Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 國際三校農業生技與健康醫療碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99363
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor詹長權zh_TW
dc.contributor.advisorChang-Chuan Chanen
dc.contributor.author林詠軒zh_TW
dc.contributor.authorYung-Hsuan Linen
dc.date.accessioned2025-09-09T16:09:46Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-07-23-
dc.identifier.citationAlameh, M. G., Tombácz, I., Bettini, E., Lederer, K., Sittplangkoon, C., Wilmore, J. R., Gaudette, B. T., Soliman, O. Y., Pine, M., Hicks, P., Manzoni, T. B., Knox, J. J., Johnson, J. L., Laczkó, D., Muramatsu, H., Davis, B., Meng, W., Rosenfeld, A. M., Strohmeier, S., . . . Pardi, N. (2021). Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity, 54(12), 2877-2892.e2877. https://doi.org/10.1016/j.immuni.2021.11.001
ALJAZEERA. (2023). China approves first domestic mRNA COVID-19 vaccine. https://www.aljazeera.com/news/2023/3/22/china-approves-first-domestic-mrna-covid-19-vaccine
Andrew J Shattock, H. C. J., So Yoon Sim, Austin Carter, Philipp Lambach, Raymond C W Hutubessy, Kimberly M Thompson, Kamran Badizadegan, Brian Lambert, Matthew J Ferrari, Mark Jit, Han Fu, Sheetal P Silal, Rachel A Hounsell, Richard G White, Jonathan F Mosser, Katy A M Gaythorpe, Caroline L Trotter, Ann Lindstrand, Katherine L O’Brien, Naor Bar-Zeev. (2024). Contribution of vaccination to improved survival and health: modelling 50 years of the Expanded Programme on Immunization. The Lancet, 403.
ARCALIS. (2023). Meiji Seika ファルマ、「ARCT-154」の日本国内における製造販売承認を取得 https://corp.arcalis.co.jp/news/meiji-seika-%E3%83%95%E3%82%A1%E3%83%AB%E3%83%9E%E3%80%81%E3%80%8Carct-154%E3%80%8D%E3%81%AE%E6%97%A5%E6%9C%AC%E5%9B%BD%E5%86%85%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E8%A3%BD%E9%80%A0%E8%B2%A9%E5%A3%B2/
ARCALIS Co., L. Service. Retrieved 4 June, 2025 from https://corp.arcalis.co.jp/en/service/
Arcturus Therapeutics. mRNA Medicines. https://arcturusrx.com/rna-medicines/
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L., . . . Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389
Barnsley, G., Olivera Mesa, D., Hogan, A. B., Winskill, P., Torkelson, A. A., Walker, D. G., Ghani, A. C., & Watson, O. J. (2024). Impact of the 100 days mission for vaccines on COVID-19: a mathematical modelling study. Lancet Glob Health, 12(11), e1764-e1774. https://doi.org/10.1016/s2214-109x(24)00286-9
BBC News. (2023). China approves first home-grown mRNA Covid vaccine. https://www.bbc.com/news/world-asia-china-65036474
Beck, J. D., Reidenbach, D., Salomon, N., Sahin, U., Türeci, Ö., Vormehr, M., & Kranz, L. M. (2021). mRNA therapeutics in cancer immunotherapy. Mol Cancer, 20(1), 69. https://doi.org/10.1186/s12943-021-01348-0
Bendix, A. (2025). A new Covid variant could drive up summer cases: Here's what you should know.
BioNTech. Our Collaborators. Retrieved 23 Apr, 2025 from https://www.biontech.com/int/en/home/about/collaborators.html
BioNTech. Our History. Retrieved 23 Apr, 2025 from https://www.biontech.com/int/en/home/about/who-we-are/history.html
BioNTech. Project Lightspeed
BioNTech. (2020a). BioNTech to Receive up to €375M in Funding from German Federal Ministry of Education and Research to Support COVID-19 Vaccine Program BNT162 https://investors.biontech.de/news-releases/news-release-details/biontech-receive-eu375m-funding-german-federal-ministry/
BioNTech. (2020b). Pfizer and BioNTech to Supply Japan with 120 Million Doses of Their BNT162 mRNA-Based Vaccine Candidate https://investors.biontech.de/news-releases/news-release-details/pfizer-and-biontech-supply-japan-120-million-doses-their-bnt162/
BioNTech. (2023). BioNTech Achieves Milestone at mRNA-based Vaccine Manufacturing Site in Rwanda https://investors.biontech.de/news-releases/news-release-details/biontech-achieves-milestone-mrna-based-vaccine-manufacturing-0/
BioNTech. (2024). BioNTech and CEPI Expand Partnership to Strengthen Africa’s mRNA Vaccine Ecosystem https://investors.biontech.de/news-releases/news-release-details/biontech-and-cepi-expand-partnership-strengthen-africas-mrna/
Brice, Y., Morgan, L., Kirmani, M., Kirmani, M., & Udeh, M. C. (2023). COVID-19 Vaccine Evolution and Beyond. Neurosci Insights, 18, 26331055231180543. https://doi.org/10.1177/26331055231180543
Buchholz, K. (2025). Covid-19 Ranks Among Deadliest Disease Outbreaks in History. https://www.statista.com/chart/34077/deadliest-pandemics-epidemics/
CEPI. (2022). Delivering Pandemic Vaccines in 100 Days.
