請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99378完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳復國 | zh_TW |
| dc.contributor.advisor | Fuh-Kuo Chen | en |
| dc.contributor.author | 蔡昀潔 | zh_TW |
| dc.contributor.author | Yun-Chieh Tsai | en |
| dc.date.accessioned | 2025-09-10T16:06:14Z | - |
| dc.date.available | 2025-09-11 | - |
| dc.date.copyright | 2025-09-10 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 參考文獻
[1] E. F. Smith, J. Kumnick, B. Quimby and A. Klein, ‘’New Generation of Probe Alloys’’, Semiconductor Wafer Test, San Diego. USA, Jun.2013. [2] 吳宜暹,《精微線材彎壓成形模擬與實驗分析》,國立台灣大學機械工程研究所碩士論文,2018。 [3] 黃柏竣,《精微線材彎壓成形模擬分析與製程模具設計》,國立台灣大學機械工程研究所碩士論文,2020。 [4] 陳長欣,《精微線材彎壓成形模擬分析與破壞力學分析》,國立台灣大學機械工程研究所碩士論文,2021。 [5] T. Hauck, W. H. Müller, and I. Schmadlak, “Nonlinear buckling analysis of vertical wafer probe technology,” Microsystem Technologies, vol.16, no.11, pp.1909-1920, Jul.2010. [6] T. Rokkaku,’’Introduction of efficient design tools for vertical probe and innovative probe material, Rhodeo6’’, Semiconductor Wafer Test, San Diego. USA, Jun.2015 [7] J. T. Chiu, & D. Y. Chang, “A new probe design combining finite element method and optimization used for vertical probe card in wafer probing,” Precision Engineering, vol. 33, no. 4, pp. 395-40, Nov.2009. [8] H. J. Kwon, J. Lee, B. Shin, S. Jeon, C. S. Han, and C. M. Im, “Geometry design of vertical probe needle using mechanical testing and finite element analysis,” International Journal of Precision Engineering and Manufacturing, vol.15, no.11, pp.2335-2342, Nov.2014. [9] Y. R. Oh, Y. J. Kim, H. S. Nam, U. G. Park, H. J. Lee, J. Y. Kim, & J. H. Park, “Design of vertical type probe tip using finite element analysis,” Transactions of the Korean Society of Mechanical Engineers A, vol. 36, no. 8, pp.851-856, Jun.2012. [10] 劉思澔,《精微線材彎壓成形產品功能分析與設計流程優化》,國立台灣大學機械工程研究所碩士論文,2022。 [11] 邱壬彤,《精微線材彎壓成形產品應用與疲勞分析》,國立台灣大學機械工程研究所碩士論文,2023。 [12] E. B. Daniels, “ISMI Probe Council Current Carrying Capability Measurement Standard,” Semiconductor Wafer Test, San Diego. USA, Jun.2009. [13] B. Zafer, and B. Tunaboylu, “A predictive model for wafer probe burn phenomenon,” Applied Thermal Engineering, vol. 98, pp. 610-616, Apr.2016. [14] X. L. Le, and S. H. Choa, “Design of New Au–NiCo MEMS Vertical Probe for Fine-Pitch Wafer-Level Probing,” Crystals, vol. 36, no. 8, Apr.2021. [15] R. Kazmi, H. Kilicaslan, J. Hicklin, B. Tunaboylu, “Measuring Current Carrying Capability (CCC) of Vertical Probes,” Semiconductor Wafer Test, San Diego. USA, Jun.2010. [16] 陳暉仁,《精微線材彎壓成形產品檢測之模擬分析與預測公式建立》,國立台灣大學機械工程研究所碩士論文,2024。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99378 | - |
| dc.description.abstract | 半導體檢測為製程中的重要流程,可篩選晶片不良品以避免生產成本的浪費,而精微線材彎壓成形產品做為晶片與測試機台間傳遞訊號的橋樑,為檢測過程中的關鍵零件。為符合檢測需求,製造商須不斷優化產品設計以提升各項性能,如接觸力、耐電流(Current Carrying Capability, CCC)與使用壽命等。本論文為延續性計畫,前人已進行產品尺寸對各項性能之分析並建立初步預測公式。本論文將延伸至產品與導板交互影響分析並完善接觸力及CCC預測公式。建立快速預測產品接觸力及CCC的方法,藉以協助合作廠商加速設計流程為本論文研究之目的。
本論文將以前人建立之有限元素法分析模型為基礎,包含產品作動模型及電熱模型,對模型進行優化使其更接近真實樣態及條件,並透過接觸力測試及CCC測試之實驗結果比對確認模型準確性。接續以優化後作動模型對產品於導板中作動過程進行變形機制與受力分析,參考廠商之產品及導板尺寸設計範圍進行模擬以了解各項尺寸因子對接觸力之影響,並延伸至側向力之分析。最後以模擬結果建立接觸力及側向力預測公式,透過模擬與實驗驗證接觸力公式預測誤差5%。 在產品CCC研究方面,同樣參考廠商之產品尺寸設計範圍,以優化後電熱模型進行分析。再由前人建立之預測公式架構為基礎,增加其未考量之參數因子並以模擬結果建立預測公式,透過模擬與實驗驗證此CCC預測公式誤差小於1%,較原預測公式下降約7%。同時也將以此模型進行不同使用條件下的CCC分析以及接觸風險分析,幫助了解產品於實際可能發生的各種變數下的CCC表現以及是否有互相接觸的風險,提供優化產品設計之參考。 本論文完成精微線材彎壓成形產品性能的接觸力相關預測公式及CCC預測公式,未來可幫助產品設計流程進行快速且大量的性能預測,找出最佳設計。 關鍵字:精微線材、彎壓成形、有限元素分析、接觸力、耐電流、性能預測公式 | zh_TW |
| dc.description.abstract | Semiconductor wafer testing is a critical process in manufacturing, as it filters out chips’ defects and avoid unnecessary production costs. The Fine-Wire product made by Bending-Compression forming process plays an important role transmitting signal between the chip and the testing equipment. To meet testing requirements, manufacturers must continuously optimize product design to improve various specifications and performance, such as contact force, Current Carrying Capability (CCC), and product lifespan. This thesis is part of a continuing research project. Previous work has analyzed the influence of product dimensions on performances and established preliminary prediction formulas. Building on that foundation, this study further analyzes the interaction between the product and probe hole, and refines the prediction formulas for contact force and CCC. The aim of this thesis is to establish methods that can predict contact force and CCC of product rapidly to accelerate design process for collaborating manufacturers.
This thesis utilizes some previous researches based on finite element method, including an actuation model and a CCC testing model. The models are optimized to better reflect real-world behavior and validated through comparisons with experimental results from contact force and CCC tests to ensure accuracy. The optimized actuation model is then used to analyze the deformation mechanisms and forces during the product's operation within a probe hole. Simulations are conducted based on the dimensional design range of both the product and probe hole, to evaluate the influence of each dimensional factors on contact force, extending further to the analysis of lateral force. Finally, predictive formulas for contact force and lateral force are developed based on simulation results, with validation showing the contact force prediction error is less than 5%. In the study of CCC, analysis is based on the dimensional design range with the optimized CCC test model. Building on the predictive formula in previous research, this study introduces additional parameters and develops a new predictive formula based on simulation results. Validation through simulation and experimentation confirms that the error of this new formula is under 1%, approximately 7% lower than the original prediction model. The model also performs analyses of CCC and contact risk under various conditions to predict product's performance under different potential real-world scenarios and assess any risk of contact, thus offering a reference for design optimization. This thesis successfully establishes predictive formulas for the contact force and CCC of the Fine-Wire product made by Bending-Compression forming process, enabling large-scale performance prediction rapidly during the product design process and facilitating the identification of optimal designs. Keywords:Fine Wire Rods、Bending-Compression Forming、Finite Element Method Analysis、Contact Force、Current Carrying Capability、Performance Prediction Formula | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:06:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-10T16:06:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 摘要 ii Abstract iii 目次 v 圖次 ix 表次 xiv 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 研究方法與步驟 4 1.4 文獻回顧 5 1.5 論文總覽 11 第2章 產品模擬模型優化與驗證 12 2.1 產品作動模型優化 12 2.1.1 產品接觸力測試介紹 12 2.1.2 作動模型零件介紹 13 2.1.3 作動模型邊界條件建立 15 2.1.4 接觸力歷程分析 17 2.2 產品繪製針型優化 19 2.2.1 產品特徵尺寸介紹 19 2.2.2 繪製針型建立 20 2.2.3 肩膀及膝蓋單因子分析 22 2.2.4 接觸力實驗驗證 23 2.3 產品電熱模型優化 25 2.3.1 產品CCC測試介紹 25 2.3.2 線材電熱參數及模型邊界條件設置 26 2.3.3 CCC實驗驗證 27 第3章 產品尺寸之接觸力與側向力預測模型建立 30 3.1 產品作動變形機制及受力分析 30 3.1.1 探針受導孔正向力分析 31 3.1.2 待測物受探針側向力分析 33 3.1.3 探針幾何對力影響統整 35 3.2 尺寸單因子分析 38 3.2.1 公差範圍單因子分析敏感度 38 3.2.2 擴大範圍單因子分析敏感度 40 3.2.3 線徑單因子分析 41 3.2.4 H值單因子分析 42 3.2.5 BL單因子分析 43 3.2.6 Offset單因子分析 44 3.2.7 孔徑單因子分析 45 3.2.8 孔距單因子分析 46 3.2.9 孔深單因子分析 48 3.2.10 單因子分析結果討論 50 3.3 尺寸交互因子分析 52 3.3.1 線徑與H值交互因子分析 52 3.3.2 BL與Offset交互因子分析 53 3.3.3 線徑/孔徑組合與孔距交互因子分析 54 3.3.4 摩擦力收斂現象分析 59 3.3.5 側向力力收斂現象分析 61 3.3.6 孔深交互分析 63 3.4 接觸力及側向力預測模型建立與驗證 67 3.4.1 中心線接觸力預測公式建立 68 3.4.2 摩擦力預測公式建立 69 3.4.3 側向力預測公式建立 71 3.4.4 接觸力放大之行程量預測公式建立 73 3.4.5 實驗針型驗證 75 3.4.6 預測模型小結 76 第4章 產品尺寸之CCC預測模型優化 78 4.1 產品尺寸分析 79 4.1.1 針型尺寸交互分析 79 4.1.2 Tip 單因子分析 82 4.1.3 針型及導板尺寸交互分析 84 4.2 CCC預測模型優化與驗證 86 4.2.1 CCC預測公式建立 86 4.2.2 實驗針型驗證 87 4.2.3 不同針型模擬驗證 88 第5章 產品電熱延伸模擬分析 90 5.1 實際使用條件之CCC分析 90 5.1.1 環境及待測物溫度對CCC影響分析 91 5.1.2 OD對CCC影響分析 94 5.2 產品通電接觸風險分析 96 5.2.1 產品作動及通電過程接觸風險 96 5.2.2 產品斷路對接觸風險影響分析 99 5.2.3 產品尺寸對接觸風險影響分析 103 5.2.4 OD對接觸風險影響分析 104 5.2.5 不同針型接觸風險 106 第6章 結論 108 參考文獻 110 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 精微線材 | zh_TW |
| dc.subject | 彎壓成形 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 接觸力 | zh_TW |
| dc.subject | 耐電流 | zh_TW |
| dc.subject | 性能預測公式 | zh_TW |
| dc.subject | Bending-Compression Forming | en |
| dc.subject | Fine Wire Rods | en |
| dc.subject | Current Carrying Capability | en |
| dc.subject | Performance Prediction Formula | en |
| dc.subject | Finite Element Method Analysis | en |
| dc.subject | Contact Force | en |
| dc.title | 精微線材彎壓成形產品之性能預測及模擬分析 | zh_TW |
| dc.title | Performance Prediction and Simulation Analysis of Fine-Wire Product Made by Bending-Compression Forming Process | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊嘉揚;盧中仁;張宇光;陳明祈 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Yang Juang;Chung-Jen Lu;Yu-Kuang Chang;Ming-Chi Chen | en |
| dc.subject.keyword | 精微線材,彎壓成形,有限元素分析,接觸力,耐電流,性能預測公式, | zh_TW |
| dc.subject.keyword | Fine Wire Rods,Bending-Compression Forming,Finite Element Method Analysis,Contact Force,Current Carrying Capability,Performance Prediction Formula, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202503765 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 12.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
