Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99382
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳復國zh_TW
dc.contributor.advisorFuh-Kuo Chenen
dc.contributor.author楊順吉zh_TW
dc.contributor.authorShun-Ji Yangen
dc.date.accessioned2025-09-10T16:06:59Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation[1] Volvo car corporation. (2014, August 27). Volvo XC90 body structure [Online]. Available:https://www.media.volvocars.com/global/en-gb/media/photos/148215/volvo-xc90-body-structure?preview=true&t=eec47d37-beb3-478e-a125-2f8086171671
[2] A. Jomartov, A. Tuleshov, N. Jamalov, A. Seydakhmet, S. Ibrayev, M. Kuatova, A. Kaimov, Y. Temirbekov, B. Bostanov,“Dynamic model of servo mechanical press,” in Proc. Robot Design, Dynamics and Control, ROMANSY 2020, pp. 170–178, Sep. 2020.
[3] K. Kawamoto, H. Ando, K. Yamamichi, “Application of servo presses to metal forming processes,” Procedia Manufacturing, vol. 15, pp. 31–38, 2018.
[4] K. Osakada, K. Mori, T. Altan, P. Groche, “Mechanical servo press technology for metal forming,” CIRP Annals, vol. 60, no. 2, pp. 651–672, 2011.
[5] Y. Tamai, Y. Yamasaki, A. Yoshitake, T. Imura, “Improvement of formability in stamping of steel sheets by motion control of servo press,” Steel Research International, vol. 81, no. 9, pp. 686–689, Sep. 2010.
[6] T. Nakano, “Press machine trends and servo press forming examples,” Steel Research International, vol. 81, no. 9, pp. 682–685, Sep. 2010.
[7] 黃呂翔, “先進高強度鋼板於伺服沖床之引伸成形研究”, 國立交通大學機械工程學系碩士論文, 2012
[8] H. Yamashita, H. Ueno, H. Nakai, T. Higaki, “Technology to enhance deep drawability by strain dispersion using stress relaxation phenomenon,” SAE technical papers, Apr. 2015.
[9] K. Hariharan, O. Majidi, C. Kim, M. G. Lee, F. Barlat, “Stress relaxation and its effect on tensile deformation of steels,” Materials & Design, vol. 52, pp. 284–288, Dec. 2013.
[10] T. Uemori, S. Sumikawa, T. Naka, N. Ma, F. Yoshida, “Influence of bauschinger effect and anisotropy on springback of aluminum alloy sheets”, Materials Transactions, vol. 58, No. 6, pp. 921-926, 2017.
[11] F. Yoshida, T. Uemori, K. Fujiwara, “Elastic-plastic behavior of steel sheet under in-plane cyclic tension-compression at large strain”, International Journal of Plasticity, Vol. 18, pp. 633–659,2002.
[12] F. Yoshida, T. Uemori, “A model of large-strain cyclic plasticity describing the Bauschinger effect and workhardening stagnation”, International Journal of Plasticity, vol. 18, pp. 661–686, 2002.
[13] 蔡恒光, “先進高強度鋼板反覆拉壓與雙軸拉伸變形特性之研究”, 國立台灣大學機械工程研究所博士論文, 2012.
[14] A. Forcellese, “Computer aided engineering of the sheet bending process”, Journal of Materials Processing Technology, Vol. 60, pp. 225-232, 1996.
[15] 蘇昱竹, “先進高強度鋼板沖壓成形回彈現象之研究”, 國立台灣大學機械工程研究所碩士論文, 2007.
[16] M. Samuel, “Experimental and numerical prediction of springback and side wall curl in U-bendings of anisotropic sheet metals”, Journal of Materials Processing Technology, 105, pp. 382-393, 2000.
[17] Z. C. Xia, F. Ren, “An investigation of wall curl reduction through post-stretch forming,” Applied Mechanics, pp. 495–502, Jan. 2004.
[18] 姚順偉, “先進高強度鋼板之沖壓成形回彈改善研究”, 國立台灣大學機械工程研究所碩士論文, 2017.
