Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99374
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃榮南zh_TW
dc.contributor.advisorRong-Nan Huangen
dc.contributor.author王克軒zh_TW
dc.contributor.authorCharles Ko-Hsuan Wangen
dc.date.accessioned2025-09-10T16:05:24Z-
dc.date.available2025-09-11-
dc.date.copyright2025-09-10-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation王惠鵬 1997。南投地區台灣鋏蠓之化學防治。台中市,國立中興大學,72頁。
何德明 2008。台灣鋏蠓 (雙翅目:蠓科) 產卵喜好性研究。彰化縣,國立彰化師範大學,37頁。
杜武俊 2001。台灣鋏蠓傳播黃質病毒之探討。行政院環境保護署。23頁。
杜武俊 2011。台灣鋏蠓雌蟲寄主搜尋與產卵行為之研究。行政院國家科學委員會。39頁。
林士翔 2024。以油棕櫚灰防治臺灣鋏蠓之實驗室評估與大安森林公園實務防治研究。台北市,國立臺灣大學,76頁。doi: 10.6342/NTU202403108
林春福、李憲明、吳正男、杜武俊 2008。小黑蚊綜合防治技術。台灣昆蟲特刊,11,65-73頁。
林庭瑋 2011。小花蔓澤蘭慢速熱解及其醋液應用於小黑蚊防治之初探。台中市,國立中興大學,83頁。doi: 10.6845/NCHU.2011.00250
柳修綸 2011。臺灣鋏蠓之生命表、田間族群動態與小球藻濃度對其發育與存活之影響。台中市,國立中興大學,42頁。
胡政欣 2013。小花蔓澤蘭醋液及其分離部於小黑蚊忌避性與抗菌性之應用。台中市,國立中興大學,94頁。doi: 10.6845/NCHU.2013.00394
翁淩維 2019。鹽類對埃及斑蚊、熱帶家蚊及臺灣鋏蠓卵殼構造之影響。台北市,國立臺灣大學,91頁。doi: 10.6342/NTU201900288
張伊芸 2016。燈光及植物精油對重要吸血雙翅目昆蟲之推-拉防治策略探討:以蚊科及臺灣鋏蠓為例。台北市,國立臺灣大學,100頁。doi: 10.6342/NTU201603545
張伯熙 1997。台灣鋏蠓之殺蟲劑篩選及其誘集研究。台中市,國立中興大學,68頁。
郭蘋慧 2011。臺灣鋏蠓 (小黑蚊) 分布之探討與危害風險分析。台中市,國立中興大學,63頁。
陳亢川 2012。台灣蠛蠓——一種騷擾人吸血與傳播疾病的微小飛蟲。海峽預防醫學雜誌,18,18-20頁。
陳佩琇 2005。食物及溼度對台灣鋏蠓 (雙翅目:蠓科) 發育之影響。台中市,國立中興大學,69頁。
陳俊宇 2020a。建立以鏈黴菌抑制台灣鋏蠓幼蟲食物的測試與評估平台。台中市,中臺科技大學,57頁。
陳彥廷 2020b。利用植物皂素及矽藻土複合配方防治台灣鋏蠓。彰化縣,國立彰化師範大學,47頁。
陳祈融 2010。台灣鋏蠓非藥劑防治技術之研究。台北市,國立臺灣大學,66頁。doi: 10.6342/NTU.2010.02071
陳家慧、周靜雅、劉陽、唐瑾華、謝愷琪、張韶華、賈鳳龍 2022。大葉油草地鋪小石卵和松木皮防制台灣鋏蠓的效果研究。中國媒介生物學及控制雜誌,4,586-589頁。
陳錦玄 2011。植物萃取物及發光二極體 (LED) 光波對台灣鋏蠓 (Forcipomyia taiwana Shiraki) 誘引及驅避效果之探討。台中市,國立中興大學,72頁。doi: 10.6845/NCHU.2011.00656
陳錦生 1980。花蓮地區台灣鋏蠓之形態及族群動態研究。台北市,國立臺灣大學,98頁。
傅幻民 2009。蘇力菌 (Bacillus thuringiensis) 醱酵液防治小黑蚊之研究探討。台中市,朝陽科技大學,88頁。
游婷婷 2019。分析臺中市大坑地區藍綠菌族群變化與臺灣鋏蠓密度之關聯性。台中市,中臺科技大學,80頁。
楊達璿 2018。鹽類對埃及斑蚊和台灣鋏蠓卵黑化之影響與耐旱之研究。台北市,國立臺灣大學,66頁。doi: 10.6342/NTU201802643
楊曉峯 2006。土壤因子對台灣鋏蠓成蟲產卵及幼蟲發育的影響。台中市,國立中興大學,64頁。doi: 10.6845/NCHU.2007.00395
楊騰志 2022。應用螞蟻與鹽類於臺灣鋏蠓防治之初探。台北市,國立臺灣大學,94頁。doi: 10.6342/NTU202203749
葉金彰、王凱淞 1997。台灣鋏蠓之生態與防治。興大農業,22,1-8頁。
廖癸閔、賴佳妤、杜武俊、李筱萍、陳錦坤、謝勝國、許明晃、吳柏龍、黃冬梨 2013。小油桐 (麻瘋樹) 種油及籽粕萃取物於綠色驅 (殺) 蟲劑之應用。石油季刊,49,87-101頁。
謝伯岳 2007。台灣鋏蠓Forcipomyia taiwana (Shiraki) 的產卵習性、棲群動態與對昆蟲生長調節劑感受性之研究。台中市,國立中興大學,83頁。doi: 10.6845/NCHU.2007.00561
謝明純 2014。含植物萃取物微膠囊對臺灣鋏蠓之趨避效果及其效益評估。台中市,中臺科技大學。124頁。
謝明純 2022。含植物精油包覆材複合織物對台灣鋏蠓趨避效果之製備技術及效益評估。台中市,逢甲大學,140頁。
羅偉誠 2008。臺灣鋏蠓攜帶病原體潛在性與吸血源之研究。台中市,中臺科技大學,59頁。
顧仁傑 2010。臺灣鋏蠓Forcipomyia taiwana (Shiraki) 之族群變動及發生預測。彰化縣,國立彰化師範大學,80頁。
Ansari MA, Pope EC, Carpenter S, Scholte EJ, Butt TM. 2011. Entomopathogenic fungus as a biological control for an important vector of livestock disease: the Culicoides biting midge. PLOS ONE 6: e16108. doi: 10.1371/journal.pone.0016108
Bakhoum MT, Fall AG, Seck MT, Fall M, Ciss M, Garros C, Bouyer J, Gimonneau G, Baldet T. 2021. Physicochemical factors affecting the diversity and abundance of Afrotropical Culicoides species in larval habitats in Senegal. Acta Trop 220: 105932. doi: 10.1016/j.actatropica.2021.105932
Barbosa RM, Furtado A, Regis L, Leal WS. 2010. Evaluation of an oviposition‐stimulating kairomone for the yellow fever mosquito, Aedes aegypti, in Recife, Brazil. J Vector Ecol 35: 204-207. doi: 10.1111/j.1948-7134.2010.00078.x
Battle FV, Turner EC. 1972. Some nutritional and chemical properties of the larval habitats of certain species of Culicoides (Diptera: Ceratopogonidae). J Med Entomol 9: 32-35. doi: 10.1093/jmedent/9.1.32
Bernath B, Horvath G, Meyer-Rochow VB. 2012. Polarotaxis in egg-laying yellow fever mosquitoes Aedes (Stegomyia) aegypti is masked due to infochemicals. J Insect Physiol 58: 1000-1006. doi: 10.1016/j.jinsphys.2012.05.004
Bhasin A, Mordue AJ, Mordue W. 2001b. Electrophysiological and behavioural identification of host kairomones as olfactory cues for Culicoides impunctatus and C. nubeculosus. Physiol Entomol 25: 6-16. doi: 10.1046/j.1365-3032.2000.00157.x
Bhasin A, Mordue Luntz AJ, Mordue W. 2001a. Field studies on efficacy of host odour baits for the biting midge Culicoides impunctatus in Scotland. Med Vet Entomol 15: 147-156. doi: 10.1046/j.1365-2915.2001.00285.x
Blake AJ, Hung E, To S, Ng G, Qian J, Gries G. 2023. Stable flies sense and behaviorally respond to the polarization of light. J Comp Physiol A 209: 885-897. doi: 10.1007/s00359-023-01624-y
Borkent A, Dominiak P, Díaz F. 2022. An update and errata for the catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 5120: 53-64. doi: 10.11646/zootaxa.5120.1.3
Boullis A, Mulatier M, Delannay C, Hery L, Verheggen F, Vega-Rua A. 2021. Behavioural and antennal responses of Aedes aegypti (L.) (Diptera: Culicidae) gravid females to chemical cues from conspecific larvae. PLOS ONE 16: e0247657. doi: 10.1371/journal.pone.0247657
Britten KH, Thatcher TD, Caro T. 2016. Zebras and biting flies: Quantitative analysis of reflected light from zebra coats in their natural habitat. PLOS ONE 11: e0154504. doi: 10.1371/journal.pone.0154504
Bukhari T, Takken W, Githeko AK, Koenraadt CJM. 2011. Efficacy of aquatain, a monomolecular film, for the control of malaria vectors in rice paddies. PLOS ONE 6: e21713. doi: 10.1371/journal.pone.0021713
Carde RT. 2015. Multi-cue integration: How female mosquitoes locate a human host. Curr Biol 25: R793-795. doi: 10.1016/j.cub.2015.07.057
Caro T, Argueta Y, Briolat ES, Bruggink J, Kasprowsky M, Lake J, Mitchell MJ, Richardson S, How M. 2019. Benefits of zebra stripes: Behaviour of tabanid flies around zebras and horses. PLOS ONE 14: e0210831. doi: 10.1371/journal.pone.0210831
Carpenter S, Mellor P, Torr S. 2008. Control techniques for Culicoides biting midges and their application in the UK and northwestern Palaearctic. Med Vet Entomol 22: 175-187. doi: 10.1111/j.1365-2915.2008.00743.x
Cezario RR, Lopez VM, Datto-Liberato F, Bybee SM, Gorb S, Guillermo-Ferreira R. 2025. Polarized vision in the eyes of the most effective predators: dragonflies and damselflies (Odonata). Naturwissenschaften 112: 8. doi: 10.1007/s00114-025-01959-3
Chen C, Hsu S, Lien J. 1982. Seasonal succession of a bloodsucking midge, Forcipomyia (Lasiohelea) taiwana (Shiraki, 1913) (Diptera, Ceratopogonidae) in the Hualien area. NTU phytopathologist & entomologist 9: 68-91.
Chen C, Lien J, Hsu S. 1980. Redescription and scanning electron microscopy of a bloodsucking midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera, Ceratopogonidae). Bull Soc Entomol Natl Chung Hsing Univ Taiwan 15: 211-226.
Chen C, Lin Y, Chung C, Hung H. 1979. Preliminary observations on the larval breeding sites and adult resting places of a bloodsucking midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Bull Soc Entomol Natl Chung Hsing Univ Taiwan 14: 51-59.
Chen CS, Lien JC, Lin YN, Hsu SJ. 1981. The diurnal biting pattern of a bloodsucking midge Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera, Ceratopogonidae). Chin J Microbiol Immunol 14: 54-56.
Chen HW, Chou JY, Lin CC, Wen YD, Wang WL. 2016. Seasonal yeast compositions in Forcipomyia taiwana (Diptera: Ceratopogonidae). J Asia-Pacif Entomol 19: 509-514. doi: 10.1016/j.aspen.2016.04.020
Chen JH, Liu Y, Xie KQ, Gong L, Zhagn SH, Jia FL. 2021a. Effects of soil humidity on the oviposition and larval development of the Forcipomyia taiwana (Shiraki). Acta Sci Nat Univ Sunyatseni 60: 12. doi: 10.13471/j.cnki.acta.snus.2021E012
Chen ME, Tsai MH, Huang HT, Tsai CC, Chen MJ, Yang DS, Yang TZ, Wang J, Huang RN. 2021b. Transcriptome profiling reveals the developmental regulation of NaCl-treated Forcipomyia taiwana eggs. BMC Genomics 22: 792. doi: 10.1186/s12864-021-08096-x
Chen YH, Lee MF, Lan JL, Chen CS, Wang HL, Hwang GY, Wu CH. 2005. Hypersensitivity to Forcipomyia taiwana (biting midge) : clinical analysis and identification of major For t 1, For t 2 and For t 3 allergens. Allergy 60: 1518-1523. doi: 10.1111/j.1398-9995.2005.00918.x
Chio EH, Yang EC, Huang HT, Hsu EL, Chen CR, Huang CG, Huang RN. 2013. Toxicity and repellence of Taiwanese indigenous djulis, Chenopodium formosaneum, against Aedes albopictus (Diptera: Culicidae) and Forcipomyia taiwana (Diptera: Ceratopogonidae). J Pest Sci 86: 705-712. doi: 10.1007/s10340-013-0500-3
Chiu MH, Jung YL. 1979. Studies on the life history of Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Acta Entomol Sin 22: 437-442.
Chou JY, Chen HW, Lin CC, Wen YD, Wang WL. 2015. The effects of fungal medium on hatching rate of biting midge. Eur Sci J 2: 176-181.
Chuang YY, Lin CS, Wang CH, Yeh CC. 2000. Distribution and seasonal occurrence of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the Nantou Area in Taiwan. J Med Entomol 37: 205-209. doi: 10.1603/0022-2585-37.2.205
Cilek J, Kline D, Hallmon C. 2003. Evaluation of a novel removal trap system to reduce biting midge (Diptera: Ceratopogonidae) populations in Florida backyards. J Vector Ecol 28: 23-30.
Dangar BV, Chavada P, Bhatt PJ, Raviya R. 2024. Reviewing bryophyte-microorganism association: insights into environmental optimization. Front Microbiol 15: 1407391. doi: 10.3389/fmicb.2024.1407391
Diaz JH. 2016. Chemical and plant-based insect repellents: efficacy, safety, and toxicity. Wilderness Environ Med 27: 153-163. doi: 10.1016/j.wem.2015.11.007
Dieng H, McLean S, Stradling H, Morgan C, Gordon M, Ebanks W, Ebanks Z, Wheeler A. 2022. Aquatain® causes anti-oviposition, egg retention and oocyte melanization and triggers female death in Aedes aegypti. Parasit Vectors 15: 100. doi: 10.1186/s13071-022-05202-0
Dougherty M, Hamilton G. 1997. Dodecanoic acid is the oviposition pheromone of Lutzomyia longipalpis. J Chem Ecol 23: 2657-2671. doi: 10.1023/A:1022598523803
Egri Á, Blahó M, Száz D, Barta A, Kriska G, Antoni G, Horváth G. 2013a. A new tabanid trap applying a modified concept of the old flypaper: linearly polarising sticky black surfaces as an effective tool to catch polarotactic horseflies. Int J Parasitol 43: 555-563. doi: 10.1016/j.ijpara.2013.02.002
Egri Á, Blahó M, Száz D, Kriska G, Majer J, Herczeg T, Gyurkovszky M, Farkas R, Horváth G. 2013b. A horizontally polarizing liquid trap enhances the tabanid-capturing efficiency of the classic canopy trap. Bull Entomol Res 103: 665-674. doi: 10.1017/S0007485313000357
Eiras ÁE, Resende MC. 2009. Preliminary evaluation of the "Dengue-MI" technology for Aedes aegypti monitoring and control. Cad Saúde Pública 25: S45-S58. doi: 10.1590/s0102-311x2009001300005
Erram D, Burkett-Cadena N. 2018. Laboratory studies on the oviposition stimuli of Culicoides stellifer (Diptera: Ceratopogonidae), a suspected vector of Orbiviruses in the United States. Parasit Vectors 11: 300. doi: 10.1186/s13071-018-2891-8
Gorain PC, Bagchi SK, Mallick N. 2013. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae. Environ Technol 34: 1887-1894. doi: 10.1080/09593330.2013.812668
Guo LD, Luo YP, Lin PY, Chou KCC, Shelomi M. 2023. Spatial repellency effects of Taiwanese plant oils on the biting midge, Forcipomyia taiwana. All Life 16: 2167871. doi: 10.1080/26895293.2023.2167871
Han Y, Zhao Y, Wang Y. 2014. Study on polarized spectral characteristics of soil with different water content. J Indian Soc Remote Sens 42: 727-732. doi: 10.1007/s12524-013-0341-9
Harrup LE, Miranda MA, Carpenter S. 2016. Advances in control techniques for Culicoides and future prospects. Vet Ital 52: 247-264. doi: 10.12834/VetIt.741.3602.3
Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B. 2011. Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci 366: 680-687. doi: 10.1098/rstb.2010.0199
Horváth G, Blahó M, Egri Á, Lerner A. 2014. Applying Polarization-Based Traps to Insect Control, pp. 561-584. in: Horváth G (Ed.), Polarized Light and Polarization Vision in Animal Sciences. Springer Berlin Heidelberg, Berlin, Heidelberg. doi: 10.1007/978-3-642-54718-8_23
Horváth G, Szörényi T, Pereszlényi Á, Gerics B, Hegedüs R, Barta A, Åkesson S. 2017. Why do horseflies need polarization vision for host detection? Polarization helps tabanid flies to select sunlit dark host animals from the dark patches of the visual environment. R Soc Open Sci 4: 170735. doi: 10.1098/rsos.170735
Hsieh YH, Lin CC, Wen YD, Wang WL. 2011. Eliminating the biting midge Forcipomyia taiwana (Diptera: Ceratopogonidae) larval food resource algae, cyanobacteria and Chlorella sp. (Chlorocaccales: Chlorellaceae) by bactericide to evaluate the inhibition effect in the laboratory and applying in the field. Chin Biosci 53: 65-78 doi: 10.29981/CB.201112.0006
Iikura H, Takizawa H, Ozawa S, Nakagawa T, Matsui Y, Nambu H. 2020. Mosquito repellence induced by tarsal contact with hydrophobic liquids. Sci Rep 10: 14480. doi: 10.1038/s41598-020-71406-y
Jeu MH. 1981. Observations on multiple feeding habits of Forcipomyia (Lasiohelea) taiwana (Shiraki). Acta Entomol Sin 24: 228-230.
Kameke D, Kampen H, Wacker A, Werner D. 2021. Field studies on breeding sites of Culicoides latreille (Diptera: Ceratopogonidae) in agriculturally used and natural habitats. Sci Rep 11: 10007. doi: 10.1038/s41598-021-86163-9
Kampen H, Werner D. 2023. Biting midges (Diptera: Ceratopogonidae) as vectors of viruses. Microorganisms 11: 2706. doi: 10.3390/microorganisms11112706
Kato-Namba A, Iida T, Ohta K, Suzuki M, Saito K, Takeuchi K, Sakamoto M, Kazama H, Nakagawa T. 2023. Surfactants alter mosquito's flight and physical condition. Sci Rep 13: 2355. doi: 10.1038/s41598-023-29455-6
Kline DL, Hogsette JA, Rutz DA. 2018. A comparison of the Nzi, Horse Pal® and Bite-Lite® H-traps and selected baits for the collection of adult Tabanidae in Florida and North Carolina. J Vector Ecol 43: 63-70. doi: 10.1111/jvec.12284
Lardeux FJR, Ottenwaelder T. 1997. Density of larval Culicoides belkini (Diptera: Ceratopogonidae) in relation to physicochemical variables in different habitats. J Med Entomol 34: 387-395. doi: 10.1093/jmedent/34.4.387
Laurence B, Pickett J. 1985. An oviposition attractant pheromone in Culex quinquefasciatus Say (Diptera: Culicidae). Bull Entomol Res 75: 283-290. doi: 10.1017/S0007485300014371
Lerner A, Meltser N, Sapir N, Erlick C, Shashar N, Broza M. 2008. Reflected polarization guides chironomid females to oviposition sites. J Exp Biol 211: 3536-3543. doi: 10.1242/jeb.022277
Liato V, Aider M. 2017. Geosmin as a source of the earthy-musty smell in fruits, vegetables and water: Origins, impact on foods and water, and review of the removing techniques. Chemosphere 181: 9-18. doi: 10.1016/j.chemosphere.2017.04.039
Lien JC. 1989. Taxonomic and ecological studies on the biting midges of the subgenus Lasiohelea, genus Forcipomyia from Taiwan. J Taiwan Mus 42: 37-77. doi: 10.6532/JTM.198906_42(1).0006
Lien JC. 1991. Seven new species and four new records of Forcipomyia subgenus Lasiohelea from Taiwan (Diptera, Ceratopogonidae). J Taiwan Mus 44: 83-116. doi: 10.6532/JTM.199106_44(1).0003
Lin JH, Hsieh MC, Lu CT, Lee MC, Chang CY, Lou CW. 2017. A study on the repellent efficacy of essential oils against Forcipomyia taiwana. 2017 Asia-Pacific Engineering and Technology Conference; 2017; Kuala Lumpur, Malaysia. DEStech Transactions on Engineering and Technology Research. 1829-1834 pp.
Lin MD, Chuang CH, Kao CH, Chen SH, Wang SC, Hsieh PH, Chen GY, Mao CC, Li JY, Jade Lu MY, Lin CY. 2024. Decoding the genome of bloodsucking midge Forcipomyia taiwana (Diptera: Ceratopogonidae) : Insights into odorant receptor expansion. Insect Biochem Mol Biol 168: 104115. doi: 10.1016/j.ibmb.2024.104115
Liu CW, Ting EC, Tsai LL, Liang YK. 1964. Observation on the breeding habits of Lasiohelea taiwana Shiraki. Acta Entomol Sin 13: 757-760. doi: 10.16380/j.kcxb.1964.13.5.757760
Liu SL, Hu CS, Lu KS. 2021. Manufacture of Mikania micrantha vinegar and investigation of its repellent activity for Forcipomyia taiwana. Bioresources 16: 6830-6848. doi: 10.15376/biores.16.4.6831-6849
Liu WY, Lee SJ, Wang WL 2008. Studies on breeding techniques of Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Formos Entomol 28: 183-193. doi: 10.6661/TESFE.2008014
Liu WY, Lee SJ, Yang EC. 2009. Evaluation for attractiveness of four chemicals to the biting midge, Forcipomyia taiwana (Diptera: Ceratopogonidae). J Am Mosq Control Assoc 25: 448-455. doi: 10.2987/09-0005.1
Liu WY, Yang EC, Lee SJ 2009. The Action Spectrum of Phototactic Responses of Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Formos Entomol 29: 61-71. doi: 10.6661/TESFE.2009006
Lou CW, Hsieh MC, Lu CT, Lai MF, Lee MC, Shiu BC, Lin JH. 2020. Evaluation of repellent effectiveness of polyvinyl alcohol/Eucalyptus globules nanofibrous membranes against Forcipomyia taiwana. Polymers 12: 870. doi: 10.3390/polym12040870
Lou CW, Lu CT, Sie MC, Lin JH. 2014. Study on efficacy of various solvents and extractions on repelling Forcipomyia taiwana. Adv Mater Res 910:186-189. doi: 10.4028/www.scientific.net/AMR.910.186
Lu G, Fellman JK, Edwards CG, Mattinson DS, Navazio J. 2003. Quantitative determination of geosmin in red beets (Beta vulgaris L.) using headspace solid-phase microextraction. J Agric Food Chem 51: 1021-1025. doi: 10.1021/jf020806d
Lucas-Barbosa D, DeGennaro M, Mathis A, Verhulst NO. 2022. Skin bacterial volatiles: propelling the future of vector control. Trends Parasitol 38: 15-22. doi: 10.1016/j.pt.2021.08.010
Luo YP, Jian LF 2020. Laboratory evaluation of chemical stimulants for trapping Forcipomyia taiwana (Shiraki; Diptera: Ceratopogonidae). Formos Entomol 40, 144-156. doi: 10.6661/TESFE.2011021
Luo YP. 2018. Establishing and maintaining colonies of Forcipomyia taiwana in the laboratory. J Vector Ecol 43: 328-333. doi: 10.1111/jvec.12317
Maher L, Goldman IL. 2018. Endogenous Production of Geosmin in Table Beet. HortScience 53: 67-72. doi: 10.21273/hortsci12488-17
Mands V, Kline DL, Blackwell A. 2004. Culicoides midge trap enhancement with animal odour baits in Scotland. Med Vet Entomol 18: 336-342. doi: 10.1111/j.0269-283X.2004.00516.x
Mbare O, Lindsay SW, Fillinger U. 2014. Aquatain (R) Mosquito Formulation (AMF) for the control of immature Anopheles gambiae sensu stricto and Anopheles arabiensis: dose-responses, persistence and sub-lethal effects. Parasit Vectors 7: 1-9. doi: 10.1186/1756-3305-7-438
McGregor BL, Markwardt CF, Davis TM. 2025. Investigating ungulate site use as a driver of Culicoides (Diptera: Ceratopogonidae) emergence from larval habitats. J Med Entomol 62: 641-647. doi: 10.1093/jme/tjaf005
Melo N, Wolff GH, Costa-da-Silva AL, Arribas R, Triana MF, Gugger M, Riffell JA, DeGennaro M, Stensmyr MC. 2020. Geosmin attracts Aedes aegypti mosquitoes to oviposition sites. Curr Biol 30: 127-134. doi: 10.1016/j.cub.2019.11.002
Mukabana WR, Welter G, Ohr P, Tingitana L, Makame MH, Ali AS, Knols BG. 2022. Drones for area-wide larval source management of malaria mosquitoes. Drones 6: 180. doi: 10.3390/drones6070180
Mulatier M, Boullis A, Vega-Rua A. 2022. Semiochemical oviposition cues to control Aedes aegypti gravid females: state of the art and proposed framework for their validation. Parasit Vectors 15: 228. doi: 10.1186/s13071-022-05337-0
Mweresa CK, Mukabana WR, van Loon JJA, Dicke M, Takken W. 2020. Use of semiochemicals for surveillance and control of hematophagous insects. Chemoecology 30: 277-286. doi: 10.1007/s00049-020-00317-1
Nagpal BN, Ghosh SK, Eapen A, Srivastava A, Sharma MC, Singh VP, Parashar BD, Prakash S, Mendki MJ, Tikar SN, Saxena R, Gupta S, Tiwari SN, Ojha VP, Ravindran KJ, Ganesan K, Rao AN, Sharma RS, Tuli NR, Yadav NK, Vijayaraghavan R, Dua VK, Dash AP, Kaushik MP, Joshi PL, Valecha N. 2015. Control of Aedes aegypti and Ae. albopictus, the vectors of dengue and chikungunya, by using pheromone C21 with an insect growth regulator: Results of multicentric trials from 2007-12 in India. J Vector Borne Dis 52: 224-231. doi: 10.4103/0972-9062.166265
Neupane S, Davis T, Nayduch D, McGregor BL. 2023. Habitat type and host grazing regimen influence the soil microbial diversity and communities within potential biting midge larval habitats. Environ Microbiome 18: 5. doi: 10.1186/s40793-022-00456-8
Ni NT, Wu SS, Liao KM, Tu WC, Lin CF, Nai YS. 2022. Evaluation of the potential entomopathogenic fungi Purpureocillium lilacinum and Fusarium verticillioides for biological control of Forcipomyia taiwana (Shiraki). J Fungi 8: 861. doi: 10.3390/jof8080861
Nikolaidou AJ, Ioannou CS, Papadopoulos NT, Athanassiou CG. 2021. Efficacy of polydimethylsiloxane against Culex pipiens (Diptera: Culicidae). Environ Sci Pollut Res Int 28: 39614-39624. doi: 10.1007/s11356-021-13075-6
Obayashi N, Iwatani Y, Sakura M, Tamotsu S, Chiu M-C, Sato T. 2021. Enhanced polarotaxis can explain water-entry behaviour of mantids infected with nematomorph parasites. Curr Biol 31: R777-R778. doi: 10.1016/j.cub.2021.05.001
Ong SQ, Jaal Z. 2015. Investigation of mosquito oviposition pheromone as lethal lure for the control of Aedes aegypti (L.) (Diptera: Culicidae). Parasit Vectors 8: 1-7. doi: 10.1186/s13071-015-0639-2
Osgood CE. 1971. An oviposition pheromone associated with the egg rafts of Culex tarsalis. J Econ Entomol 64: 1038-1041. doi: 10.1093/jee/64.5.1038
Poldy J. 2020. Volatile cues influence host-choice in arthropod pests. Animals 10: 1984. doi: 10.3390/ani10111984
Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS. 2008. Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. PNAS 105: 9262-9267. doi: 10.1073/pnas.0802505105
Saifur RG, Dieng H, Hassan AA, Satho T, Miake F, Boots M, Salmah MRC, Abubakar S. 2010. The effects of moisture on ovipositional responses and larval eclosion of Aedes albopictus. J Am Mosq Control Assoc 26: 373-380. doi: 10.2987/10-6003.1
Saini R, Hassanali A, Andoke J, Ahuya P, Ouma W. 1996. Identification of major components of larviposition pheromone from larvae of tsetse flies Glossina morsitans morsitans Westwood and Glossina morsitans centralis Machado. J Chem Ecol 22: 1211-1220. doi: 10.1007/BF02266961
Sant’ana AL, Roque RA, Eiras AE. 2006. Characteristics of grass infusions as oviposition attractants to Aedes (Stegomyia) (Diptera: Culicidae). J Med Entomol 43: 214-220. doi: 10.1603/0022-2585(2006)043[0214:cogiao]2.0.co;2
Schwind R. 1983. Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 232: 53-63. doi: 10.1007/BF00222373
Seenivasagan T, Vijayaraghavan R. 2010. Oviposition pheromones in haematophagous insects. Vitam Horm 83: 597-630. doi: 10.1016/S0083-6729(10)83024-9
Shelley AJ, Coscarón S. 2001. Simuliid blackflies (Diptera: Simuliidae) and ceratopogonid midges (Diptera: Ceratopogonidae) as vectors of Mansonella ozzardi (Nematoda: Onchocercidae) in northern Argentina. Mem Inst Oswaldo Cruz 96: 451-458. doi: 10.1590/S0074-02762001000400003
Shih CL, Hsieh PY, Tu WC. 2019a. Effects of temperature on body size and reproductive potential of Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). Formos Entomol 39: 84-95. doi: 10.6662/TESFE.201908_39(3).001
Shih CL, Liao QM, Wang YY, Tu WC. 2019b. Abundance and host-seeking activity of the biting midge, Forcipomyia taiwana (Diptera: Ceratopogonidae). J Asia-Pacif Entomol 22: 1053-1059. doi: 10.1016/j.aspen.2019.08.014
Shih CL, Tu WC 2019. Blood-sucking behavior of female Forcipomyia taiwana (Shiraki) (Diptera: Ceratopogonidae). Formos Entomol 39: 105-114. doi: 10.6662/TESFE.201908_39(3).003
Shiraki T. 1913. Investigation on general injurious insect. Taiwan Sotokufu Noji Shikenjo Tokubetsu Hokodu 8: 286-297.
Siriyah SL, Tso IM. 2023. Alkaline water as a potential agent for biting midge control: Managing effectiveness and non-target organism impact evaluation. PLOS One 18: e0290262. doi: 10.1371/journal.pone.0290262
Sivakumar R, Jebanesan A, Govindarajan M, Rajasekar P. 2011. Oviposition attractancy of dodecanoic, hexadecanoic and tetradecanoic acids against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15: 1172-5.
Sun W, Chang H, Chang H. 1971. Study of a biting midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae). II. The immature stages of the midge. Chin Biosci 1: 36-40.
Sun WK. 1961. A tentative list of Ceratopogonidae (Diptera) recorded from Taiwan. Biol Bull Tunghai Univ (Taichung, Taiwan). 6: 1-16 pp.
Sun WK. 1967. Study of a biting midge, Forcipomyia (Lasiohelea) taiwana (Shiraki) (Diptera: Ceratopogonidae) I. Description of the complete life cycle of the midge reared in the laboratory. Biol Bull Tunghai Univ (Taichung, Taiwan). 29: 1-10 pp.
Sun WK. 1968. Biting midges (Dipetera: Ceratopogonidae) from Kinmen (Quemoy). Biol Bull Tunghai Univ (Taichung, Taiwan). 36: 1-6 pp.
Sun WKC. 1974. Laboratory colonization of biting midges (Diptera: Ceratopogonidae). J Med Entomol 11: 71-73. doi: 10.1093/jmedent/11.1.71
Takken W, Verhulst NO. 2017. Chemical signaling in mosquito–host interactions: the role of human skin microbiota. Curr Opin Insect Sci 20: 68-74. doi: 10.1016/j.cois.2017.03.011
Tan J, Xue J, Ke W. 1989. Observation on the bloodsucking and reproduction of Forcipomyia (Lasiohelea) taiwana. Acta Entomol. Sinica 32: 52-57.
Uslu U, Dik B. 2010. Chemical characteristics of breeding sites of Culicoides species (Diptera: Ceratopogonidae). Vet Parasitol 169: 178-184. doi: 10.1016/j.vetpar.2009.12.007
Walsh W, Duffner M, Pasternak A, Brodie BS, Johnson KS. 2024. Influence of polarized light, disruptive visual patterns, and chemical cues on oviposition in the aquatic midge, Chironomus riparius (Diptera: Chironomidae). Environ Entomol 53: 57-66. doi: 10.1093/ee/nvad116
Wang WL, Wen YD, Lin CC. 2010. The relationship of biting midges (Forcipomyia taiwana) (Diptera: Ceratopogonidae) density with algae on habitat Tao-Mi village, Puli township in Nantou County. Chin Biosci 52: 25-37. doi: 10.29981/CB.201012.0003
Wanji S, Tayong DB, Ebai R, Opoku V, Kien CA, Ndongmo WPC, Njouendou AJ, Ghani RN, Ritter M, Debrah YA. 2019. Update on the biology and ecology of Culicoides species in the South-West region of Cameroon with implications on the transmission of Mansonella perstans. Parasit Vectors 12: 1-12. doi: 10.1186/s13071-019-3432-9
Wehner Rd. 2001. Polarization vision – a uniform sensory capacity? J Exp Biol 204: 2589-2596. doi: 10.1242/jeb.204.14.2589
Wernet MF, Perry MW, Desplan C. 2015. The evolutionary diversity of insect retinal mosaics: common design principles and emerging molecular logic. Trends Genet 31: 316-328. doi: 10.1016/j.tig.2015.04.006
Wilson R, Wakefield A, Roberts N, Jones G. 2021. Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights. Parasit Vectors 14: 1-11. doi: 10.1186/s13071-020-04530-3
Wong J, Morrison AC, Stoddard ST, Astete H, Chu YY, Baseer I, Scott TW. 2012. Linking oviposition site choice to offspring fitness in Aedes aegypti: consequences for targeted larval control of dengue vectors. PLOS Negl Trop Dis 6: e1632. doi: 10.1371/journal.pntd.0001632
Yeh CC, Chuang YY. 1996. Colonization and bionomics of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the laboratory. J Med Entomol 33: 445-448. doi: 10.1093/jmedent/33.3.445
Yeh WB, Lee HM, Tu WC, Tang LC, Lee PY. 2009. Molecular differentiation and diversity of Forcipomyia taiwana (Diptera: Ceratopogonidae) based on the mitochondrial cytochrome oxidase II sequence. J Med Entomol 46: 249-256. doi: 10.1603/033.046.0209
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99374-
dc.description.abstract臺灣鋏蠓為目前臺灣地區重要騷擾性衛生害蟲,對戶外活動及人類健康造成負面影響。目前主要以人體誘集法監測族群,防治方式則多仰賴化學藥劑,惟長期施用恐造成環境汙染及健康風險,急需研發監測及防治之替代方法。本研究旨在尋找影響臺灣鋏蠓成蟲行為及未成熟期生長之物理及化學因子,以評估其做為防治資材之潛力。結果顯示 (1) 土臭素 (Geosmin) 為具誘引蚊蟲產卵效果的有機揮發性化合物,1 ppm濃度的土臭素也具誘引臺灣鋏蠓產卵作用,無論在含食物來源 (小球藻) 與否的基質上,其誘引產卵率為32~33 %;而甜菜根萃取液具更好的誘引產卵效果 (46~63 %),可做為土臭素的潛在替代來源,惟田間測試誘卵效果仍待改善。此外,聚二甲基矽氧烷 (Polydimethylsiloxane; PDMS) 為具蚊蟲產卵忌避作用的有機矽化合物,但對臺灣鋏蠓無顯著的忌產卵效果; (2) 在不同亮度 (400、800、1600 lux) 條件下,偏振可見光雖對臺灣鋏蠓雄蟲和未吸血雌蟲無顯著偏好影響,但在800 lux的水平偏振可見光對懷卵雌蟲可能具忌避作用; (3) 臺灣鋏蠓未成熟期均生活於土表,分析大坑 (高密度區) 和科博館 (中低密度區) 地區幼蟲孳生地土壤性質,包括酸鹼度、電導度、水分含量、質地%和可交換性陽離子濃度 (Ca2+、Mg2+、K+、Na+),使用多變量相關分析和複線性迴歸模型,評估與田間成蟲密度的相關性,顯示土壤中Na+濃度與田間成蟲密度呈負相關。(4) 仿間普遍認為苔蘚植物為臺灣鋏蠓發生根源,評估臺灣鋏蠓幼蟲於三種苔蘚植物 (真苔科、細鱗蘚科、羽苔科) 上的生長發育,顯示其化蛹率介於19.31~23.58 %,皆遠低於小球藻餵養組 (83.16 %)。雖提高藻類培養液中K2HPO4濃度4倍 (18.03 μM至72.10 μM),可於24天增加2倍藻類數目,但CaCl2和K2HPO4濃度增加至0.5、1 M之後,會導致67~100 %和65~98.5 %的臺灣鋏蠓幼蟲死亡,然相同濃度之MgSO4對臺灣鋏蠓幼蟲生長則無影響。本研究初步建立多項具應用潛力之臺灣鋏蠓理化因子,有利於未來開發誘產卵與抑制幼蟲生長發育之綜合管理策略。zh_TW
dc.description.abstractBiting midge, Forcipomyia taiwana (Diptera: Ceratopogonidae) is a nuisance anthropophilic pest in Taiwan, and its bite can cause severe itching and anaphylactic reactions, adversely affecting residents and the tourism industry. Currently, population monitoring relies primarily on human bait traps, while chemical control remains the dominant strategy during their outbreak, posing risks to both the environment and human health. Therefore, the development of both ethical and environmentally friendly alternatives for monitoring and control strategies is urgently needed. This study aimed to identify physical and chemical factors that influence the behavior of adult F. taiwana and the development of its immature stages, in order to evaluate their potential for use in control strategies. The results showed that (1) Geosmin, a volatile organic compound known as mosquito oviposition attractant, significantly attracted oviposition of F. taiwana at a concentration of 1 ppm, with oviposition rate ranging from 32–33 % regardless of the presence of a food source (Chlorella vulgaris). Beetroot extract exhibited a higher oviposition rate (46~63%) and may serve as a potential substitute for geosmin, however its field efficacy requires further improvement. Polydimethylsiloxane (PDMS) is a silicone-based compound that has been reported to act as mosquito oviposition deterrent, but it did not significantly interfere with the oviposition of F. taiwana. (2) Under different light intensities (400, 800, 1600 lux), polarized visible light had no significant effect on the behavior of males and blood-unfed females; however, horizontally polarized light at 800 lux may elicited an avoidance response in gravid females. (3) Field soil samples collected from Taichung Dakeng (high population density area) and the National Museum of Natural Science (low to medium population density area) were analyzed for pH, electrical conductivity, moisture content, texture, and concentration of exchangeable cations (Ca²⁺, Mg²⁺, K⁺, Na⁺). Results from multivariate correlation analysis and multiple linear regression models revealed that a negative correlation between soil Na⁺ concentration and F. taiwana abundance in the field. (4) The pupation rates of F. taiwana larvae reared on three moss species (Bryaceae, Thuidiaceae, and Lejeuneaceae) were ranged 19.31~23.58 %, which were significantly lower than that reared on Chlorella vulgaris (83.16%). Increasing K₂HPO₄ concentration in algae medium (18.03 μM to 72.10 μM) could double the growth rate of algal in 24 days, however higher concentration of CaCl₂ and K₂HPO₄ (0.5, 1 M) led to 67~100 % and 65~98.5 % larval mortality, respectively. MgSO4 has no effect on the growth of F. taiwana larvae. These studies identified potential physicochemical factors affecting the growth of F. taiwana, which will facilitate the development of integrated management strategy against this blood-sucking midge.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-10T16:05:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-10T16:05:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
摘要 iii
Abstract v
壹、緒言 1
貳、文獻回顧 5
一、吸血蠓簡介 5
二、庫蠓幼蟲棲地與土壤性質之關係 6
三、臺灣鋏蠓基礎生物學和生態學研究 7
(一) 臺灣鋏蠓幼蟲孳生地與環境因子之關係 7
(二) 臺灣鋏蠓交尾和吸血活動之棲地 8
(三) 臺灣鋏蠓吸血活動之日週期和季節性族群變動 9
(四) 臺灣鋏蠓實驗室飼育 10
1. 幼蟲飼育基質和食性 11
2. 溫度對未成熟期生長發育之影響 12
3. 淹水和溼度對未成熟期生長發育之影響 13
4. 成蟲群舞和交尾行為 14
5. 雌成蟲人工餵血 15
6. 雌成蟲產卵基質 16
7. 雌成蟲產卵習性 18
四、臺灣鋏蠓防治策略之研究近況 18
(一) 臺灣鋏蠓防治藥劑 19
1. 傳統化學藥劑對臺灣鋏蠓之防治應用 19
2. 生長調節劑和微生物製劑對臺灣鋏蠓之殺蟲活性 20
(二) 臺灣鋏蠓棲地管理措施 21
1. 殺藻劑和微生物菌株抑制棲地藻類生長 21
2. 鹼性天然資材和覆蓋材料減少棲地可用性 21
3. 土壤改良劑和無機肥料對未成熟期生長之影響 22
(三) 昆蟲忌避劑對臺灣鋏蠓之個人防護及殺蟲活性 24
五、新穎吸血昆蟲物理防治方法之研究導向 26
(一) 視覺線索在吸血昆蟲之行為研究 26
1. 光波長和顏色感知對臺灣鋏蠓行為之影響 27
2. 偏振光 (Polarized light) 對吸血昆蟲行為之影響 28
(二) 觸覺線索在吸血昆蟲之防治應用 30
(三) 嗅覺線索 (化學傳訊物質) 在吸血昆蟲之行為研究 32
1. 吸血昆蟲寄主搜尋之氣味線索 33
2. 寄主氣味對臺灣鋏蠓之誘引效果 34
3. 吸血昆蟲產卵誘引之氣味線索 35
4. 產卵誘引氣味應用於臺灣鋏蠓之潛在開發方向 37
參、材料與方法 39
一、臺灣鋏蠓實驗室累代大量飼養 39
(一) 小球藻培養方法 39
(二) 臺灣鋏蠓成蟲和幼蟲飼育、繼代繁殖之流程 40
1. 臺灣鋏蠓親代採集 40
2. 雌蠓人工餵血 40
3. 雌蠓產卵環境建構 41
4. 幼蟲飼育和化蛹 42
5. 臺灣鋏蠓群舞和交尾 43
二、臺灣鋏蠓對土臭素的產卵偏好試驗 44
(一) 試驗用壓克力籠 44
(二) 雌蠓對不同濃度土臭素的產卵試驗 44
(三) 雌蠓對不同濃度土臭素的藻類基質的產卵試驗 45
(四) 雌蠓對甜菜根萃取液的洋菜膠與藻類基質的產卵試驗 45
(五) 甜菜根誘卵裝置田間試驗初探 45
三、臺灣鋏蠓對聚二甲基矽氧烷 (PDMS) 的產卵偏好性試驗 46
(一) PDMS劑量配置 46
(二) 雌蠓對不同PDMS基質數量的產卵試驗 46
四、臺灣鋏蠓田間幼蟲棲地土壤的物理和化學性質分析 46
(一) 臺中大坑和科博館地區之臺灣鋏蠓棲群密度調查 46
(二) 土壤採樣方法及前處理 47
(三) 土壤酸鹼度(pH值)測定:玻璃電極法 47
(四) 土壤電導度測定 48
(五) 土壤水分含量測定:重量法 48
(六) 土壤質地分析:比重計法 48
(七) 土壤可交換性鉀、鈉、鈣、鎂離子分析:中性醋酸銨法 49
五、臺灣鋏蠓幼蟲於田間土壤、苔蘚植物及無機鹽的飼育試驗 49
(一) 幼蟲於不同田間土壤基質的飼育試驗 49
(二) 幼蟲於不同苔蘚物種的飼育試驗 50
(三) 幼蟲於不同無機鹽處理藻液的飼育試驗 50
六、藻類於不同濃度無機鹽溶液的培養試驗 51
(一) 不同濃度無機鹽處理之藻類培養液配製 51
(二) 藻類濃度測定:血球計數測定方法 52
七、臺灣鋏蠓對偏振光的偏好性試驗 52
(一) 偏振光的行為偏好試驗裝置 52
(二) 臺灣鋏蠓對偏振光之偏好試驗方法 53
(三) 臺灣鋏蠓對不同偏振光背景之產卵偏好初探 53
八、資料處理與統計分析 54
肆、結果 55
一、建立實驗室大量臺灣鋏蠓族群相關飼育背景資訊 55
二、土臭素和甜菜根萃取液對臺灣鋏蠓產卵之偏好 57
三、PDMS對臺灣鋏蠓產卵之偏好 59
四、臺灣鋏蠓田間幼蟲棲地土壤之理化性質分析 59
五、田間土壤、苔蘚及無機鹽對臺灣鋏蠓幼蟲生長之影響 62
六、無機鹽對藻類生長之影響 65
七、臺灣鋏蠓對偏振光之偏好 66
伍、討論 67
一、飼育密度對臺灣鋏蠓生長發育之探討 67
二、土臭素和甜菜根萃取液對臺灣鋏蠓誘產卵之探討 69
三、PDMS對臺灣鋏蠓忌產卵效果之探討 70
四、田間土壤微環境因子對臺灣鋏蠓未成熟期生長之潛在影響 71
五、臺灣鋏蠓對不同偏振光特性之偏好 75
陸、結論 76
參考文獻 105
-
dc.language.isozh_TW-
dc.subject臺灣鋏蠓zh_TW
dc.subject產卵誘引物質zh_TW
dc.subject土臭素zh_TW
dc.subject孳生土壤性質zh_TW
dc.subject偏振光zh_TW
dc.subjectPolarized lighten
dc.subjectForcipomyia taiwanaen
dc.subjectOviposition attractanten
dc.subjectGeosminen
dc.subjectSoil property of breeding siteen
dc.title物理及化學因子對臺灣鋏蠓生長之影響zh_TW
dc.titleEffects of physical and chemical factors on the growth of Forcipomyia taiwana (Diptera: Ceratopogonidae)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許如君;許正一;羅怡珮;黃旌集zh_TW
dc.contributor.oralexamcommitteeJu-Chun Hsu;Zeng-Yei Hseu;Yi-Pey Luo;Chin-Gi Huangen
dc.subject.keyword臺灣鋏蠓,產卵誘引物質,土臭素,孳生土壤性質,偏振光,zh_TW
dc.subject.keywordForcipomyia taiwana,Oviposition attractant,Geosmin,Soil property of breeding site,Polarized light,en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202502330-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept昆蟲學系-
dc.date.embargo-lift2030-08-03-
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.19 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved