Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳沛隆zh_TW
dc.contributor.advisorPei-Lung Chenen
dc.contributor.author段德敏zh_TW
dc.contributor.authorDe-Min Duanen
dc.date.accessioned2025-09-09T16:10:21Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-06-08-
dc.identifier.citationReferences
1. Writing Committee M, Isselbacher EM, Preventza O, Hamilton Black Iii J, Augoustides JG, Beck AW, et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;80(24):e223-e393.
2. Roman MJ, Devereux RB, Kramer-Fox R, O'Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. The American journal of cardiology. 1989;64(8):507-12.
3. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1-39 e14.
4. Hellmich B, Agueda A, Monti S, Buttgereit F, de Boysson H, Brouwer E, et al. 2018 Update of the EULAR recommendations for the management of large vessel vasculitis. Ann Rheum Dis. 2020;79(1):19-30.
5. van Kimmenade RR, Kempers M, de Boer MJ, Loeys BL, Timmermans J. A clinical appraisal of different Z-score equations for aortic root assessment in the diagnostic evaluation of Marfan syndrome. Genetics in medicine : official journal of the American College of Medical Genetics. 2013;15(7):528-32.
6. Czerny M, Schmidli J, Adler S, van den Berg JC, Bertoglio L, Carrel T, et al. Current options and recommendations for the treatment of thoracic aortic pathologies involving the aortic arch: an expert consensus document of the European Association for Cardio-Thoracic surgery (EACTS) and the European Society for Vascular Surgery (ESVS). Eur J Cardiothorac Surg. 2019;55(1):133-62.
7. Tsai TT, Nienaber CA, Eagle KA. Acute aortic syndromes. Circulation. 2005;112(24):3802-13.
8. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. Journal of Medical Genetics. 2010;47(7):476-85.
9. Amemiya K, Ishibashi-Ueda H, Mousseaux E, Achouh P, Ochiai M, Bruneval P. Comparison of the damage to aorta wall in aortitis versus noninflammatory degenerative aortic diseases. Cardiovasc Pathol. 2021;52:107329.
10. Vapnik JS, Kim JB, Isselbacher EM, Ghoshhajra BB, Cheng Y, Sundt TM, 3rd, et al. Characteristics and Outcomes of Ascending Versus Descending Thoracic Aortic Aneurysms. The American journal of cardiology. 2016;117(10):1683-90.
11. Pinard A, Jones GT, Milewicz DM. Genetics of Thoracic and Abdominal Aortic Diseases. Circ Res. 2019;124(4):588-606.
12. Metzker ML. Sequencing technologies — the next generation. Nature Reviews Genetics. 2010;11(1):31-46.
13. Mahmoud M, Gobet N, Cruz-Davalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long and the short of it. Genome Biol. 2019;20(1):246.
14. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nature Reviews Genetics. 2009;10(10):691-703.
15. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: Promises and challenges. Cancer Letters. 2013;340(2):284-95.
16. Chiu H-H, Wu M-H, Chen H-C, Kao F-Y, Huang S-K. Epidemiological Profile of Marfan Syndrome in a General Population: A National Database Study. Mayo Clinic Proceedings. 2014;89(1):34-42.
17. Verstraeten A, Luyckx I, Loeys B. Aetiology and management of hereditary aortopathy. Nature reviews Cardiology. 2017;14(4):197-208.
18. Goldfinger JZ, Halperin JL, Marin ML, Stewart AS, Eagle KA, Fuster V. Thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2014;64(16):1725-39.
19. Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary Influence in Thoracic Aortic Aneurysm and Dissection. Circulation. 2016;133(24):2516-28.
20. Brownstein AJ, Ziganshin BA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes Associated with Thoracic Aortic Aneurysm and Dissection: An Update and Clinical Implications. Aorta (Stamford, Conn). 2017;5(1):11-20.
21. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377-81.
22. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 0 1- 0 33.
23. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.
24. adzhubei Ia. A method and server for predicting damaging missense mutations. 2010;7(4)
25. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Research. 2003;31(37):3812-3814.
26. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods. 2014;11(4):361-2.
27. Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67.
28. GENE YEO, CHRISTOPHER B. BURGE. MaxEntscan: Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals. JOURNAL OF COMPUTATIONAL BIOLOGY. 2004;11(2-3):377-394.
29. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. SpliceAI: Predicting Splicing from Primary Sequence with Deep Learning. Cell. 2019;176(3):535-48 e24.
30. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46(D1):D1062-d7.
31. Richards S. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. 2015, 17 (5): 405-423.
32. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nature Biotechnology. 2011;29(1):24-6.
33. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178-92.
34. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences. 1977;74(12):5463-7.
35. Al‐Himdani S, Ud‐Din S, Gilmore S, Bayat A. Striae distensae: a comprehensive review and evidence‐based evaluation of prophylaxis and treatment. British Journal of Dermatology. 2014;170(3):527-47.
36. Ledoux M, Beauchet A, Fermanian C, Boileau C, Jondeau G, Saiag P. A case-control study of cutaneous signs in adult patients with Marfan disease: Diagnostic value of striae. Journal of the American Academy of Dermatology. 2011;64(2):290-5.
37. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genetics in Medicine. 2017;19(2):249-55.
38. Wolford BN, Hornsby WE, Guo D, Zhou W, Lin M, Farhat L, et al. Clinical Implications of Identifying Pathogenic Variants in Individuals With Thoracic Aortic Dissection. Circ Genom Precis Med. 2019;12(6):e002476.
39. Weerakkody R, Ross D, Parry DA, Ziganshin B, Vandrovcova J, Gampawar P, et al. Targeted genetic analysis in a large cohort of familial and sporadic cases of aneurysm or dissection of the thoracic aorta. Genetics in medicine : official journal of the American College of Medical Genetics. 2018;20(11):1414-22.
40. Yang H, Luo M, Fu Y, Cao Y, Yin K, Li W, et al. Genetic testing of 248 Chinese aortopathy patients using a panel assay. Sci Rep. 2016;6:33002.
41. Hung CC, Lin SY, Lee CN, Cheng HY, Lin SP, Chen MR, et al. Mutation spectrum of the fibrillin-1 (FBN1) gene in Taiwanese patients with Marfan syndrome. Ann Hum Genet. 2009;73(Pt 6):559-67.
42. Guo J, Cai L, Jia L, Li X, Xi X, Zheng S, et al. Wide mutation spectrum and frequent variant Ala27Thr of FBN1 identified in a large cohort of Chinese patients with sporadic TAAD. Sci Rep. 2015;5:13115.
43. Layer RM, Chiang C, Quinlan AR, Hall IM. LUMPY: a probabilistic framework for structural variant discovery. Genome Biology. 2014; 15(6):R84.
44. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Kallberg M, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220-2.
45. Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333-i9.
46. Cameron DL, Schroder J, Penington JS, Do H, Molania R, Dobrovic A, et al. GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly. Genome Res. 2017;27(12):2050-60.
47. Wala JA, Bandopadhayay P, Greenwald NF, O'Rourke R, Sharpe T, Stewart C, et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 2018;28(4):581-91.
48. Behera S, Catreux S, Rossi M, Truong S, Huang Z, Ruehle M, et al. Comprehensive genome analysis and variant detection at scale using DRAGEN. Nature Biotechnology. 2024.
49. Zook JM, Hansen NF, Olson ND, Chapman L, Mullikin JC, Xiao C, et al. A robust benchmark for detection of germline large deletions and insertions. Nat Biotechnol. 2020;38(11):1347-55.
50. Porubsky D, Ebert P, Audano PA, Vollger MR, Harvey WT, Marijon P, et al. Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nat Biotechnol. 2021;39(3):302-8.
51. Cameron DL, Dong R, Papenfuss AT. StructuralVariantAnnotation: a R/Bioconductor foundation for a caller-agnostic structural variant software ecosystem. Bioinformatics. 2022;38(7):2046-8.
52. Kosugi S, Momozawa Y, Liu X, Terao C, Kubo M, Kamatani Y. Comprehensive evaluation of structural variation detection algorithms for whole genome sequencing. Genome Biol. 2019;20(1):117.
53. Gong T, Hayes VM, Chan EKF. Detection of somatic structural variants from short-read next-generation sequencing data. Brief Bioinform. 2021;22(3).
54. Joe S, Park JL, Kim J, Kim S, Park JH, Yeo MK, et al. Comparison of structural variant callers for massive whole-genome sequence data. BMC Genomics. 2024;25(1):318.
55. Zhuang G, Zhang X, Du W, Xu L, Ma J, Luo H, et al. A benchmarking framework for the accurate and cost-effective detection of clinically-relevant structural variants for cancer target identification and diagnosis. Journal of translational medicine. 2024;22(1):65.
56. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75-81.
57. Li G, Jiang T, Li J, Wang Y. PanSVR: Pan-Genome Augmented Short Read Realignment for Sensitive Detection of Structural Variations. Front Genet. 2021;12:731515.
58. Rajaby R, Liu DX, Au CH, Cheung YT, Lau AYT, Yang QY, et al. INSurVeyor: improving insertion calling from short read sequencing data. Nat Commun. 2023;14(1):3243.
59. Chiara M, Pesole G, Horner DS. SVM²: an improved paired-end-based tool for the detection of small genomic structural variations using high-throughput single-genome resequencing data. Nucleic Acids Res. 2012;40(18):e145.
60. Michaelson JJ, Sebat J. forestSV: structural variant discovery through statistical learning. Nat Methods. 2012;9(8):819-21.
61. Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD, et al. Wham: Identifying Structural Variants of Biological Consequence. PLoS Comput Biol. 2015;11(12):e1004572.
62. Parikh H, Mohiyuddin M, Lam HY, Iyer H, Chen D, Pratt M, et al. svclassify: a method to establish benchmark structural variant calls. BMC Genomics. 2016;17:64.
63. Alzaid EA, Allali AE, Aboalsamh H. A Classification Approach for Genome Structural Variations Detection. Journal of Proteomics & Bioinformatics. 2018;11(12).
64. Bartenhagen C, Dugas M. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms. Briefings in Bioinformatics. 2015;17(1):51-62.
65. Popic V, Rohlicek C, Cunial F, Hajirasouliha I, Meleshko D, Garimella K, et al. Cue: a deep-learning framework for structural variant discovery and genotyping. Nat Methods. 2023;20(4):559-68.
66. Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods. 2018;15(6):461-8.
67. Jiang T, Liu Y, Jiang Y, Li J, Gao Y, Cui Z, et al. Long-read-based human genomic structural variation detection with cuteSV. Genome Biol. 2020;21(1):189.
68. Gaitán N, Duitama J. A graph clustering algorithm for detection and genotyping of structural variants from long reads. Gigascience. 2024;13.
69. Heller D, Vingron M. SVIM: structural variant identification using mapped long reads. Bioinformatics. 2019;35(17):2907-15.
70. Hu H, Gao R, Gao W, Gao B, Jiang Z, Zhou M, et al. SVDF: enhancing structural variation detect from long-read sequencing via automatic filtering strategies. Brief Bioinform. 2024;25(4).
71. Zhang Z, Jiang T, Li G, Cao S, Liu Y, Liu B, et al. Kled: an ultra-fast and sensitive structural variant detection tool for long-read sequencing data. Brief Bioinform. 2024;25(2).
72. Zheng Y, Shang X. SVvalidation: A long-read-based validation method for genomic structural variation. PloS one. 2024;19(1):e0291741.
73. Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, et al. Whole genome sequencing in clinical practice. BMC Medical Genomics. 2024;17(1):39.
74. Nurchis MC, Altamura G, Riccardi MT, Radio FC, Chillemi G, Bertini ES, et al. Whole genome sequencing diagnostic yield for paediatric patients with suspected genetic disorders: systematic review, meta-analysis, and GRADE assessment. Archives of Public Health. 2023;81(1):93.
75. Austin-Tse CA, Jobanputra V, Perry DL, Bick D, Taft RJ, Venner E, et al. Best practices for the interpretation and reporting of clinical whole genome sequencing. NPJ Genom Med. 2022;7(1):27.
76. Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, et al. The Human Phenotype Ontology in 2017. Nucleic Acids Res. 2017;45(D1):D865-d76.
77. Molina-Ramirez LP, Kyle C, Ellingford JM, Wright R, Taylor A, Bhaskar SS, et al. Personalised virtual gene panels reduce interpretation workload and maintain diagnostic rates of proband-only clinical exome sequencing for rare disorders. J Med Genet. 2022 Apr;59(4):393-398.
78. Schon U, Holzer A, Laner A, Kleinle S, Scharf F, Benet-Pages A, et al. HPO-driven virtual gene panel: a new efficient approach in molecular autopsy of sudden unexplained death. BMC Med Genomics. 2021;14(1):94.
79. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018:201178.
80. Pagel KA, Antaki D, Lian A, Mort M, Cooper DN, Sebat J, et al. Pathogenicity and functional impact of non-frameshifting insertion/deletion variation in the human genome. PLoS Comput Biol. 2019;15(6):e1007112.
81. Geoffroy V, Herenger Y, Kress A, Stoetzel C, Piton A, Dollfus H, et al. AnnotSV: an integrated tool for structural variations annotation. Bioinformatics. 2018;34(20):3572-4.
82. Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, et al. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res. 2017;27(11):1916-29.
83. Torene RI, Galens K, Liu S, Arvai K, Borroto C, Scuffins J, et al. Mobile element insertion detection in 89,874 clinical exomes. Genetics in medicine : official journal of the American College of Medical Genetics. 2020;22(5):974-8.
84. Chu C, Borges-Monroy R, Viswanadham VV, Lee S, Li H, Lee EA, et al. Comprehensive identification of transposable element insertions using multiple sequencing technologies. Nat Commun. 2021;12(1):3836.
85. Djie Tjwan Thung, Joep de Ligt, Lisenka EM Vissers, Marloes Steehouwer, Mark Kroon, Petra de Vries, Eline P Slagboom, Kai Ye, Joris A Veltman and Jayne Y Hehir-Kwa. Mobster: accurate detection of mobile element insertions in next generation sequencing data. Genome Biology (2014);15:488.
86. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res. 2012;22(9):1760-74.
87. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47(D1):D886-D94.
88. Jacobsen JOB, Kelly C, Cipriani V, Research Consortium GE, Mungall CJ, Reese J, et al. Phenotype-driven approaches to enhance variant prioritization and diagnosis of rare disease. Hum Mutat. 2022;43(8):1071-81.
89. Barbitoff YA, Ushakov MO, Lazareva TE, Nasykhova YA, Glotov AS, Predeus AV. Bioinformatics of germline variant discovery for rare disease diagnostics: current approaches and remaining challenges. Brief Bioinform. 2024;25(2).
90. Sheikh Hassani M, Jain R, Ramaswamy S, Sinha S, El Naofal M, Halabi N, et al. Virtual Gene Panels Have a Superior Diagnostic Yield for Inherited Rare Diseases Relative to Static Panels. Clin Chem. 2025;71(1):169-84.
91. Schluter A, Velez-Santamaria V, Verdura E, Rodriguez-Palmero A, Ruiz M, Fourcade S, et al. ClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization. Genome Med. 2023;15(1):68.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99366-
dc.description.abstract胸主動脈瘤與剝離症候群 (TAAD) 是一種隱蔽且潛在致命的疾病。在本研究中,針對來自 NTU TAAD cohort的 125位受試者,使用基於次世代定序技術的 NTU TAAD 基因組 (29 genes) 進行篩檢,得出了 42 個基因診斷結果。此基因組篩檢在證實早期診斷及對已知主動脈擴張患者進行剝離風險分層方面展現出高效性。基因組的特異性為 82.4%,陽性預測值 (PPV) 為 87%。然而,其靈敏度為 54.8%,在此世代研究中的檢測率為 43%。值得注意的是,皮膚擴張紋可能作為初步篩查指標,適合在進行進一步、更全面的檢查之前使用。
此外,在我們對結構變異檢測算法的比較研究中,評估了五個先進的結構變異檢測算法和商業軟體 DRAGEN 的性能,使用來自 GIAB v0.6 Tier 1 基準集以及著名的 HGSVC2 基準集的短讀序全基因組數據。每種算法均獨立測試,並且在多樣協議 (multiple agreement) 和聯合 (union) 策略下進行了多種組合測試。聯合策略達到了更高的召回率 (recall rate),而多樣協議策略則展現出更優秀的精確度 (precision)。我們的分析顯示,每種算法具有內在的優勢和劣勢,導致所檢測到的結構變異類型和大小有所不同。組合策略有效協調了這些差異,提升了總體性能,並達到與商業軟體 DRAGEN 相當的 F1 分數。
在世代研究中,未找到致病基因的 83 位前驅患者中,34 位臨床特徵為主動脈瘤或剝離篩選為 NTU TAAD WGS cohort的試驗者並接受了全基因組定序和基因變異篩選,過程中使用兩組虛擬基因組篩選變異,分別為專注型 (focused panel) 和廣譜型 (broad spectrum panel)。在這 34 位前驅患者中,經過專注型虛擬基因資組過濾後,在 5 位患者中發現了致病變異點,包括在 FBN1 基因中發現的一個單核苷酸變異點 (SNV)、兩個剪接位點變異 (splice site variant) 和兩個結構變異 (structural variant)。廣譜虛擬基因組篩選後每位患者大約識別出 260 個候選變異。為了偵測全新的致病基因,針對剩餘的 29 位患者的廣譜基因組篩選出來之候選變異進行了基因層級的交集分析,此方法對於發現潛在導致胸主動脈瘤和剝離病理的新基因至關重要。
zh_TW
dc.description.abstractThoracic aortic aneurysm and dissection (TAAD) is a silent yet potentially severe condition. In the NTU TAAD cohort study, 125 probands were screened using a next-generation sequencing NTU TAAD panel comprising 29 genes, leading to 42 genetic diagnoses. The panel effectively confirmed early-stage cases and stratified dissection risk, showing a specificity of 82.4% and a positive predictive value (PPV) of 87%. However, sensitivity was 54.8%, with a detection rate of 41%. Notably, skin striae distensae may serve as an early screening indicator before comprehensive examinations.
Our comparative study evaluated five advanced SV detection algorithms alongside the commercial software DRAGEN using short-read whole-genome sequencing data from the GIAB v0.6 Tier 1 and HGSVC2 benchmark sets. The union strategy improved recall, while the multiple agreement method enhanced precision. Each algorithm exhibited strengths and limitations, affecting SV detection variability. Combining approaches optimized performance, yielding F1 scores similar to those of DRAGEN.
Among 83 probands previously testing negative for disease-causing genes, 34 underwent whole-genome sequencing and variant prioritization in the NTU TAAD WGS cohort. We applied focused (169 genes) and broad-spectrum (3197 genes) virtual panels, identifying disease-causing variants in 5 probands, including 1 SNV, 2 splice site variants, and 2 structural variants in FBN1. The broad-spectrum panel yielded roughly 260 candidate variants per proband, and gene-level intersection analysis among the remaining 29 probands provided insights into potential novel genetic contributors to TAAD pathology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:10:21Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:10:21Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
口試委員審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of contents v
List of figures viii
List of tables ix
Supplementary x
1. Introduction 1
1.1 Anatomy of aorta 1
1.2 Normal aortic size 3
1.3 Definition of aortic aneurysm and dissection 3
1.4 Revised Ghent criteria for diagnosis of Marfan syndrome 4
1.5 Causes of aortic aneurysm and dissection 6
1.6 Genetic diagnosis for Mendelian disease 9
1.7 Distinct types of genetic variants 9
1.7.1 Single nucleotide variants (SNVs) 9
1.7.2 Small indels 10
1.7.3 Structural variants (SVs) 11
1.7.4 Mobile element insertions (MEIs) 12
1.8 Next generation sequencing for monogenic disease 14
2. Gene panel analysis of NTU TAAD cohort 15
2.1 Background 15
2.2 Aims 15
2.3 Materials and Methods 16
2.3.1 Enrollment of participants 16
2.3.2 Establishment of NTU TAAD panel (29 genes) 16
2.3.3 Library construction and next generation sequencing 17
2.3.4 Computation resources 18
2.3.5 Variant calling and annotation 19
2.3.6 Prioritization and interpretation of variants 20
2.3.7 Confirmation of identified variants 21
2.3.8 Statistics 22
2.4 Results 22
2.4.1 Baseline characteristics of NTU TAAD cohort 22
2.4.2 Physical appearance as a potential prediction marker 26
2.4.3 Prognostic utility of the NTU TAAD panel 31
2.4.4 Multi-gene NGS panel outperforms FBN1-only analysis in predictive diagnosis 33
2.4.5 Genetic characteristics of TAAD patients 34
2.4.6 Disease-causing variants associate with early onset and enhanced systemic manifestations in TAAD patients 35
2.5 Discussions 36
2.5.1 Skin striae distensae as a marker for AoAD screening 36
2.5.2 The gene panel can confirm early-stage AoAD 37
2.5.3 The gene panel can help stratify the risk of dissection 38
2.5.4 High detection rate due to strict inclusion criteria 39
2.6 Conclusions 39
2.7 Limitations 40
3. Comparisons of performances of structural variants detection algorithms in solitary or combination strategy 41
3.1 Background 41
3.2 Aims 42
3.3 Study design 42
3.4 Materials and Methods 43
3.4.1 Truth set 43
3.4.2 SV detection algorithms 43
3.4.3 Calling and refinement of structural variations 44
3.4.4 Combination strategies of multiple algorithms 45
3.4.5 Evaluation of performance for single algorithm and combination strategies 46
3.4.6 Computational resources 48
3.5 Results 48
3.5.1 SV detection methods included in this study 48
3.5.2 Evaluation of SV detection methods based on the GIAB benchmark set and well-referenced cell lines 50
3.5.3 The individual performance of each algorithm 53
3.5.4 Systematic identification of the performances of combination strategies 58
3.6 Discussions 67
3.7 Conclusions 71
3.8 Acknowledgments 71
4. NTU TAAD WGS cohort 73
4.1 Background 73
4.2 Aims 74
4.3 Study design 74
4.4 Materials and Methods 75
4.4.1 Enrollment of participants 75
4.4.2 Establishment of virtual panels 75
4.4.3 Library construction and whole genome sequencing 76
4.4.4 Computation resources 77
4.4.5 Calling and annotation of SNVs and small indels 77
4.4.6 Calling and annotation of structural variants 78
4.4.7 Calling and annotation of mobile element insertions 78
4.4.8 Variant prioritization pathway 1: by Clinvar database 79
4.4.9 Variant prioritization pathway 2: by prediction score 80
4.4.10 Variant prioritization pathway 3: by ACMG classification and 4: by AnnotSV ranking score 80
4.4.11 Classification and interpretation of variants 82
4.4.12 Identification of novel disease-causing gene through gene-level intersection analysis 82
4.4.13 Confirmation of identified variants 83
4.5 Results 83
4.5.1 Baseline characteristics 83
4.5.2 Participant selection and genetic variants prioritization 84
4.5.3 Supported variants filtered through focused virtual panel and broad-spectrum virtual panel 86
4.5.4 Recurrent gene identified via gene-level intersection analysis within a broad-spectrum panel 90
4.6 Discussions 93
4.6.1 Maximizing variant detection through whole genome sequencing 93
4.6.2 Different filtration pathways prevent missed detection of variants 94
4.6.3 Balancing sensitivity and specificity in broad-spectrum virtual panel 95
4.6.4 Intersection analysis between probands gives an opportunity for detection of novel gene 96
4.7 Conclusions 98
5. References 100
6. Appendices 108
-
dc.language.isoen-
dc.subject全基因體定序zh_TW
dc.subject基因組篩選zh_TW
dc.subject胸主動脈瘤與剝離徵侯群zh_TW
dc.subject次世代基因定序zh_TW
dc.subject結構變異檢測算法zh_TW
dc.subjectthoracic aortic aneurysm and dissectionen
dc.subjectgene panel analysisen
dc.subjectstructural variants detectionen
dc.subjectwhole genome sequencingen
dc.subjectnext generation sequencingen
dc.title胸主動脈瘤與剝離症侯群的系統性基因分析及結構變異檢測算法在單一或組合策略下的性能比較zh_TW
dc.titleSystemic Genetic Analysis for Thoracic Aortic Aneurysm and Dissection (TAAD) and Comparison of Performances of Structural Variants Detection Algorithms in Solitary or Combination Strategyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee柯毓麟;楊鎧鍵;許書睿;游治節;邱馨慧zh_TW
dc.contributor.oralexamcommitteeYu-Lin Ko;Kai-Chien Yang;Jacob Shujui Hsu;Chih-Chieh Yu;Hsin-Hui Chiuen
dc.subject.keyword次世代基因定序,胸主動脈瘤與剝離徵侯群,基因組篩選,結構變異檢測算法,全基因體定序,zh_TW
dc.subject.keywordnext generation sequencing,thoracic aortic aneurysm and dissection,gene panel analysis,structural variants detection,whole genome sequencing,en
dc.relation.page127-
dc.identifier.doi10.6342/NTU202500995-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-06-09-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-lift2025-09-10-
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.39 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved