請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99361完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳珮珊 | zh_TW |
| dc.contributor.advisor | Pai-Shan Chen | en |
| dc.contributor.author | 綦品婕 | zh_TW |
| dc.contributor.author | Pin-Chieh Chi | en |
| dc.date.accessioned | 2025-09-09T16:09:23Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | 1. Millischer, V., et al., Comparison of etomidate and methohexital as anesthetic agents for continuation and maintenance electroconvulsive therapy: A retrospective analysis of seizure quality and safety. J Affect Disord, 2023. 330: p. 33-39.
2. Chung, M., et al., Use of etomidate in patients with heart failure undergoing noncardiac surgery. Br J Anaesth, 2020. 125(6): p. 943-952. 3. Forman, S.A., Clinical and molecular pharmacology of etomidate. Anesthesiology, 2011. 114(3): p. 695-707. 4. Deitch, S., et al., The use of etomidate for prehospital rapid-sequence intubation. Prehosp Emerg Care, 2003. 7(3): p. 380-3. 5. Flynn, G. and Y. Shehabi, Pro/con debate: Is etomidate safe in hemodynamically unstable critically ill patients? Crit Care, 2012. 16(4): p. 227. 6. Erdoes, G., R.M. Basciani, and B. Eberle, Etomidate--a review of robust evidence for its use in various clinical scenarios. Acta Anaesthesiol Scand, 2014. 58(4): p. 380-9. 7. Kulstad, E.B., et al., Etomidate as an induction agent in septic patients: red flags or false alarms? West J Emerg Med, 2010. 11(2): p. 161-72. 8. Detweiler, C. and N. Mambo, Suicide with Vecuronium and Etomidate: A Case Report and Review of the Literature. Academic Forensic Pathology, 2014. 4: p. 244-250. 9. Molina, D.K., V.M. Hargrove, and R.G. Rodriguez, Distribution of etomidate in a fatal intoxication. J Anal Toxicol, 2008. 32(8): p. 715-8. 10. Deng, L., et al., Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci, 2023. 13(9). 11. Jung, Y.K., et al., Simultaneous Determination of Etomidate and Its Major Metabolite, Etomidate Acid, in Urine Using Dilute and Shoot Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 2019. 24(24). 12. Han, C., et al., Changes in psychiatric disorder incidence patterns during the COVID-19 pandemic in Korea: a study using the nationwide universal health insurance data. BMC Psychiatry, 2024. 24(1): p. 889. 13. Li, M., B. Lin, and B. Zhu, Rapid Screening of Etomidate and Its Analogs in Seized e-Liquids Using Thermal Desorption Electrospray Ionization Coupled with Triple Quadrupole Mass Spectrometry. Toxics, 2024. 12(12). 14. Spread of ‘space oil drug’ (etomidate) abuse in Hong Kong and consequent emergency department presentations. HKMJ, 2025. 15. CNA. Police bust 135kg shipment of Cat. 2 narcotic etomidate. 2024 [cited 2024 Nov 29]; Available from: https://www.taipeitimes.com/News/taiwan/archives/2024/11/29/2003827683. 16. UNODC. Increasing detections of etomidate and analogues on illicit drug markets is becoming a global concern. 2025 [cited 2025 07.13]; Available from: https://www.unodc.org/LSS/Announcement/Details/8774c132-4b30-477c-9ceb-46ce384223fd. 17. 迎戰「喪屍煙彈」:依托咪酯毒駕頻傳,鑑驗人員破解化學密碼的突破與挑戰 - 報導者 The Reporter. 2024; Available from: https://www.twreporter.org/a/etomidate-drugtesting. 18. Prakash, C., C.L. Shaffer, and A. Nedderman, Analytical strategies for identifying drug metabolites. Mass Spectrom Rev, 2007. 26(3): p. 340-69. 19. Meyer, U.A., Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm, 1996. 24(5): p. 449-59. 20. Iwatsubo, T., et al., Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther, 1997. 73(2): p. 147-71. 21. Ekins, S., et al., Present and future in vitro approaches for drug metabolism. J Pharmacol Toxicol Methods, 2000. 44(1): p. 313-24. 22. Brandon, E.F., et al., An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol, 2003. 189(3): p. 233-46. 23. Asha, S. and M. Vidyavathi, Role of human liver microsomes in in vitro metabolism of drugs-a review. Appl Biochem Biotechnol, 2010. 160(6): p. 1699-722. 24. Li, A.P., Preclinical in vitro screening assays for drug-like properties. Drug Discov Today Technol, 2005. 2(2): p. 179-85. 25. Fujiki, Y., et al., Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol, 1982. 93(1): p. 97-102. 26. Jia, L. and X. Liu, The conduct of drug metabolism studies considered good practice (II): in vitro experiments. Curr Drug Metab, 2007. 8(8): p. 822-9. 27. He, T.-F., et al., A highly efficient liquid chromatography–tandem mass spectrometry (LC–MS/MS) assay for etomidate and etomidate acid in urine, liver and kidney. Journal of Pharmacological and Toxicological Methods, 2024. 125: p. 107490. 28. Atucha, E., et al., Structure–activity relationship of etomidate derivatives at the GABAA receptor: Comparison with binding to 11β-hydroxylase. Bioorganic & Medicinal Chemistry Letters, 2009. 19(15): p. 4284-4287. 29. Massano, M., et al., Metabolic profile of N-ethylhexedrone, N-ethylpentedrone, and 4-chloromethcathinone in urine samples by UHPLC-QTOF-HRMS. Journal of Pharmaceutical and Biomedical Analysis, 2024. 241: p. 115994. 30. Qin, S., et al., Mass spectrometric characterization and identification of new methcathinone metabolites in human blood (plasma), urine and hair by liquid chromatography-high field quadrupole exactive orbitrap mass spectrometer. Microchemical Journal, 2020. 159: p. 105423. 31. Nykodemová, J., et al. 2C-B-Fly-NBOMe Metabolites in Rat Urine, Human Liver Microsomes and C. elegans: Confirmation with Synthesized Analytical Standards. Metabolites, 2021. 11, DOI: 10.3390/metabo11110775. 32. de Araujo, A.L.D., et al., Is zebrafish (Danio rerio) water tank model applicable for the assessment of glucocorticoids metabolism? The budesonide assessment. Journal of Chromatography B, 2021. 1179: p. 122826. 33. Alipour, M., et al., Histopathological study on neuroapoptotic alterations induced by etomidate in rat hippocampus. Acta Histochemica, 2021. 123(3): p. 151693. 34. Gawlik, M. and R. Skibiński, Identification of new metabolites of vardenafil with the use of HLM and photochemical methods by LC-ESI-HRMS combined with multivariate chemometric analysis. International Journal of Mass Spectrometry, 2018. 433: p. 55-60. 35. Peeters, L., et al., A comparative study on the in vitro biotransformation of medicagenic acid using human liver microsomes and S9 fractions. Chemico-Biological Interactions, 2020. 328: p. 109192. 36. Lee, H.-K., et al., P160 - In vitro metabolism of endosulfan sulfate in human liver microsomes, S9 fractions and hepatocytes. Drug Metabolism and Pharmacokinetics, 2020. 35(1, Supplement): p. S71-S72. 37. Murari, M., et al., Study of metabolism and potential toxicity of nine synthetic opioid analogs using the zebrafish larvae model. Drug Testing and Analysis, 2024. 16(6): p. 629-637. 38. Zhao, W., et al., The uses of zebrafish (Danio rerio) as an in vivo model for toxicological studies: A review based on bibliometrics. Ecotoxicology and Environmental Safety, 2024. 272: p. 116023. 39. Howe, K., et al., The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013. 496(7446): p. 498-503. 40. Zhong, S., et al., Identification and characterization of etomidate and metomidate metabolites in zebrafish, HLMs and S9 fraction by quadrupole-orbitrap LC-MS/MS for drug control. Journal of Chromatography B, 2025. 1250: p. 124374. 41. Etomidate Rapid Test Kit. 2025; Available from: https://www.bio-equip.cn/enshow1equip.asp?equipid=144301&utm_source=chatgpt.com. 42. Yum, H., et al., Fast and reliable analysis of veterinary metomidate and etomidate in human blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a postmortem case. J Forensic Sci, 2021. 66(6): p. 2532-2538. 43. Han, X., et al., UPLC-MS/MS Method for Detection of Etomidate and Its Metabolite Etomidate Acid Quantity in Blood. Fa Yi Xue Za Zhi, 2023. 39(6): p. 564-570. 44. Qian, X., et al., Rapid qualitative and quantitative analysis of etomidate and its structural analogs in blood by UPLC-MS/MS and application in six forensic cases. Journal of Pharmaceutical and Biomedical Analysis, 2025. 264: p. 116962. 45. Deng, X.-s. and V.J. Simpson, Gas chromatographic–mass spectrometric determination of etomidate in mouse brain. Journal of Pharmacological and Toxicological Methods, 2000. 43(1): p. 73-77. 46. Tang, Y., et al., Metabolic Profile of Etomidate and Its Three Analogs in Zebrafish, Human Liver Microsomes, Human Urine and Hair Samples Using UHPLC-Q Exactive Orbitrap-HRMS. Drug Testing and Analysis, 2025. n/a(n/a). 47. Yost, R.A. and C.G. Enke, Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem, 1979. 51(12): p. 1251-64. 48. Cooks, R.G., Special feature: Historical. Collision-induced dissociation: Readings and commentary. Journal of Mass Spectrometry, 1995. 30(9): p. 1215-1221. 49. Zimdahl Kahlin, A., Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype concordance and effect of methotrexate on thiopurine metabolism. 2020. 50. Jjunju, F., Colloquium: 100 years of mass spectrometry: Perspectives and future trends. 2015. 51. Liu, X. and L. Jia, The conduct of drug metabolism studies considered good practice (I): analytical systems and in vivo studies. Curr Drug Metab, 2007. 8(8): p. 815-21. 52. Valk, B.I. and M. Struys, Etomidate and its Analogs: A Review of Pharmacokinetics and Pharmacodynamics. Clin Pharmacokinet, 2021. 60(10): p. 1253-1269. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99361 | - |
| dc.description.abstract | 依托咪酯(Etomidate)原為臨床所使用的麻醉劑,近年來因為「喪屍煙彈」這種與電子煙併用的濫用形式在臺灣迅速蔓延。然而,目前臨床和法醫毒理學對於其代謝機制和特定生物標誌的理解仍不夠完整。
為了更深入了解依托咪酯在體內的變化,本研利用液相層析串聯式質譜儀(Liquid Chromatography-Tandem Mass Spectrometry, LC-MS/MS),並搭配人類肝臟微粒體(Human Liver Microsomes, HLMs)體外代謝模型,來模擬依托咪酯在人體肝臟中的第一級代謝,相較於目前已發表的文獻僅探討0至2小時的代謝時間,本研究在 0 到 168 小時之間,總共取了 9 個時間點,以更全面了解代謝物隨時間變化的趨勢,本研究首先使用全掃描(Full Scan)與選擇離子掃描(Selected ion monitoring)模式比對實驗組與對照組之圖譜,結合第一級代謝反應可能之反應途徑找出潛在的代謝物,再利用產物離子掃描模式(Product ion mode)分析其二次質譜之圖譜,並解析其可能之碎裂機制。 本研究主要發現六條主要的第一階段代謝途徑,這些代謝產物及其對應的質荷比(mass-to-charge ratio, m/z)如下: N-去烷基化(N-dealkylation, E1, m/z 141)、苯乙基去氫化(phenylethyl dehydrogenation, E2, m/z 243)、芳環羥基化(aromatic hydroxylation, E3, m/z 261)、乙氧基羥基化(ethoxy hydroxylation, E4, m/z 261)、雙羥基化(dihydroxylation, E5, m/z 277)、O-去烷基化生成依托咪酯酸(O-dealkylation to form etomidate acid, E6, m/z 217),從時間曲線上來看,依托咪酯酸在反應進行到第 4 小時的時候,濃度就已經超越了原型藥物,並在 24 小時達到高峰,證實了依托咪酯酸是監測依托咪酯濫用的潛在關鍵生物標誌。 綜上,本研究為臨床和法醫毒理學監測依托咪酯濫用提供更詳細的一級代謝路徑及質譜分析資訊,有助於未來更有效地應對「喪屍煙彈」這類新興毒品濫用的防治與規範。 | zh_TW |
| dc.description.abstract | Etomidate, originally developed as a non-barbiturate anesthetic for endotracheal intubation, has recently become widely abused in Taiwan through a new form of drug delivery known as “zombie vape,” where etomidate is illicitly mixed with electronic cigarette liquids. Despite its increasing prevalence as a substance of abuse, knowledge regarding its metabolic mechanisms and specific biomarkers remains limited in both clinical and forensic toxicology fields. To better understand the biotransformation of etomidate, this study employed liquid chromatography–tandem mass spectrometry (LC-MS/MS) in combination with an in vitro metabolic model using human liver microsomes (HLMs) to simulate phase I hepatic metabolism. Unlike previous studies that primarily focused on short incubation times ranging from 0 to 2 hours, this investigation extended the analysis to 168 hours, collecting samples at nine distinct time points to capture a more comprehensive view of time-dependent metabolite formation. Metabolite screening was initially conducted using full scan and selected ion monitoring (SIM) modes to compare chromatographic patterns between experimental and control groups. Potential metabolites were predicted based on plausible phase I reactions and subsequently confirmed using product ion mode to obtain MS/MS spectra and elucidate characteristic fragmentation pathways.
This study identified six major phase I metabolic pathways of etomidate, corresponding to N-dealkylation (E1, m/z 141), phenylethyl dehydrogenation (E2, m/z 243), aromatic hydroxylation (E3, m/z 261), ethoxy hydroxylation (E4, m/z 261), dihydroxylation (E5, m/z 277), and O-dealkylation leading to the formation of etomidate acid (E6, m/z 217). Time-course analysis demonstrated that etomidate acid exceeded the concentration of the parent compound by the fourth hour and reached its peak at 24 hours, supporting its role as a potential biomarker for detecting etomidate use and abuse. In conclusion, this study offers a more detailed and extended characterization of etomidate’s phase I metabolism and its associated mass spectrometric signatures, providing valuable insight for clinical and forensic toxicology. The findings contribute to more effective monitoring and regulation strategies in response to the growing abuse of new psychoactive substances such as zombie vape. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:09:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:09:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i
謝誌 ii 中文摘要 iii Abstract v 目次 vii 圖次 ix 表次 xi 第一章 緒論 1 1.1 依托咪酯(Etomidate)臨床用途 1 1.2 依托咪酯(Etomidate)全球濫用情形 2 1.3 依托咪酯(Etomidate)台灣濫用情形 3 1.4 藥物代謝反應與體外代謝模型 4 1.4.1 藥物代謝反應 4 1.4.2 體外代謝模型之選擇 5 1.5 依托咪酯的代謝 9 1.6 依托咪酯的現行檢測方法 16 1.6.1 尿液/血清用免疫層析試紙 16 1.6.2 電子煙油「滴劑快篩」—臺灣本土版本 16 1.6.3 液相層析–串聯質譜(LC-MS/MS) 16 1.6.4 氣相層析-質譜(GC-MS) 17 1.6.5 高解析質譜(HRMS) 18 1.7 液相層析串聯式質譜儀原理 19 1.7.1 液相層析串聯式質譜儀之組成 19 1.7.2 串聯式質譜常見掃描模式 20 1.8 研究目的 23 第二章 實驗材料及分析方法 24 2.1 實驗材料 24 2.2 樣品製備 25 2.2.1 第一級代謝反應(Phase I reaction) 25 2.2.2 依托咪酯質譜參數最佳化(Infusion) 25 2.2.3 未知的代謝物鑑定與代謝時間軸建立 26 2.3 實驗儀器與設定 27 2.3.1 液相層析質譜儀 27 第三章 結果與討論 28 3.1 依托咪酯質譜參數最佳化(Infusion)結果 28 3.2 依托咪酯代謝時間趨勢 30 3.3 以選擇性離子監測(SIM)模式尋找各潛在代謝物之母離子(Precursor ion) 32 3.4 以產物離子掃描模式(product ion mode)鑑定各代謝物之二次質譜 42 第四章 結論 72 第五章 未來展望 73 參考文獻 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 二次質譜 | zh_TW |
| dc.subject | 依托咪酯 | zh_TW |
| dc.subject | 第一級代謝反應 | zh_TW |
| dc.subject | 人類肝臟微粒體 | zh_TW |
| dc.subject | 液相層析串聯式質譜儀 | zh_TW |
| dc.subject | MS/MS spectra | en |
| dc.subject | phase I metabolism | en |
| dc.subject | liquid chromatography–tandem mass spectrometry (LC-MS/MS) | en |
| dc.subject | Etomidate | en |
| dc.subject | human liver microsomes (HLMs) | en |
| dc.title | 利用液相層析串聯式質譜儀搭配人類肝臟微粒體鑑定依托咪酯和其一次代謝產物之二次質譜 | zh_TW |
| dc.title | Identify the Phase I metabolites of Etomidate Using LC-MS/MS and Human Liver Microsomes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陳惠文 | zh_TW |
| dc.contributor.coadvisor | Huei-Wen Chen | en |
| dc.contributor.oralexamcommittee | 華國泰;廖寶琦 | zh_TW |
| dc.contributor.oralexamcommittee | Kuo-Tai Hua;Pao-Chi Liao | en |
| dc.subject.keyword | 依托咪酯,液相層析串聯式質譜儀,人類肝臟微粒體,第一級代謝反應,二次質譜, | zh_TW |
| dc.subject.keyword | Etomidate,liquid chromatography–tandem mass spectrometry (LC-MS/MS),human liver microsomes (HLMs),phase I metabolism,MS/MS spectra, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202504392 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 毒理學研究所 | - |
| dc.date.embargo-lift | 2025-09-10 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 12.07 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