[19] 蔡孟勳, “汽車板金沖壓成形之缺陷分析與改善研究”, 國立台灣大學機械工程研究所碩士論文, 2018.
[20] Z. Wei, J. Cao, J. Cheng, X. Wang, H. Zhu, X. Zhu, R. Zhao, “Precise local deformation control for UHSS thin-walled component in roll forming,” Journal of Manufacturing Processes, vol. 112, pp. 302–312, Jan. 2024.
[21] H. Miyake, T. Shinmiya, Y. Yamasaki, J. Hiramoto, Y. Tamai, “Design technology of preforming shape to suppress forming defects in curved hat shape parts,” Journal of the Japan Society for Technology of Plasticity, vol. 62, no. 723, pp. 48–53, Apr. 2021.
[22] Y. Tanka, T. Miyagi, M. Ogawa, J. Natori, M. Sugawara, “Fundamental study on forming method of ultra high strength steel sheet to T model shape,” Journal of the Japan Society for Technology of Plasticity, vol. 60, no. 705, pp. 283–288, 2019.
[23] ASTM International, ASTM E8/E8M-13a: Standard test methods for tension testing of metallic materials, 2013
[24] ASTM International, ASTM 111-04: Standard test method for young’s modulus, tangent modulus, and chord modulus
[25] 鄭耀偉, “高溫摩擦試驗設備改良與熱沖壓摩擦特性研究”, 國立交通大學機械工程學系碩士論文, 2018
[26] A. Ghaei, D. E. Green, “Numerical implementation of Yoshida - Uemori two-surface plasticity model using a fully implicit integration scheme,” Computational Materials Science, vol. 48, no. 1, pp. 195–205, Jan. 2010
[27] Baosteel. Baosteel automotive advanced high strength steel [Online]. Available:https://ecommerce.ibaosteel.com/portal/download/manual/AHSS-Automotive-En.pdf
[28] NUMISHEET’93, in Proc. The Second International Conference of Numerical Simulation of 3-D sheet Metal Forming Processes, Isehara, JAPAN, 1993.
[29] V. Balaji, H. Krishnaswamy, S. Natarajan, M. G. Lee, “Modelling time-dependent relaxation behaviour using physically based constitutive framework,” International Journal of Mechanical Sciences, vol. 273, pp. 109209, Mar. 2024.
[30] O. Majidi, M. G. Lee, F. Barlat, “U-draw bending of DP780 in non-conventional drawing mode using direct-drive digital servo press,” Procedia Engineering, vol. 81, pp. 987–992, 2014.
[31] 龔紅英, 朱偉, 張質良, 付群強, “變壓邊力控制與矩形件拉深成形特性的相關性研究”, 塑性工程學報, vol. 12, pp. 49-55, 2005.
[32] 陳俊衡, “鋁合金板件沖壓成形之回彈分析與改善研究”, 國立台灣大學機械工程研究所碩士論文, 2019.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99382-
dc.description.abstract近年來,伺服沖床因具備高效能與高靈活度,已逐漸應用於板金成形領域。相較於傳統機械式沖床,伺服沖床無飛輪機構,能有效降低成形所需能耗,並透過伺服馬達實現可程式化之沖頭運動控制。其運動曲線具有高度可調性,能於空行程階段提升速度以縮短循環時間(Cycle Time),進而提升整體產能效率。除此之外,相關研究文獻指出,透過調整沖頭運動曲線,可提升材料成形極限與改善回彈現象。因此本論文針對常見之伺服運動曲線(如脈衝運動曲線、Stepwise運動曲線)進行實驗分析與有限元素分析。
在實驗方面,使用三種超高強度鋼(MS 1300、MS 1500及MS 1700)針對常見伺服運動曲線進行相對應之實驗。由單軸拉伸-釋放-再拉伸實驗結果顯示,三種超高強度鋼靠近材料均勻伸長率(UEL)進行應力釋放後,再次拉伸會使材料總伸長率(TEL)下降;另外,應力鬆弛實驗中加入雙相鋼(DP 600)材料進行實驗比較。由實驗結果顯示,雙相鋼其肥粒鐵組織具有良好差排重組能力,能有效降低差排密度,提升材料伸長率;相較之下,超高強度鋼因全麻田散鐵組織,差排滑移能力受限,導致無法有效增加材料伸長率。
針對超高強度鋼(MS 1500)材料建立U型帽狀引伸模型,採用Yoshida-Uemori材料模型分析脈衝運動曲線參數(抬升位置、抬升量及抬升次數)對成形性之影響。模擬結果顯示, 抬升位置為主要影響成形性關鍵參數,且抬升量達總沖程5%時回彈改善已趨於穩定。此外,根據應力鬆弛實驗數據擬合 Time Power Law 蠕變模型,結合彈塑性與蠕變行為建立材料模型,用於模擬 Stepwise 運動曲線中之持壓階段。模擬結果顯示,持壓行為對於超高強度鋼回彈改善無明顯效益。最後,進行先弱後強階梯式變壓料力分析,以取得改善側壁捲曲之變壓料力範圍。