Cernuschi, T., Malvolti, S., Hall, S., Debruyne, L., Bak Pedersen, H., Rees, H., & Cooke, E. (2024). The quest for more effective vaccine markets - Opportunities, challenges, and what has changed with the SARS-CoV-2 pandemic. Vaccine, 42 Suppl 1(Suppl 1), S64-s72. https://doi.org/10.1016/j.vaccine.2022.07.032
Chaudhary, N., Weissman, D., & Whitehead, K. A. (2021). mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov, 20(11), 817-838. https://doi.org/10.1038/s41573-021-00283-5
Chen, S., & Yu, D. (2022). Exploring the impact of external collaboration on firm growth capability: the mediating roles of R&D efforts. Humanit Soc Sci Commun, 9(1), 404. https://doi.org/10.1057/s41599-022-01429-5
Chen, Y.-R. (2024). RNA Technology Takes a Leap Forward! Innovative Circular RNA Synthesis Method and Its Antiviral Applications https://www.nstc.gov.tw/folksonomy/detail/8ae2d8bc-81fb-446a-834e-f32332dcb741?l=en
Christina Jewett, S. G. S. (2025). Kennedy Issues Demands for Vaccine Approvals That Could Affect Fall Covid Boosters. Retrieved 2 May, 2025, from https://www.nytimes.com/2025/05/01/us/rfk-jr-vaccine-safety-placebos-covid.html?smid=nytcore-ios-share&referringSource=articleShare
Chu, L., McPhee, R., Huang, W., Bennett, H., Pajon, R., Nestorova, B., & Leav, B. (2021). A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine, 39(20), 2791-2799. https://doi.org/10.1016/j.vaccine.2021.02.007
CureVac. Technology. Retrieved 4 June, 2025 from https://www.curevac.com/en/technology/
Daiichi Sankyo. History as Pharma Innovator. Retrieved 23 Apr, 2025 from https://www.daiichisankyo.com/about_us/mission-strength/history/
Daiichi Sankyo. Our Areas of Interest. Retrieved 23 Apr, 2025 from https://www.daiichisankyo.com/rd/open_innovation/our_interests/
Daiichi Sankyo. Released Research Collaborations. Retrieved 23 Apr, 2025 from https://www.daiichisankyo.com/rd/open_innovation/activities/
Daiichi Sankyo. (2020). Daiichi Sankyo Announces Decision to Develop Vaccine in Japan for Novel Corona Virus Infection (COVID-19) https://www.daiichisankyo.com/media/press_release/detail/index_3134.html
Daiichi Sankyo. (2023a). ダイチロナ®筋注の追加免疫における国内製造販売承認取得のお知らせ
Daiichi Sankyo. (2023b). 新型コロナウイルス感染症(COVID-19)に対する起源株1価mRNAワクチン 「ダイチロナ®筋注」の追加免疫における国内製造販売承認取得のお知らせ
Dayan, G. H., Rouphael, N., Walsh, S. R., Chen, A., Grunenberg, N., Allen, M., Antony, J., Asante, K. P., Bhate, A. S., Beresnev, T., Bonaparte, M. I., Celle, M., Ceregido, M. A., Corey, L., Dobrianskyi, D., Fu, B., Grillet, M. H., Keshtkar-Jahromi, M., Juraska, M., . . . Sridhar, S. (2023). Efficacy of a bivalent (D614 + B.1.351) SARS-CoV-2 recombinant protein vaccine with AS03 adjuvant in adults: a phase 3, parallel, randomised, modified double-blind, placebo-controlled trial. Lancet Respir Med, 11(11), 975-990. https://doi.org/10.1016/s2213-2600(23)00263-1
Edouard Mathieu, H. R., Lucas Rodés-Guirao, Cameron Appel, Daniel Gavrilov, Charlie Giattino, Joe Hasell, Bobbie Macdonald, Saloni Dattani, Diana Beltekian, Esteban Ortiz-Ospina, and Max Roser (2020). Excess mortality during the Coronavirus pandemic (COVID-19). https://ourworldindata.org/excess-mortality-covid
Erasmus, J. H., Khandhar, A. P., Guderian, J., Granger, B., Archer, J., Archer, M., Gage, E., Fuerte-Stone, J., Larson, E., Lin, S., Kramer, R., Coler, R. N., Fox, C. B., Stinchcomb, D. T., Reed, S. G., & Van Hoeven, N. (2018). A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Mol Ther, 26(10), 2507-2522. https://doi.org/10.1016/j.ymthe.2018.07.010
Ethris. Technology. Retrieved 4 June, 2025 from https://docs.google.com/document/d/1j0CVTTBnzG-moOmvwKCs0a8dkp0xSweimyZnd5rqqBA/edit?tab=t.0
European Investment Bank. (2020). How we helped BioNTech develop the first COVID-19 vaccine. Retrieved 2025/3/11 from https://www.eib.org/en/projects/all/20200325
European Medicines Agency. (2020). Zabdeno : EPAR - Product information. Retrieved from https://www.ema.europa.eu/en/medicines/human/EPAR/zabdeno
European Medicines Agency. (2024). VidPrevtyn Beta : EPAR - Product information.
Fan Wu, S. Z., Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, Zhao-Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, Ming-Li Yuan, Yu-Ling Zhang, Fa-Hui Dai, Yi Liu, Qi-Min Wang, Jiao-Jiao Zheng, Lin Xu, Edward C. Holmes & Yong-Zhen Zhang. (2020). A new coronavirus associated with human respiratory disease in China. nature, 579.
Forni, G., & Mantovani, A. (2021). COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ, 28(2), 626-639. https://doi.org/10.1038/s41418-020-00720-9
Gadi, N., Saleh, S., Johnson, J. A., & Trinidade, A. (2022). The impact of the COVID-19 pandemic on the lifestyle and behaviours, mental health and education of students studying healthcare-related courses at a British university. BMC Med Educ, 22(1), 115. https://doi.org/10.1186/s12909-022-03179-z
Goldberg, M. S. (2019). Improving cancer immunotherapy through nanotechnology. Nat Rev Cancer, 19(10), 587-602. https://doi.org/10.1038/s41568-019-0186-9
Gouvernement français. (2022). Il y a 1 an, la première dose de vaccin contre le Covid-19 était injectée. Retrieved 11 Mar, 2025 from https://www.info.gouv.fr/actualite/il-y-a-1-an-la-premiere-dose-de-vaccin-contre-le-covid-19-etait-injectee
Greenwood, B. (2014). The contribution of vaccination to global health: past, present and future. Philos Trans R Soc Lond B Biol Sci, 369(1645), 20130433. https://doi.org/10.1098/rstb.2013.0433
GSK. (2020a). Sanofi and GSK selected for Operation Warp Speed to supply United States Government with 100 million doses of COVID-19 vaccine https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-selected-for-operation-warp-speed-to-supply-united-states-government-with-100-million-doses-of-covid-19-vaccine/
GSK. (2020b). Sanofi and GSK sign agreements with the Government of Canada to supply up to 72 million doses of adjuvanted COVID-19 vaccine https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-sign-agreements-with-the-government-of-canada-to-supply-up-to-72-million-doses-of-adjuvanted-covid-19-vaccine/
GSK. (2020c). Sanofi and GSK to join forces in unprecedented vaccine collaboration to fight COVID-19 https://www.gsk.com/en-gb/media/press-releases/sanofi-and-gsk-to-join-forces-in-unprecedented-vaccine-collaboration-to-fight-covid-19/
Herder, M., & Benavides, X. (2024). 'Our project, your problem?' A case study of the WHO's mRNA technology transfer programme in South Africa. PLOS Glob Public Health, 4(9), e0003173. https://doi.org/10.1371/journal.pgph.0003173
Hill, P. L., Morstead, T., Pfund, G. N., Burrow, A. L., DeLongis, A., & Sin, N. L. (2024). Examining changes in sense of purpose before, during, and after COVID-19 vaccination. Vaccine, 42(5), 1087-1093. https://doi.org/10.1016/j.vaccine.2024.01.028
Hindi, T. N., & Frenkel, A. (2022). The contribution of collaboration to the development of sustainable innovation in high-tech companies. J Innov Entrep, 11(1), 62. https://doi.org/10.1186/s13731-022-00259-8
Hsieh, S. M., Liu, M. C., Chen, Y. H., Lee, W. S., Hwang, S. J., Cheng, S. H., Ko, W. C., Hwang, K. P., Wang, N. C., Lee, Y. L., Lin, Y. L., Shih, S. R., Huang, C. G., Liao, C. C., Liang, J. J., Chang, C. S., Chen, C., Lien, C. E., Tai, I. C., & Lin, T. Y. (2021). Safety and immunogenicity of CpG 1018 and aluminium hydroxide-adjuvanted SARS-CoV-2 S-2P protein vaccine MVC-COV1901: interim results of a large-scale, double-blind, randomised, placebo-controlled phase 2 trial in Taiwan. Lancet Respir Med, 9(12), 1396-1406. https://doi.org/10.1016/s2213-2600(21)00402-1
Huang, Q., Ji, K., Tian, S., Wang, F., Huang, B., Tong, Z., Tan, S., Hao, J., Wang, Q., Tan, W., Gao, G. F., & Yan, J. (2021). A single-dose mRNA vaccine provides a long-term protection for hACE2 transgenic mice from SARS-CoV-2. Nat Commun, 12(1), 776. https://doi.org/10.1038/s41467-021-21037-2
Huang, Y., Yang, C., Xu, X. F., Xu, W., & Liu, S. W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin, 41(9), 1141-1149. https://doi.org/10.1038/s41401-020-0485-4
Hubbard, G. (2025). The folly of America's R&D cuts. https://www.ft.com/content/9309c11e-d997-4557-b209-62dcf27cb51d?utm_source=chatgpt.com
Immunotherapeutics, O. (2025). OSE Immunotherapeutics Announces Strategic Collaboration to Pioneer Novel mRNA Technologies
INSTITUT PASTEUR. (2024). PNAM2024: Pasteur Network members Unite Global Efforts to Accelerate mRNA Vaccine Research through Strategic Memorandum of Understanding. Retrieved 12 May, 2025 from https://www.pasteur.fr/en/press-area/press-documents/pasteur-network-members-unite-global-efforts-accelerate-mrna-vaccine-research?utm_source=chatgpt.com
Jackson, L. A., Anderson, E. J., Rouphael, N. G., Roberts, P. C., Makhene, M., Coler, R. N., McCullough, M. P., Chappell, J. D., Denison, M. R., Stevens, L. J., Pruijssers, A. J., McDermott, A., Flach, B., Doria-Rose, N. A., Corbett, K. S., Morabito, K. M., O'Dell, S., Schmidt, S. D., Swanson, P. A., 2nd, . . . Beigel, J. H. (2020). An mRNA Vaccine against SARS-CoV-2 - Preliminary Report. N Engl J Med, 383(20), 1920-1931. https://doi.org/10.1056/NEJMoa2022483
Japan Agency for Medical Research and Development. (2025). Program on R&D of new generation vaccine including new modality application. Retrieved 12 Msy, 2025 from
Japan Ministry of Health, L. a. W. (2024). 新型コロナワクチンの開発支援について. Retrieved 2025/3/11 from https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000121431_00223.html
Jia, K. M., Hanage, W. P., Lipsitch, M., Johnson, A. G., Amin, A. B., Ali, A. R., Scobie, H. M., & Swerdlow, D. L. (2023). Estimated preventable COVID-19-associated deaths due to non-vaccination in the United States. Eur J Epidemiol, 38(11), 1125-1128. https://doi.org/10.1007/s10654-023-01006-3
John M. Last. A dictionary of epidemiology, 4th edition. In
Kalinke, U., Barouch, D. H., Rizzi, R., Lagkadinou, E., Türeci, Ö., Pather, S., & Neels, P. (2022). Clinical development and approval of COVID-19 vaccines. Expert Rev Vaccines, 21(5), 609-619. https://doi.org/10.1080/14760584.2022.2042257
Kana, B. D., Arbuthnot, P., Botwe, B. K., Choonara, Y. E., Hassan, F., Louzir, H., Matsoso, P., Moore, P. L., Muhairwe, A., Naidoo, K., Ndomondo-Sigonda, M., & Madhi, S. A. (2023). Opportunities and challenges of leveraging COVID-19 vaccine innovation and technologies for developing sustainable vaccine manufacturing capabilities in Africa. Lancet Infect Dis, 23(8), e288-e300. https://doi.org/10.1016/s1473-3099(22)00878-7
Kaoru Toyama, T. E., Kenji Takazawa, Shinji Shimizu a, Tetsuo Nakayama, Kei Furihata,Yoshitaka Sogawa, Masafumi Kumazaki, Nao Jonai, Satoko Matsunaga, Fumihiko Takeshita, Kazutaka Yoshihara, Hitoshi Ishizuka. (2023). DS-5670a, a novel mRNA-encapsulated lipid nanoparticle vaccine against severe acute respiratory syndrome coronavirus 2: Results from a phase 2 clinical study. Vaccine, 41(38), 5525-5534.
Kernal Biologics. Retrieved 4 June, 2025 from https://www.kernalbio.com/science
Kim, D. C. (2023). Advance Market Commitments: The Future of Government Procurement? https://www.govtech.com/opinion/advance-market-commitments-the-future-of-government-procurement?utm_source=chatgpt.com
King, M. L. (2024). How manufacturing won or lost the COVID-19 vaccine race. Vaccine, 42(5), 1004-1012. https://www.sciencedirect.com/science/article/pii/S0264410X23014779?utm_source=chatgpt.com#bi005
Koshy, J. (2023). Regulator approves first Omicron-specific mRNA vaccine from India. https://www.thehindu.com/news/national/regulator-approves-first-omicron-specific-mrna-vaccine-from-india/article66990180.ece
Kuo, T. Y., Lin, M. Y., Coffman, R. L., Campbell, J. D., Traquina, P., Lin, Y. J., Liu, L. T., Cheng, J., Wu, Y. C., Wu, C. C., Tang, W. H., Huang, C. G., Tsao, K. C., & Chen, C. (2020). Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep, 10(1), 20085. https://doi.org/10.1038/s41598-020-77077-z
Kupferschmidt, K. (2025). Global pandemic treaty finalized, without U.S., in ‘a victory for multilateralism’. https://www.science.org/content/article/global-pandemic-treaty-finalized-without-us-victory-multilateralism
Lieberman, M. B., Montgomery, David B. (1988). First-Mover Advantages. Strategic Management Journal, 9(S1). https://www.jstor.org/stable/2486211?seq=1
Linda Argote, E. M.-S. (2011). Organizational Learning: From Experience to Knowledge. Organization Science, 22, 1123-1137. https://www.jstor.org/stable/41303106
Liu, Y., Li, T., Deng, Y., Liu, S., Zhang, D., Li, H., Wang, X., Jia, L., Han, J., Bei, Z., Li, L., & Li, J. (2021). Stability of SARS-CoV-2 on environmental surfaces and in human excreta. J Hosp Infect, 107, 105-107. https://doi.org/10.1016/j.jhin.2020.10.021
Machado, B. A. S., Hodel, K. V. S., Fonseca, L., Mascarenhas, L. A. B., Andrade, L., Rocha, V. P. C., Soares, M. B. P., Berglund, P., Duthie, M. S., Reed, S. G., & Badaró, R. (2021). The Importance of RNA-Based Vaccines in the Fight against COVID-19: An Overview. Vaccines (Basel), 9(11). https://doi.org/10.3390/vaccines9111345
Maya Prabhu , J. G. (2021). History’s Seven Deadliest Plagues. https://www.gavi.org/vaccineswork/historys-seven-deadliest-plagues
McGoldrick, M., Gastineau, T., Wilkinson, D., Campa, C., De Clercq, N., Mallia-Milanes, A., Germay, O., Krishnan, J., Van Ooij, M., Thien, M. P., Mlynarczyk, P. J., Saltus, E., Wauters, F., Juvin, P., Clenet, D., Basso, A., Dellepiane, N., Pagliusi, S., Collaço de Moraes Stávale, M., . . . Desai, S. (2022). How to accelerate the supply of vaccines to all populations worldwide? Part II: Initial industry lessons learned and detailed technical reflections leveraging the COVID-19 situation. Vaccine, 40(9), 1223-1230. https://doi.org/10.1016/j.vaccine.2021.12.038
McShane, L. M. (2017). In Pursuit of Greater Reproducibility and Credibility of Early Clinical Biomarker Research. Clin Transl Sci, 10(2), 58-60. https://doi.org/10.1111/cts.12449
Medigen Vaccine Biologics Corp. ABOUT US. Retrieved 23 Apr, 2025 from https://www.medigenvac.com/en/about.php
Medigen Vaccine Biologics Corp. (2020a). MVC and NIH Collaborate to Develop COVID-19 Vaccine https://www.medigenvac.com/en/news_view.php?id=104
Medigen Vaccine Biologics Corp. (2020b). 高端疫苗使用美國Dynavax新型佐劑之新冠肺炎(COVID-19)疫苗 獲台灣政府補助 https://www.medigenvac.com/news_view.php?id=120
Medigen Vaccine Biologics Corp. (2021). 高端新冠肺炎疫苗取得專案製造核准 (EUA) https://www.medigenvac.com/news_view.php?id=103
Medigen Vaccine Biologics Corp. (2025). 高端疫苗與Substipharm Biologics簽署合作協議 拓展恩穩健®腸病毒71型疫苗於東南亞國家市場布局 https://www.medigenvac.com/news_view.php?id=260
moderna. Our Story. Retrieved 23 Apr, 2025 from https://www.modernatx.com/about-us/our-story?fromLocale=zh-TW
moderna. 關於「mRNA前瞻新創獎」. Retrieved 4 June, 2025 from https://www.modernatx.com/zh-TW/innovation-award-page
moderna. (2020a). Canada Exercises Increased Option for 20 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Canada-Exercises-Increased-Option-for-20-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020b). Canada Exercises Increased Option for Total of 40 Million Doses of mRNA Vaccine Candidate Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Canada-Exercises-Increased-Option-for-Total-of-40-Million-Doses-of-mRNA-Vaccine-Candidate-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020c). Moderna Announces Amendment to Current Supply Agreement with United Kingdom Government for an Additional 2 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Amendment-to-Current-Supply-Agreement-with-United-Kingdom-Government-for-an-Additional-2-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020d). Moderna Announces Amendment to Supply Agreement with the Ministry of Health of Israel to Supply Additional Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Amendment-to-Supply-Agreement-with-the-Ministry-of-Health-of-Israel-to-Supply-Additional-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020e). Moderna Announces Award from U.S. Government Agency BARDA for up to $483 Million to Accelerate Development of mRNA Vaccine (mRNA-1273) Against Novel Coronavirus https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Award-from-U.S.-Government-Agency-BARDA-for-up-to-483-Million-to-Accelerate-Development-of-mRNA-Vaccine-mRNA-1273-Against-Novel-Coronavirus/default.aspx
moderna. (2020f). Moderna Announces Expansion of BARDA Agreement to Support Larger Phase 3 Program for Vaccine (mRNA-1273) Against COVID-19 https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Expansion-of-BARDA-Agreement-to-Support-Larger-Phase-3-Program-for-Vaccine-mRNA-1273-Against-COVID-19/default.aspx
moderna. (2020g). Moderna Announces FDA Authorization of Moderna COVID-19 Vaccine in U.S. https://news.modernatx.com/news/news-details/2020/Moderna-Announces-FDA-Authorization-of-Moderna-COVID-19-Vaccine-in-U.S/default.aspx
moderna. (2020h). Moderna Announces Funding Award from CEPI to Accelerate Development of Messenger RNA (mRNA) Vaccine https://news.modernatx.com/news/news-details/2020/Moderna-Announces-Funding-Award-from-CEPI-to-Accelerate-Development-of-Messenger-RNA-mRNA-Vaccine-Against-Novel-Coronavirus/default.aspx
moderna. (2020i). Moderna Announces Supply Agreement with the Ministry of Public Health to Supply Qatar with mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Supply-Agreement-with-the-Ministry-of-Public-Health-to-Supply-Qatar-with-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020j). Moderna Announces Supply Agreement with U.S. Government for Initial 100 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Supply-Agreement-with-U.S.-Government-for-Initial-100-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020k). Moderna Announces Supply Agreement with United Kingdom Government to Supply mRNA Vaccine Against COVID-19 (mRNA-1273) if Approved for Use https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-Supply-Agreement-with-United-Kingdom-Government-to-Supply-mRNA-Vaccine-Against-COVID-19-mRNA-1273-if-Approved-for-Use/default.aspx
moderna. (2020l). Moderna Announces the European Commission’s Approval of Advance Purchase Agreement for Initial 80 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Announces-the-European-Commissions-Approval-of-Advance-Purchase-Agreement-for-Initial-80-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020m). Moderna Confirms Advanced Discussions with European Commission to Supply Europe with 80 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Confirms-Advanced-Discussions-with-European-Commission-to-Supply-Europe-with-80-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020n). Moderna Confirms Discussions with the Ministry of Health, Labour and Welfare to Supply Japan with 40 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Confirms-Discussions-with-the-Ministry-of-Health-Labour-and-Welfare-to-Supply-Japan-with-40-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020o). Moderna Confirms Supply Agreement with the Ministry of Health to Supply Singapore with mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Moderna-Confirms-Supply-Agreement-with-the-Ministry-of-Health-to-Supply-Singapore-with-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020p). Switzerland Exercises Increased Option for 7.5 Million Doses of mRNA Vaccine Against COVID-19 (mRNA-1273) https://investors.modernatx.com/news/news-details/2020/Switzerland-Exercises-Increased-Option-for-7.5-Million-Doses-of-mRNA-Vaccine-Against-COVID-19-mRNA-1273/default.aspx
moderna. (2020q). U.S. Government Exercises 1st Option for Additional 100 Million Doses of Moderna’s COVID-19 Vaccine Candidate https://investors.modernatx.com/news/news-details/2020/U.S.-Government-Exercises-1st-Option-for-Additional-100-Million-Doses-of-Modernas-COVID-19-Vaccine-Candidate/default.aspx
moderna. (2021). Moderna Announces Recipharm Site in France Manufacturing COVID-19 Vaccine Moderna Following Approval by European Medicines Agency https://investors.modernatx.com/news/news-details/2021/Moderna-Announces-Recipharm-Site-in-France-Manufacturing-COVID-19-Vaccine-Moderna-Following-Approval-by-European-Medicines-Agency/default.aspx
Mullard, A. (2018). How much do phase III trials cost? Nature Reviews Drug Discovery, 17, 777. https://www.nature.com/articles/nrd.2018.198
National Institute of Public Health. (2024a). 臨床研究等提出・公開システム: A Phase 1/2 study to assess the safety, immunogenicity and recommended dose of DS-5670a in Japanese healthy adults and elderly subjects. Retrieved 17 Mar, 2025 from https://jrct.niph.go.jp/latest-detail/jRCT2071200110
National Institute of Public Health. (2024b). 臨床研究等提出・公開システム: A Phase 3, Randomized, Active-Comparator, Observer-Blind, Non-Inferiority Study of DS-5670a in Adults Aged 18 Years and Older. Retrieved 17 Mar, 2025 from https://jrct.niph.go.jp/latest-detail/jRCT2031220264
National Institute of Public Health. (2024c). 臨床研究等提出・公開システム: A Randomized, Active-comparator, Observer-blind, Phase I/II/III Study to Demonstrate the Immunogenicity of a Single Booster Dose of DS-5670a in Adults and Elderly Received a Primary Series of Approved COVID-19 Vaccine. Retrieved 17 Mar, 2025 from https://jrct.niph.go.jp/latest-detail/jRCT2071210106
NHS. (2020). Landmark moment as first NHS patient receives COVID-19 vaccination. Retrieved 10 Apr, 2025 from https://www.england.nhs.uk/2020/12/landmark-moment-as-first-nhs-patient-receives-covid-19-vaccination/
Nutcracker Therapeutics. A complete platform for RNA therapeutics. https://www.nutcrackerx.com/platform/
O'Farrell, S. (2023). Moderna invests in mRNA vaccines in China. https://www.fdiintelligence.com/content/9a5e263b-a314-5863-b578-bd6d951eb27f
Oliver J Watson, G. B., Jaspreet Toor, Alexandra B Hogan, Peter Winskill, Prof Azra C Ghani. (2022). Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. The Lancet, 22(9), 1293-1302. https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00320-6/fulltext
Our World in Data; World Health Organisation; Various sources. (2024). Share of people with a complete initial protocol; COVID-19, vaccinations; Population. Our World in Data. Retrieved 11 Mar, 2025 from https://ourworldindata.org/covid-vaccinations
Parker, R. A., & Cook, J. A. (2023). The importance of clinical importance when determining the target difference in sample size calculations. Trials, 24(1), 495. https://doi.org/10.1186/s13063-023-07532-5
Pfizer. Company Timeline: a Legacy of Innovation. Retrieved 23 Apr, 2025 from https://www.pfizer.com/about/history
pfizer. (2020a). Pfizer and BioNTech Announce Agreement with the United Kingdom for 30 Million Doses of mRNA-based Vaccine Candidate against SARS-CoV-2 https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-agreement-united-kingdom-30
pfizer. (2020b). Pfizer and BioNTech Announce an Agreement with U.S. Government for up to 600 Million Doses of mRNA-based Vaccine Candidate Against SARS-CoV-2 https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-announce-agreement-us-government-600
pfizer. (2020c). Pfizer and BioNTech Reach an Agreement to Supply the EU With 200 Million Doses of Their BNT162b2 mRNA-Based Vaccine Candidate Against SARS-CoV-2 https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-reach-agreement-supply-eu-200-million
pfizer. (2020d). Pfizer and BioNTech to Supply Canada with their BNT162 mRNA- Based Vaccine Candidate https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-supply-canada-their-bnt162-mrna-based
Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L., . . . Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577
Prieve, M. G., Harvie, P., Monahan, S. D., Roy, D., Li, A. G., Blevins, T. L., Paschal, A. E., Waldheim, M., Bell, E. C., Galperin, A., Ella-Menye, J. R., & Houston, M. E. (2018). Targeted mRNA Therapy for Ornithine Transcarbamylase Deficiency. Mol Ther, 26(3), 801-813. https://doi.org/10.1016/j.ymthe.2017.12.024
Raffaello Bronzini, P. P. (2016). The impact of R&D subsidies on firm innovation. Research Policy, 45(2), 442-457. https://www.sciencedirect.com/science/article/abs/pii/S0048733315001614?utm_source=chatgpt.com
RNAimmune. Retrieved 4 June, 2025 from https://www.rnaimmune.com/
Rubin Thompson, L. J., Grubo, M., Veller, M., Badenhorst, R. H., Nott, J., Debruyne, L., Makadzange, T., Nicolaou, S., Stanberry, L., Sall, A., & James, W. G. (2023). Building global vaccine manufacturing capacity: Spotlight on Africa. Vaccine, 41(27), 4050-4056. https://doi.org/10.1016/j.vaccine.2023.05.009
Sanofi. Exploring Sanofi's Expertise in Vaccine Manufacturing. Retrieved 23 Apr, 2025 from https://www.sanofi.com/en/your-health/vaccines/production
sanofi. Our mRNA Center of Excellence is recruiting top researchers in the field. Retrieved 4 June, 2025 from https://jobs.sanofi.com/en/mrna
Sanofi. Vaccines & Infectious Diseases. Retrieved 23 Apr, 2025 from https://www.sanofi.com/en/your-health/vaccines
sanofi. (2020a). Sanofi and GSK agree with the UK government to supply up to 60 million doses of COVID-19 vaccine https://www.sanofi.com/en/media-room/press-releases/2020/2020-07-29-05-00-00-2069151
sanofi. (2020b). Sanofi and GSK to support COVAX with 200 million doses of adjuvanted, recombinant protein-based COVID-19 vaccine https://www.sanofi.com/en/media-room/press-releases/2020/2020-10-28-06-00-00-2115626
sanofi. (2020c). Sanofi and GSK will provide up to 300 million doses of COVID-19 vaccine to the European Union https://www.sanofi.com/en/media-room/press-releases/2020/2020-09-18-10-52-46-2095745
sanofi. (2021). Sanofi to focus its COVID-19 development efforts on the recombinant vaccine candidate https://www.sanofi.com/en/media-room/press-releases/2021/2021-09-28-16-44-47-2304800
sanofi. (2022). Press Release: Sanofi and GSK’s next-generation COVID-19 booster vaccine VidPrevtyn® Beta approved by the European Commission https://www.sanofi.com/en/media-room/press-releases/2022/2022-11-10-15-36-50-2553486
Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: current knowledge. Virol J, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
Sridhar, S., Joaquin, A., Bonaparte, M. I., Bueso, A., Chabanon, A. L., Chen, A., Chicz, R. M., Diemert, D., Essink, B. J., Fu, B., Grunenberg, N. A., Janosczyk, H., Keefer, M. C., Rivera, M. D., Meng, Y., Michael, N. L., Munsiff, S. S., Ogbuagu, O., Raabe, V. N., . . . Savarino, S. (2022). Safety and immunogenicity of an AS03-adjuvanted SARS-CoV-2 recombinant protein vaccine (CoV2 preS dTM) in healthy adults: interim findings from a phase 2, randomised, dose-finding, multicentre study. Lancet Infect Dis, 22(5), 636-648. https://doi.org/10.1016/s1473-3099(21)00764-7
Strand Therapeutics. Hello mRNA. Retrieved 4 June, 2025 from https://www.strandtx.com/strandtx-solutions/
Szabó, G. T., Mahiny, A. J., & Vlatkovic, I. (2022). COVID-19 mRNA vaccines: Platforms and current developments. Mol Ther, 30(5), 1850-1868. https://doi.org/10.1016/j.ymthe.2022.02.016
Szu-Min Hsieh, W.-D. L., Yu-Shan Huang, Yi-Jiun Lin, Erh-Fang Hsieh, Wei-Cheng Lian, Charles Chen, I-Chen Tai, Shan-Chwen Chang. (2021). First-in-Human Trial of a Recombinant Stabilized Prefusion SARS-CoV-2 Spike Protein Vaccine with Adjuvant of Aluminum Hydroxide and CpG 1018. medrxiv.
Taiwan Centers for Disease Control. (2021). 衛生福利部疾病管制署採購契約書.
Taiwan Centers for Disease Control. (2023a). 地區年齡性別統計表-嚴重特殊傳染性肺炎(112/3/19以前病例定義版本)-依發病日統計(以月為單位). Retrieved 3/26 from https://data.cdc.gov.tw/dataset/aagstable-19cov/resource/95db2a0a-6ea0-4fbc-a87e-521544755db8
Taiwan Centers for Disease Control. (2023b). 死亡病例地區年齡性別統計表-嚴重特殊傳染性肺炎(112/3/19以前病例定義版本)-依死亡日統計(以月為單位). Retrieved 3/26 from https://data.cdc.gov.tw/dataset/death-date-statistics-cases-19cov-2/resource/c278bf40-9fc6-44ac-81e7-4f799b94695f
Taiwan Centers for Disease Control. (2025). COVID-19疫情週報 2025年第22週. https://www.cdc.gov.tw/File/Get/C_MKbrNLRuQ2rZ-RjZy_RA
Taiwan Ministry of Health and Welfare. (2022). 持續推動COVID-19疫苗接種作業,屆效疫苗將依程序銷毀,請民眾安心接種. https://www.mohw.gov.tw/cp-16-67744-1.html
the U.S. Food and Drug Administration. (2020a). FDA Takes Additional Action in Fight Against COVID-19 ByIssuing Emergency Use Authorization for Second COVID-19Vaccine. Retrieved 31 Mar, 2025 from https://www.fda.gov/news-events/press-announcements/fda-takes-additional-action-fight-against-covid-19-issuing-emergency-use-authorization-second-covid
the U.S. Food and Drug Administration. (2020b). FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine. Retrieved 31 Mar, 2025 from https://www.fda.gov/news-events/press-announcements/fda-takes-additional-action-fight-against-covid-19-issuing-emergency-use-authorization-second-covid
THE WHITE HOUSE. (2025). WITHDRAWING THE UNITED STATES FROM THE WORLD
HEALTH ORGANIZATION https://www.whitehouse.gov/presidential-actions/2025/01/withdrawing-the-united-states-from-the-worldhealth-organization/
Tirrell, M. (2025). HHS to require placebo testing of ‘all new vaccines,’ raising questions about approval of updated Covid-19 shots. Retrieved 5 May, 2025, from https://edition.cnn.com/2025/04/30/health/hhs-vaccine-placebo-testing
Torales, J., Cuenca-Torres, O., Barrios, L., Armoa-Garcia, L., Estigarribia, G., Sanabria, G., Lin, M. Y., Antonio Estrada, J., Estephan, L., Cheng, H. Y., Chen, C., Janssen, R., & Lien, C. E. (2023). An evaluation of the safety and immunogenicity of MVC-COV1901: Results of an interim analysis of a phase III, parallel group, randomized, double-blind, active-controlled immunobridging study in Paraguay. Vaccine, 41(1), 109-118. https://doi.org/10.1016/j.vaccine.2022.10.030
Turn Biotechnologies. The Science. Retrieved 4 June, 2025 from https://www.turn.bio/the-science#science-intro
U.S. Department of Health and Human Services. (2025). HHS, NIH Launch Next-Generation Universal Vaccine Platform for Pandemic-Prone Viruses https://www.hhs.gov/press-room/hhs-nih-announces-generation-gold-standard.html
VLP Therapeutics. Our Pipelines. Retrieved 4 June, 2025 from https://vlptherapeutics.com/our-pipelines/
Vogel, G. (2025). What does the new FDA framework mean for the future of COVID-19 vaccines in the U.S.? https://www.science.org/content/article/what-does-new-fda-framework-mean-future-covid-19-vaccines-u-s
Walsh, E. E., Frenck, R. W., Jr., Falsey, A. R., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Neuzil, K., Mulligan, M. J., Bailey, R., Swanson, K. A., Li, P., Koury, K., Kalina, W., Cooper, D., Fontes-Garfias, C., Shi, P. Y., Türeci, Ö., Tompkins, K. R., . . . Gruber, W. C. (2020). Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates. N Engl J Med, 383(25), 2439-2450. https://doi.org/10.1056/NEJMoa2027906
Wang, G., Zhao, K., Han, J., Hu, Z., Zhang, T., Wang, Y., Shi, R., Li, Y., Song, Q., Du, H., He, P., Xu, S., Yang, X., Fu, Y., Cui, Y., & Xie, L. (2023). Safety and immunogenicity of a bivalent SARS-CoV-2 recombinant protein vaccine, SCTV01C in unvaccinated adults: A randomized, double-blinded, placebo-controlled, phase I clinical trial. J Infect, 86(2), 154-225. https://doi.org/10.1016/j.jinf.2022.11.008
Wang, X., & Ji, X. (2020). Sample Size Estimation in Clinical Research: From Randomized Controlled Trials to Observational Studies. Chest, 158(1s), S12-s20. https://doi.org/10.1016/j.chest.2020.03.010
Wang, Y., Su, H. H., Yang, Y., Hu, Y., Zhang, L., Blancafort, P., & Huang, L. (2013). Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther, 21(2), 358-367. https://doi.org/10.1038/mt.2012.250
Warwick McKibbin, R. F. (2023). The global economic impacts of the COVID-19 pandemic. Economic Modelling, 129. https://www.sciencedirect.com/science/article/pii/S0264999323003632?utm_source=chatgpt.com
World Economic Forum. (2018). Q&A: What would happen in a world without vaccines? https://www.weforum.org/stories/2018/04/q-a-what-would-happen-in-a-world-without-vaccines/
World Health Organization. A Brief History of Vaccination. Retrieved 28 Mar, 2025 from https://www.who.int/news-room/spotlight/history-of-vaccination/a-brief-history-of-vaccination
World Health Organization. COVID-19 vaccine tracker and landscape. https://www.who.int/teams/blueprint/covid-19/covid-19-vaccine-tracker-and-landscape
World Health Organization. The mRNA vaccine technology transfer programme. Retrieved 4 June, 2025 from https://www.who.int/initiatives/mrna-technology-transfer-(mrna-tt)-programme
World Health Organization. Recipients of mRNA technology from the WHO mRNA technology transfer hub. Retrieved 4 June, 2025 from https://www.who.int/initiatives/mrna-technology-transfer-%28mrna-tt%29-programme/recipients-of-mrna-technology-from-the-who-mrna-technology-transfer-hub?utm_source=chatgpt.com
World Health Organization. Vaccines and immunization. Retrieved 28 Mar, 2025 from https://www.who.int/health-topics/vaccines-and-immunization#tab=tab_1
World Health Organization. WHO COVID-19 dashboard. Retrieved 11 June, 2025 from https://data.who.int/dashboards/covid19/variants
World Health Organization. WHO COVID-19 dashboard. Retrieved 6 June, 2025 from https://data.who.int/dashboards/covid19/cases
World Health Organization. (2020a). Transmission of SARS-CoV-2: implications for infection prevention precautions. Retrieved 31 Mar, 2025 from https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
World Health Organization. (2020b). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. Retrieved 11 Mar, 2025 from https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
World Health Organization. (2021a). Background document on mRNA vaccine BNT162b2 (Pfizer-BioNTech) against COVID-19. Retrieved from https://www.who.int/publications/i/item/background-document-on-mrna-vaccine-bnt162b2-(pfizer-biontech)-against-covid-19
World Health Organization. (2021b). Strategy to Achieve Global Covid-19 Vaccination by mid-2022.
World Health Organization. (2022). Pfizer-BioNTech COVID-19 Vaccine, COMIRNATY® (Tozinameran). Retrieved from https://www.who.int/publications/m/item/comirnaty-covid-19-mrna-vaccine
World Health Organization. (2023a). Historical working definitions and primary actions for SARS-CoV-2 variants.
World Health Organization. (2023b). Potential benefits and limitations of mRNA technology for vaccine research and development for infectious diseases and virus-induced cancers. Retrieved from https://www.who.int/publications/i/item/9789240084551
World Health Organization. (2023c). Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. Retrieved 26 Mar, 2025 from https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-coronavirus-disease-(covid-19)-pandemic
World Health Organization. (2023d). WHO and Republic of Korea sign landmark agreement to boost biomanufacturing capacity https://www.who.int/news/item/26-05-2023-WHO-and-Republic-of-Korea-sign-landmark-agreement-to-boost-biomanufacturing-capacity
World Health Organization. (2025a). Intergovernmental Negotiating Body to draft and negotiate a WHO convention, agreement or other international instrument on pandemic prevention, preparedness and response: Report by the Director-General. Retrieved from https://apps.who.int/gb/ebwha/pdf_files/WHA78/A78_10-en.pdf
World Health Organization. (2025b). LIVE: High-level segment of the 78th World Health Assembly. Retrieved 21 May, 2025 from https://www.youtube.com/watch?v=5ELN1gd7Ado&t=1s
World Health Organization. (2025c). LIVE: Opening of the 78th World Health Assembly with @DrTedros. Retrieved 21 May, 2025 from https://www.youtube.com/watch?v=G7CZvmEGjCU&t=942s
World Health Organization. (2025d). Member States approve WHO Pandemic Agreement in World Health Assembly Committee, paving way for its formal adoption
Historic agreement to be considered for adoption https://www.who.int/news/item/19-05-2025-member-states-approve-who-pandemic-agreement-in-world-health-assembly-committee--paving-way-for-its-formal-adoption
World Health Organization. (2025e). Total confirmed cases of COVID-19. Our World in Data. Retrieved 22 Apr, 2025 from https://ourworldindata.org/coronavirus
World Health Organization. (2025f). WHO European Region Summary, Week 22/2025 (26 May–1 June 2025). https://erviss.org/
World Health Organization; Various sources. (2025a). Total confirmed cases of COVID-19 per million people. Processed by Our World in Data. Retrieved 26 Mar, 2025 from https://ourworldindata.org/coronavirus
World Health Organization; Various sources. (2025b). Total confirmed deaths due to COVID-19 per million people. World Health Organization – with major processing by Our World in Data. Retrieved 26 Mar, 2025 from https://ourworldindata.org/coronavirus
Wu, Z., & McGoogan, J. M. (2020). Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 323(13), 1239-1242. https://doi.org/10.1001/jama.2020.2648
Xie, C., Zhao, H., Li, K., Zhang, Z., Lu, X., Peng, H., Wang, D., Chen, J., Zhang, X., Wu, D., Gu, Y., Yuan, J., Zhang, L., & Lu, J. (2020). The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health, 20(1), 1202. https://doi.org/10.1186/s12889-020-09296-y
Xie, P., Ma, W., Tang, H., & Liu, D. (2020). Severe COVID-19: A Review of Recent Progress With a Look Toward the Future. Front Public Health, 8, 189. https://doi.org/10.3389/fpubh.2020.00189
Xiong, J., Lipsitz, O., Nasri, F., Lui, L. M. W., Gill, H., Phan, L., Chen-Li, D., Iacobucci, M., Ho, R., Majeed, A., & McIntyre, R. S. (2020). Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J Affect Disord, 277, 55-64. https://doi.org/10.1016/j.jad.2020.08.001
Xucheng Hou, T. Z., Robert Langer & Yizhou Dong. (2021). Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 6, 1078-1094. https://www.nature.com/articles/s41578-021-00358-0#citeas
Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 10(4). https://doi.org/10.3390/cells10040821
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med, 8(5), 475-481. https://doi.org/10.1016/s2213-2600(20)30079-5
Ying Cao, M., MSc , Ronald C Chen, MD, MPH , Aaron J Katz, PharmD, PhD. (2024). Why is a small sample size not enough? . The Oncologist, 29(9), 761-763. https://academic.oup.com/oncolo/article/29/9/761/7700046
Zhinganf Zuo, Z. L. (2022). Government R&D subsidies and firm innovation performance: The moderating role of accounting information quality. Journal of Innovation & Knowledge, 7(2). https://www.sciencedirect.com/science/article/pii/S2444569X22000166?utm_source=chatgpt.com
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., . . . Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. nature, 579(7798), 270-273. https://doi.org/10.1038/s41586-020-2012-7
Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J., Guo, Q., Song, T., He, J., Yen, H. L., Peiris, M., & Wu, J. (2020). SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med, 382(12), 1177-1179. https://doi.org/10.1056/NEJMc2001737
中央研究院. (2023). 中研院與莫德納簽署合作意向書加速mRNA研究 共推前瞻新創獎 鼓勵挑戰生醫關鍵議題 https://www.sinica.edu.tw/News_Content/55/714
内閣府 健康・医療戦略推進事務局. (2025). ワクチン研究開発等の推進状況について.
呂嘉鴻. (2021). 新冠疫苗:台灣產首款疫苗「高端」 你可能想了解的幾個問題. Retrieved 11 Apr, 2025, from https://www.bbc.com/zhongwen/trad/science-58242473
国立感染症研究所. (2021). 新型コロナワクチンについて(2021年8月5日現在). Retrieved 11 Mar, 2025 from
国立感染症研究所. (2024). 国内で接種可能な新型コロナワクチン(12歳以上・小児).
国⽴感染症研究所. (2025). 全国のゲノムサーベイランスによる系統別検出状況( (新型コロナウイルスゲノムのPANGO Lineage変遷(1⽉単位)(2025年5⽉21⽇現在), Issue.
独立行政法人医薬品医療機器総合機構. (2023). ダイチロナ (Daichirona) mRNAワクチン臨床報告書.
陳婕翎、張茗喧、江慧珺. (2021). 為何國產廠不研發mRNA疫苗 陳時中:那時沒能力 中央通訊社 CNA. https://www.cna.com.tw/news/ahel/202106080248.aspx
楊淑閔. (2024). 中研院啟用國際級核酸先導設施 助研發臨床應用. https://www.cna.com.tw/news/ahel/202409300251.aspx
蔣濬浩. (2022). 中研院如何在14個月研發出次世代mRNA疫苗技術?. https://www.gvm.com.tw/article/89122
衛生福利部疾病管制署. (2021). 高端新冠肺炎疫苗接種說明.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99363-
dc.description.abstract新型冠狀病毒(SARS-CoV-2)疫情對全球造成重大影響。自疫情爆發以來,包括日本、台灣和法國在內的許多國家迅速啟動疫苗開發,以應對病毒傳播。這些國家以先進科技與科學能力聞名,並投入大量資源以因應這場全球公共衛生危機。然而,儘管付出努力,這些國家在世界衛生組織(WHO)於2020年3月11日至2023年5月5日所宣佈的 COVID-19 疫情期間,皆未能成功開發出獲全球廣泛使用的疫苗(World Health Organization, 2020b, 2023c)。相較之下,BioNTech/Pfizer 疫苗取得全球成功,關鍵因素包括早期採用 mRNA 技術、強勁投資支持與高效監管審批。本研究分析日本、台灣與法國的國內疫苗研發歷程,探討其疫情期間運用的科學資源、制度能力與政策措施,並比較其與 BioNTech/Pfizer 成功關鍵之異同。研究採用比較個案研究法,輔以官方文件、科學資料庫、政府紀錄與企業新聞稿的質性與量化分析,評估六項關鍵因素:(1)疫苗平台技術與開發速度、(2)政府資金與預採購協議、(3)臨床試驗能量與可信度、(4)法規核准時機與市場進入、(5)企業疫情前研發經驗與創新歷程、(6)本土 mRNA 能力建構。這些面向有助理解科學、政策與基礎建設間之交互作用如何影響疫苗成果。研究發現,三國雖展開積極的本土疫苗開發,但因結構性限制,難以在全球市場取得競爭力。相較領先者,三國普遍缺乏成熟 mRNA 平台技術,臨床試驗規模與國際參與不足,且法規核准落後全球疫苗接種關鍵時點。多數疫苗僅供國內使用,缺乏國際認可,或於疫情高峰後才核准上市,無法有效支援全球供應。本研究指出,科技準備度、早期資金支持與法規敏捷性整合,是達成全球疫苗指標關鍵。即使科技先進國家,若缺乏平台基礎、大規模臨床試驗網絡與公私協力同步機制,亦難及時回應公共衛生緊急情勢。研究認為,科學專業不足以保證疫苗能於危機中迅速投入使用。為達成未來疫苗即戰力,各國必須預先投資彈性平台技術、強化臨床與製造能量,並簡化政策流程。日本、台灣與法國經驗提供反思,強調平時建立預警整合機制,以提升國家與全球疫苗應變能力。zh_TW
dc.description.abstractThe SARS-CoV-2 pandemic has had a significant impact on the world. Since the outbreak of the pandemic, many countries, including Japan, Taiwan, and France, have rapidly initiated vaccine development efforts to combat the spread of the virus. These nations, recognized for their advanced technological and scientific capabilities, devoted substantial resources to address this global public health crisis. Despite their efforts, none of these countries developed a vaccine that achieved widespread international use during the COVID-19 pandemic period announced by the World Health Organization (WHO) from 11 March 2020 to 5 May 2023(World Health Organization, 2020b, 2023c). In contract, the BioNTech/Pfizer and Moderna vaccine became a global success, benefiting from early adoption of mRNA technology, strong investment, and efficient regulatory approval.
This study explores the domestic vaccine development landscape in Japan, Taiwan, and France to examine the scientific resources, institutional capabilities, and policy measures employed during the pandemic. It also investigates the challenges these countries faced and compares them with the enabling factors behind BioNTech/Pfizer’s success. The research adopts a comparative case study approach, supported by qualitative and quantitative analyses using official documents, scientific databases, government records, and corporate press releases. Six key factors were examined: (1) vaccine platform technology and development speed, (2) government funding and advance purchase agreements, (3) clinical trial capacity and credibility, (4) timing of regulatory approval and market entry, (5) companies’ pre-pandemic experience and innovation pathways, and (6) domestic capabilities in mRNA vaccine development. These elements were selected to assess how the interplay of science, policy, and infrastructure shaped each country’s vaccine outcomes.
Findings indicate that Japan, Taiwan, and France each launched ambitious domestic vaccine programs but faced structural limitations that hindered global competitiveness. Compared to early vaccine frontrunners, all three countries lacked timely access to mature mRNA platforms, experienced delays in large-scale international trials, and approved their vaccines after critical phases of global immunization had already been achieved. Their national vaccines were either used domestically with limited international recognition or approved too late to make significant contributions to global vaccine supply.
The analysis reveals that countries with aligned technological readiness, early-stage funding mechanisms, and regulatory responsiveness were more successful in reaching global vaccine milestones. By contrast, even technologically advanced nations may falter without pre-existing platform capacity, scalable clinical trial networks, and synchronized public-private coordination. This research concludes that scientific expertise alone is insufficient to guarantee timely vaccine deployment during health emergencies. To achieve future vaccine readiness, countries must invest strategically in flexible vaccine platforms, establish trial and production capacity before crises emerge, and streamline policy pathways for rapid development. Japan, Taiwan, and France offer critical insights into the consequences of fragmented preparation and the long-term need to embed coordinated, anticipatory strategies within national and international health systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:09:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:09:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
ABSTRACT ii
中文摘要 iv
Table of Contents v
List of Figures vii
List of Tables viii
List of Abbreviations ix
Chapter 1 Background 1
1.1 The COVID-19 Pandemic 1
1.2 The SARS-CoV-2 Virus 6
1.3 The Importance of Vaccine in Pandemic Control 9
1.4 Technology of mRNA Vaccine 11
1.5 Research Purpose 13
Chapter 2 Materials and Methods 14
2.1 Research Framework 14
2.2 Settings 15
2.3 Source of Literature Reviews 17
2.3.1 Academic Journal Articles 17
2.3.2 News Reports 17
2.3.3 Company Press Releases 17
2.3.4 Governmental Documents 17
2.4 Database of mRNA/Clinical Trial Related Research 19
Chapter 3 Results 21
3.1 Company Background and Pre-pandemic Capabilities 21
3.2 Impact of Vaccine Platform Selection on Development Speed 26
3.3 Government Support and Advance Purchase Agreement 30
3.4 Clinical Trial Execution and Public Trust 36
3.5 Timing of Market Entry and Competitive Position 46
3.6 Domestic mRNA Development: Gaps and Progress 54
3.7 Key Determinants of Vaccine Development Success by Brand and Country 65
Chapter 4 Discussion 69
4.1 Comparison with Previous Research 69
4.2 The COVID-19 Endemics 72
4.3 The CEPI 100 Days Mission 74
4.4 Vaccine Equity 78
4.5 Evolving Regulatory Approaches 83
4.6 Ongoing National Efforts and Corporate Priorities 86
4.7 Limitations 91
Chapter 5 Conclusion and Recommendation 94
REFERENCE 97
Appendix 114
-
dc.language.isoen-
dc.subject新型冠狀病毒zh_TW
dc.subject疫苗政策zh_TW
dc.subject疫苗開發zh_TW
dc.subjectmRNA疫苗zh_TW
dc.subject新型冠狀病毒疫苗zh_TW
dc.subjectCOVID-19 vaccineen
dc.subjectVaccine developmenten
dc.subjectVaccine policyen
dc.subjectCOVID-19en
dc.subjectmRNA vaccineen
dc.title日本、台灣與法國新冠疫苗開發的綜合評估:政策與技術zh_TW
dc.titleA Comprehensive Assessment of COVID-19 Vaccine Development in Japan, Taiwan, and France: Policy and Technology Approachesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee錢宗良;饒梓明zh_TW
dc.contributor.oralexamcommitteeChung-Liang Chien;Tzu-Ming Jaoen
dc.subject.keyword新型冠狀病毒,新型冠狀病毒疫苗,mRNA疫苗,疫苗開發,疫苗政策,zh_TW
dc.subject.keywordCOVID-19,COVID-19 vaccine,mRNA vaccine,Vaccine development,Vaccine policy,en
dc.relation.page119-
dc.identifier.doi10.6342/NTU202502018-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college醫學院-
dc.contributor.author-dept國際三校農業生技與健康醫療碩士學位學程-
dc.date.embargo-lift2025-09-10-
Appears in Collections:國際三校農業生技與健康醫療碩士學位學程

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
Access limited in NTU ip range
1.75 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved