5 2.1.1 Introduction to the Purpose of the Study 5 2.1.2 Background 7 2.1.3 Study Aim 18 2.2 Materials and Methods 21 2.2.1 Animals 21 2.2.2 Animals and stereotaxic surgery for viral vector injection in the LC 21 2.2.3 Tamoxifen Administration and Induction Protocol 22 2.2.4 Preparation of brain slices and electrophysiology 22 2.2.5 Photostimulation of optogenetic experiments 24 2.2.6 Ca²⁺ imaging 25 2.2.7 EPSCs and SICs analysis 26 2.2.8 Immunohistochemistry (IHC) 26 2.2.9 Pharmacological Agents 28 2.2.10 Statistical analysis 29 2.3 Results 30 2.3.1 Selective Optogenetic Activation of Astrocytes in the Locus Coeruleus 30 2.3.2 Astrocyte-Induced Excitation of LC Noradrenergic Neurons 31 2.3.3 Glutamate Release Underlie Astrocyte-to-Noradrenergic Neuron Communication 34 2.3.4 Calcium-Dependent Mechanisms Dominate Astrocytic Glutamate Release 35 2.3.5 Astrocyte Photostimulation Enhances spontaneous EPSCs but not miniature EPSCs Activity in LC-NA Neurons. 37 2.3.6 Recording of Slow Inward Currents (SICs) in LC-NA neurons. 39 2.3.7 Long-term enhancement (LTE) of SICs 42 2.3.9 NMDA Receptor Activation Is Required for the Induction of LTE-SICs 46 2.3.10 Astrocytic NMDA Receptors Mediate Autocrine Signalling for LTE-SIC Induction 48 2.3.12 Astrocytic Calcium Dynamics and Its Potential Role in LTC-SIC Induction 52 2.4 Discussion 54 2.4.1 Astrocyte-Mediated Glutamate Signaling in the LC. 55 2.4.2 Comparison with Tang et al. (2014): L-Lactate vs. Glutamate Signaling 58 2.4.3 Mechanism of Astrocytic Glutamate Release. 60 2.4.4 SICs in LC-NA Neurons: A Comparison to Other Brain Regions 62 2.4.5 Long-Term Enhancement of SICs (LTE-SICs) 64 2.4.6 Autocrine Activation via NMDA Receptors on Astrocytes 68 2. 4.7 Future Directions 70 2.5 Conclusion 80 2.6 Figures 81 Chapter 3 124 Spared Nerve Injury Enhances Synaptic Transmission of Nociceptors expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurones in Mice 124 3.1 Introduction 124 3.1.1 Clinical Background of Neuropathic Pain 124 3.1.2 Animal Models for Neuropathic Pain and Rationale for Using the SNI Model 126 3.1.3 Synaptic Plasticity, Central Sensitization, and Knowledge Gaps in Neuropathic Pain 129 3.1.4 Aims 131 3.2 Materials and Methods 133 3.2.1 Animals 133 3.2.2 Animal preparation and stereotaxic tracer injection 133 3.2.3 Behavioral testing 134 3.2.4 Spared nerve injury (SNI) and sham surgery 135 3.2.5 Preparation of spinal cord slices and electrophysiological recordings 136 3.2.6 Optogenetic stimulation 138 3.2.7 Histochemistry 139 3.2.9 Statistical analysis 142 3.3 Results 144 3.3.1 Anatomical characterization of L1-STTNs 144 3.3.2 Selective Labeling of L1-STTNs for Whole-Cell Recording and Post Hoc Morphological Examination. 145 3.3.3 Monosynaptic input from Nav1.8-expressing afferents 147 3.3.6 Presynaptic modulation of Nav1.8-STTN EPSCs by SNI. 151 3.3.7 Enhancement of Nav1.8-STTN EPSCs by SNI does not involve postsynaptic modulation. 154 3.3.9 SNI changes the percentage of L1-STTN subtypes categorized based on firing patterns. 158 3.4 Discussion 162 3.4.1 Possible presynaptic mechanisms: role of presynaptic NMDARs 163 3.4.3 Potential mechanisms underlying firing pattern changes 167 3.5 Conclusion 171 3.6 Figures 173 References 191 | - |
| dc.language.iso | en | - |
| dc.subject | 藍斑核 | zh_TW |
| dc.subject | 星狀膠質細胞 | zh_TW |
| dc.subject | 光遺傳活化 | zh_TW |
| dc.subject | 脊髓 | zh_TW |
| dc.subject | 痛覺神經元 | zh_TW |
| dc.subject | 突觸可塑性 | zh_TW |
| dc.subject | optogenetics | en |
| dc.subject | locus coeruleus | en |
| dc.subject | plasticity | en |
| dc.subject | nociceptors | en |
| dc.subject | dorsal horn | en |
| dc.subject | astrocyte | en |
| dc.title | 神經元與膠質細胞對神經細胞興奮性的調控: 對藍斑核與脊髓疼痛迴路的電生理研究 | zh_TW |
| dc.title | Neuronal and Glial Modulation of Excitability: Electrophysiological Studies of the Locus Coeruleus and Spinal Pain Circuit | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 陳示國;徐經倫;吳玉威;楊琇雯;姚皓傑 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Kuo Chen;Ching-Lung Hsu;Yu-Wei Wu;Hsiu-Wen Yang;Hau-Jie Yau | en |
| dc.subject.keyword | 藍斑核,星狀膠質細胞,光遺傳活化,脊髓,痛覺神經元,突觸可塑性, | zh_TW |
| dc.subject.keyword | locus coeruleus,astrocyte,optogenetics,dorsal horn,nociceptors,plasticity, | en |
| dc.relation.page | 213 | - |
| dc.identifier.doi | 10.6342/NTU202503170 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 生命科學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 7.02 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