本研究整合實驗與模擬方法,探討伺服沖床運動曲線對超高強度鋼成形行為之影響,相關成果可提供未來運動曲線參數設計與成形製程優化之參考。
zh_TW
dc.description.abstractIn recent years, servo presses have been increasingly applied in the field of sheet metal forming due to their high efficiency and flexibility. Compared to conventional mechanical presses, servo presses eliminate the flywheel mechanism, thereby reducing energy consumption during forming operations, and achieve programmable ram motion control through servo motors. The motion curves of servo presses are highly adjustable, allowing an increase in speed during the idle stroke to shorten cycle time and improve overall production efficiency. Moreover, relevant studies have indicated that appropriate design of ram motion curves can enhance the forming limit of materials and reduce springback. Therefore, this study focuses on two commonly used servo motion curves—pulse motion and stepwise motion—through experimental investigation and finite element analysis (FEA).
In the experimental part, three types of ultra high strength steels (MS 1300, MS 1500, and MS 1700) were tested under corresponding servo motion conditions. Results from the uniaxial tension–unloading–reloading experiments show that stress release near the material’s uniform elongation (UEL) leads to a reduction in total elongation (TEL) upon subsequent reloading. Additionally, dual-phase steel (DP 600) was introduced in the stress relaxation experiments for comparison. The results reveal that the ferrite structure in DP 600 facilitates effective dislocation rearrangement, lowering dislocation density and enhancing elongation. In contrast, the fully martensitic microstructure of ultra-high strength steels restricts dislocation mobility, limiting elongation improvement.
In the numerical analysis, a U hat drawing model was established for MS 1500, and the Yoshida-Uemori material model was implemented in the FEA framework to investigate the influence of pulse motion parameters, including lift position, lift height, and lift count, on formability. Simulation results indicate that the lift position is the most critical parameter affecting formability, and that increasing the lift height beyond 5% of the total stroke yields diminishing improvement in springback. Furthermore, the Time Power Law creep model was fitted using stress relaxation data and integrated with elastic–plastic behavior to construct a coupled material model, enabling simulation of the pressure holding stage under the stepwise motion curve. The results suggest that pressure holding offers no significant benefit for springback reduction in ultra high strength steels. Finally, a variable blank holder force strategy featuring a weak to strong sequence was analyzed to identify an effective force range for reducing sidewall curl defects.
This study integrates experimental observations with finite element analysis to comprehensively investigate the effects of servo press motion curves on the forming behavior of ultra high strength steels. The findings provide practical guidance for the design of motion curve parameters and optimization of sheet metal forming processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:06:59Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:06:59Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 xi
第一章 緒論 1
1.1 研究背景與目的 1
1.2 研究方法與步驟 3
1.3 文獻回顧 4
1.4 論文總覽 8
第二章 材料實驗與材料模型建立 9
2.1 單軸拉伸實驗 9
2.1.1 工程應力應變曲線 10
2.1.2 真實應力應變曲線 11
2.2 摩擦實驗 13
2.3 材料模型建立 16
2.3.1 Hill 48 降伏準則 16
2.3.2 等向硬化材料模型 17
2.3.3 Yoshida-Uemori (Y-U model)材料模型 18
2.3.4 材料模型比較 22
第三章 伺服沖床運動曲線之拉伸實驗探討 25
3.1 脈衝運動曲線 25
3.1.1 單軸拉伸-釋放-再拉伸實驗規劃 26
3.1.2 單軸拉伸-釋放-再拉伸實驗結果 27
3.1.3 單軸拉伸-釋放-再拉伸實驗結果討論 29
3.2 Stepwise運動曲線 29
3.2.1 超高強度鋼應力鬆弛實驗規劃 31
3.2.2 超高強度鋼應力鬆弛實驗結果 32
3.2.3 雙相鋼應力鬆弛實驗規劃 35
3.2.4 雙相鋼應力鬆弛實驗結果 36
3.2.5 結果討論 37
3.3 伺服沖床運動曲線對應拉伸實驗小結 39
第四章 引伸成形基礎載具模擬建立與分析 40
4.1 U型帽狀模型建立 40
4.1.1 變形機制與回彈機制探討 41
4.1.2 收斂性分析 44
4.2 脈衝運動曲線對於成形性之影響分析 49
4.2.1 脈衝運動曲線參數介紹 49
4.2.2 抬升位置與成形性之關係 49
4.2.3 抬升量與成形性之關係 57
4.2.4 抬升次數與成形性之關係 60
4.2.5 實驗驗證 67
4.2.6 小結 71
4.3 Stepwise運動曲線對於回彈之影響分析 72
4.3.1 模擬模型建立 72
4.3.2 Stepwise運動曲線參數介紹 76
4.3.3 模擬結果討論 77
4.4 定壓料力與變壓料力之回彈改善分析 81
4.4.1 定壓料力 81
4.4.2 變壓料力 84
第五章 結論 93
參考文獻 95
-
dc.language.isozh_TW-
dc.subject超高強度鋼zh_TW
dc.subject伺服沖床zh_TW
dc.subjectYoshida-Uemori材料模型zh_TW
dc.subjectTime Power Law蠕變模型zh_TW
dc.subject脈衝運動曲線zh_TW
dc.subjectStepwise運動曲線zh_TW
dc.subject應力鬆弛zh_TW
dc.subject變壓料力zh_TW
dc.subject有限元素分析zh_TW
dc.subjectStress Relaxationen
dc.subjectUltra High Strength Steel (UHSS)en
dc.subjectStepwise Motion Curveen
dc.subjectServo Pressen
dc.subjectYoshida-Uemori Material Modelen
dc.subjectTime Power Law Creep Modelen
dc.subjectPulse Motion Curveen
dc.subjectFinite Element Analysisen
dc.subjectVariable Blank Holder Forceen
dc.title伺服沖床運動曲線對超高強度鋼板沖壓成形特性影響之研究zh_TW
dc.titleA Study on the Effects of Servo Press Motion Curves on the Stamping Formability of Ultra High Strength Steel Sheetsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃永茂;林恒勝;許進忠;洪景華zh_TW
dc.contributor.oralexamcommitteeYeong-Maw Hwang;Heng-Sheng Lin;Jinn-Jong Sheu;Ching-Hua Hungen
dc.subject.keyword超高強度鋼,伺服沖床,Yoshida-Uemori材料模型,Time Power Law蠕變模型,脈衝運動曲線,Stepwise運動曲線,應力鬆弛,變壓料力,有限元素分析,zh_TW
dc.subject.keywordUltra High Strength Steel (UHSS),Servo Press,Yoshida-Uemori Material Model,Time Power Law Creep Model,Pulse Motion Curve,Stepwise Motion Curve,Stress Relaxation,Variable Blank Holder Force,Finite Element Analysis,en
dc.relation.page97-
dc.identifier.doi10.6342/NTU202503432-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2027-08-31-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved