Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99365Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 沈湯龍 | zh_TW |
| dc.contributor.advisor | Tang-Long Shen | en |
| dc.contributor.author | 蔡翔宇 | zh_TW |
| dc.contributor.author | Hsiang-Yu Tsai | en |
| dc.date.accessioned | 2025-09-09T16:10:10Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Ludemann, C.I., et al., Global data on fertilizer use by crop and by country. Scientific Data, 2022. 9(1): 501.
2. Zhuang, L., et al., A Comprehensive Study on the Impact of Chemical Fertilizer Reduction and Organic Manure Application on Soil Fertility and Apple Orchard Productivity. Agronomy, 2024. 14(7): 1398. 3. Menegat, S., A. Ledo, and R. Tirado, Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Scientific Reports, 2022. 12(1): 14490. 4. Hu, Y. and Y. Liu, Impact of fertilizer and pesticide reductions on land use in China based on crop-land integrated model. Land Use Policy, 2024. 141: 107155. 5. He, Z., et al., The impact of organic fertilizer replacement on greenhouse gas emissions and its influencing factors. Science of The Total Environment, 2023. 905: 166917. 6. Pandey, S., Crop rotation and intercropping techniques. 2024. 38-54. 7. Nanlin, L., et al., Environmental and economic assessment of the construction, operation, and demolition of a decentralized composting facility. Science of The Total Environment, 2023. 884: 163724. 8. Fixen, P., et al., Nutrient/fertilizer use efficiency: measurement, current situation and trends. 2015. 8-38. 9. Roy, S., et al., Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. Frontiers in Plant Science, 2022. 12: 793145. 10. Yadav, V., Endogenous Peptides Involved in Plant Growth and Development, in Plant Elicitor Peptides: New Tool for Sustainable Agriculture, S. Singh and R. Mehrotra, Editors. 2024, Springer Nature Singapore: Singapore. 113-130. 11. Rouphael, Y. and M. Ciriello, Plant biostimulants: motivations, history and evolution. International Journal of Vegetable Science, 2025. 31. 12. Ciriello, M., et al., Unravelling the nexus of plant response to non-microbial biostimulants under stress conditions. Plant Stress, 2024. 11: 100421. 13. Yakhin, O., et al., Biostimulants in Plant Science: A Global Perspective. Frontiers in Plant Science, 2017. 7. 14. Kauffman, G., D. Kneivel, and T. Watschke, Effects of a Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polyphenol Production of Perennial Ryegrass. Crop Science - CROP SCI, 2007. 47. 15. Rouphael, Y. and G. Colla, Editorial: Biostimulants in Agriculture. Frontiers in Plant Science, 2020. 11: 1-7. 16. Kurniawati, A., et al., Understanding the future of bio-based fertilisers: The EU's policy and implementation. Sustainable Chemistry for Climate Action, 2023. 3: 100033. 17. Singh, R., et al., Bacterial biostimulants for climate smart agriculture practices: Mode of action, effect on plant growth and roadmap for commercial products. Journal of Sustainable Agriculture and Environment, 2024. 3(1): e12085. 18. du Jardin, P., Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 2015. 196: 3-14. 19. Hafez, M., et al., Humic Substances and Their Potential to Enhance Soil, Plants, and Animals' Productivity: A New Concept for Sustainable Agriculture. 2023. 189. 20. Deolu-Ajayi, A.O., et al., The power of seaweeds as plant biostimulants to boost crop production under abiotic stress. Plant, Cell & Environment, 2022. 45(9): 2537-2553. 21. Shinde, N.A., P.G. Kawar, and S.G. Dalvi, Chitosan-based nanoconjugates: A promising solution for enhancing crops drought-stress resilience and sustainable yield in the face of climate change. Plant Nano Biology, 2024. 7: 100059. 22. Begum, N., et al., Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Frontiers in Plant Science, 2019. 10. 23. Basu, A., et al., Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability, 2021. 13(3): 1140. 24. Carillo, P., Can biostimulants enhance plant resilience to heat and water stress in the Mediterranean hotspot? Plant Stress, 2025. 16: 100802. 25. Lewicka, K., et al., Current Trends of Polymer Materials’ Application in Agriculture. Sustainability, 2024. 16(19): 8439. 26. Chen, Y.L., et al., The role of peptides cleaved from protein precursors in eliciting plant stress reactions. New Phytol, 2020. 225(6): 2267-2282. 27. Nakagami, S., et al., CLE peptide signaling in plant-microbe interactions. Front Plant Sci, 2024. 15: 1481650. 28. Taleski, M., et al., CEP peptide and cytokinin pathways converge on CEPD glutaredoxins to inhibit root growth. Nature Communications, 2023. 14(1): 1683. 29. Campbell, L. and S.R. Turner, A Comprehensive Analysis of RALF Proteins in Green Plants Suggests There Are Two Distinct Functional Groups. Front Plant Sci, 2017. 8: 37. 30. Wang, P., et al., Brt9SIDA/IDALs as peptide signals mediate diverse biological pathways in plants. Plant Science, 2023. 330: 111642. 31. Turek, I., et al., A natriuretic peptide from Arabidopsis thaliana (AtPNP-A) can modulate catalase 2 activity. Scientific Reports, 2020. 10(1): 19632. 32. Wang, L., et al., Therapeutic peptides: current applications and future directions. Signal Transduction and Targeted Therapy, 2022. 7(1): 48. 33. Thagun, C., et al., Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS Nano, 2022. 16(3): 3506-3521. 34. Roy, S., et al., Application of Synthetic Peptide CEP1 Increases Nutrient Uptake Rates Along Plant Roots. Front Plant Sci, 2021. 12: 793145. 35. Park, J., H. Lee, and T. Han, Comparative Paraquat Sensitivity of Newly Germinated and Mature Fronds of the Aquatic Macrophyte Spirodela polyrhiza. American Journal of Plant Sciences, 2020. 11: 1008-1024. 36. Rueden, C.T., et al., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 2017. 18(1): 529. 37. Cai, S., et al., Design and Development of a Low-Cost UGV 3D Phenotyping Platform with Integrated LiDAR and Electric Slide Rail. Plants, 2023. 12(3): 483. 38. Kišek, M., K. Jarni, and R. Brus, Hybridisation of Malus sylvestris (L.) Mill. with Malus × domestica Borkh. and Implications for the Production of Forest Reproductive Material. Forests, 2021. 12: 367. 39. Raza, Q.-U.-A., et al., Biostimulants induce positive changes in the radish morpho-physiology and yield. Frontiers in Plant Science, 2022. 13: 950393. 40. Paradiso, R., et al., Nutrient and Nutraceutical Quality of Rocket as a Function of Greenhouse Cover Film, Nitrogen Dose and Biostimulant Application. Agronomy, 2023. 13(3): 638. 41. Keerthana, K., et al., Root-derived small peptides: Key regulators of plant development, stress resilience, and nutrient acquisition. Plant Science, 2025. 354: 112433. 42. Liu, Y., et al., Multifaceted Ability of Organic Fertilizers to Improve Crop Productivity and Abiotic Stress Tolerance: Review and Perspectives. Agronomy, 2024. 14(6): 1141. 43. Fu, L., et al., Flower induction, microscope-aided cross-pollination, and seed production in the duckweed Lemna gibba with discovery of a male-sterile clone. Scientific Reports, 2017. 7(1): 3047. 44. Baek, G., M. Saeed, and H.-K. Choi, Duckweeds: their utilization, metabolites and cultivation. Applied Biological Chemistry, 2021. 64(1): 73. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99365 | - |
| dc.description.abstract | 化學肥料的過度使用已引發嚴重的環境問題,包括土壤劣化與溫室氣體排放等。本研究探討小分子胜肽作為永續替代方案的潛力,以期在降低化肥施用的同時維持作物生產力。生物刺激素(bio stimulants)作為新興農業投入物,能提升植物對土壤中養分的吸收效率,並增強作物在非理想環境下的適應力。在混作實驗中,芝麻菜(Eruca sativa)顯著促進了花椰菜幼苗的生長,暗示小分子胜肽可能在植物間作為訊息分子發揮作用,進而促進在共栽環境下的生長與發育。一種以禽羽與魚鱗為來源的胜肽型肥料也被應用於大豆栽培,並搭配降低化肥施用量進行測試,惟因溫室內光照不足導致植株黃化,影響了結果判讀的清晰度。為克服此問題,實驗引入滿江紅屬(Lemna spp.)作為模式植物。浮萍在不同光照與肥料條件下皆展現出高度靈敏且穩定的反應,使其成為進一步測試胜肽型生物刺激素的理想平台。整體而言,本研究支持小分子胜肽具備部分取代傳統肥料的潛力,並提出浮萍作為有效模型系統,有助於發展氣候智慧型農業。建構此一測試平台,有望銜接分子層級活性與田間應用間的落差,為開發新一代環保農業投入物奠定基礎。 | zh_TW |
| dc.description.abstract | The excessive use of chemical fertilizers has raised major environmental concerns, including soil degradation and greenhouse gas emissions. This study explores small-molecule peptides as sustainable alternatives to reduce chemical input while maintaining crop productivity. Bio stimulants, including peptides, are emerging agricultural inputs that can enhance plant nutrient uptake efficiency and improve crop resilience under suboptimal conditions. In a mix planting experiment, Eruca sativa (rocket) significantly enhanced broccoli seedling growth, suggesting the possibility that small peptides may act as signaling molecules between plants, potentially contributing to enhanced growth and development under co-cultivation conditions. A peptide-based fertilizer derived from poultry feathers and fish scales was tested on soybean alongside reduced chemical fertilizer input. However, etiolation due to low greenhouse light limited the clarity of the results. To address this issue, Lemna spp. (duckweed) was introduced as a model plant. Duckweed showed high sensitivity and consistency under different light and fertilizer conditions, making it a promising platform for peptide bio stimulant tests. Overall, the study supports the potential of small peptides to partially replace conventional fertilizers and promotes duckweed as an effective model system for further development in climate-smart agriculture. Establishing such a system would bridge the gap between molecular efficacy and field-level applicability, laying the foundation for a new generation of eco-friendly agricultural inputs. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:10:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:10:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 1. Introductions 6 2. Material and Method 17 2.1 Mix Planting Experiment 17 2.1.1 Plant Material and Growth Conditions (Figure 2) 17 2.1.2 Image Acquisition 18 2.1.3 Image Analyze 19 2.2 Peptide-Based Fertilizer Test 19 2.2.1 Plant Material and Growth Conditions (Figure 3) 19 2.2 Image Analyze 21 2.2.3 PlantEye F500 multispectral 3D scanner 21 2.3 Duckweed Fit Test 22 2.3.1 Plant Material and Growth Conditions (Figure 4) 22 2.3.2 Image Acquisition 23 2.3.3 Image Analysis 24 2.3.4 Chlorophyll Extraction and Quantification 24 2.3.5 NBT Staining 25 2.4 Statistical Analysis 25 3. Results 26 3.1 Mix Planting Experiment 26 3.2 Peptide-Based Bio stimulant Test (Data provided by Shun-Cheng Deng PhD. student) 28 3.3 Duckweed fit test 31 3.3.1 Light intensity test 32 3.3.2 Fertilizer concentration test 33 4.Discussion 37 5.Conclusion 40 6. References 43 7.Appendix 48 | - |
| dc.language.iso | en | - |
| dc.subject | 小分子胜肽 | zh_TW |
| dc.subject | 生物刺激劑 | zh_TW |
| dc.subject | 混合種植 | zh_TW |
| dc.subject | 浮萍(Lemna spp.) | zh_TW |
| dc.subject | 氮肥減量 | zh_TW |
| dc.subject | 永續農業 | zh_TW |
| dc.subject | Small-molecule peptides | en |
| dc.subject | Sustainable agriculture | en |
| dc.subject | Nitrogen reduction | en |
| dc.subject | Lemna spp. | en |
| dc.subject | Companion planting | en |
| dc.subject | Bio stimulant | en |
| dc.title | 小分子胜肽促進植物生長潛力應用的研究 | zh_TW |
| dc.title | Study of Potential Utilization of Small Molecular Peptide for Promotional Plant Growth | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林乃君;王尚禮;周涵怡 | zh_TW |
| dc.contributor.oralexamcommittee | NAI-CHUN LIN;Shan-Li Wang;Han-Yi E. Chou | en |
| dc.subject.keyword | 小分子胜肽,生物刺激劑,混合種植,浮萍(Lemna spp.),氮肥減量,永續農業, | zh_TW |
| dc.subject.keyword | Small-molecule peptides,Bio stimulant,Companion planting,Lemna spp.,Nitrogen reduction,Sustainable agriculture, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202504088 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 國際三校農業生技與健康醫療碩士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 國際三校農業生技與健康醫療碩士學位學程 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 3.39 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
