請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99360完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜至剛 | zh_TW |
| dc.contributor.advisor | Chih-Kang Chiang | en |
| dc.contributor.author | 張永 | zh_TW |
| dc.contributor.author | Yung Chang | en |
| dc.date.accessioned | 2025-09-09T16:09:12Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-02 | - |
| dc.identifier.citation | Adams, J., Howsmon, D. P., Kruger, U., Geis, E., Gehn, E., Fimbres, V., Pollard, E., Mitchell, J., Ingram, J., Hellmers, R., Quig, D., & Hahn, J. (2017). Significant Association of Urinary Toxic Metals and Autism-Related Symptoms-A Nonlinear Statistical Analysis with Cross Validation. PLoS One, 12(1), e0169526.
Adams, J. B., Audhya, T., McDonough-Means, S., Rubin, R. A., Quig, D., Geis, E., Gehn, E., Loresto, M., Mitchell, J., Atwood, S., Barnhouse, S., & Lee, W. (2013). Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol Trace Elem Res, 151(2), 171–180. Albals, D., Al-Momani, I. F., Issa, R., & Yehya, A. (2021). Multi-element determination of essential and toxic metals in green and roasted coffee beans: A comparative study among different origins using ICP-MS. Sci Prog, 104(2), 368504211026162. Alvarez-Barrera, L., Rodriguez-Mercado, J. J., Mateos-Nava, R. A., Vazquez-Martinez, Y., & Altamirano-Lozano, M. A. (2019). Effect on the offspring of pregnant females CD-1 mice treated with a single thallium(I) application. Reprod Toxicol, 90, 1–7. Andreescu, M. (2024). Correlation Between Maternal-Fetus Interface and Placenta-Mediated Complications. Cureus, 16(6), e62457. Antkiewicz, D. S., Burns, C. G., Carney, S. A., Peterson, R. E., & Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci, 84(2), 368–377. Belzile, N., & Chen, Y.-W. (2017). Thallium in the environment: A critical review focused on natural waters, soils, sediments and airborne particles. Applied Geochemistry, 84, 218–243. Bramanti, E., Onor, M., & Colombaioni, L. (2019). Neurotoxicity Induced by Low Thallium Doses in Living Hippocampal Neurons: Evidence of Early Onset Mitochondrial Dysfunction and Correlation with Ethanol Production. ACS Chem Neurosci, 10(1), 451–459. C. Fleck, & Appenroth, D. (1996). Renal amino acid transport in immature and adult rats during thallium-induced nephrotoxicity. Toxicology, 106(1–3), 229–236. Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G., & Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867), 92–96. Campanella, B., Onor, M., D'Ulivo, A., Giannecchini, R., D'Orazio, M., Petrini, R., & Bramanti, E. (2016). Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci Total Environ, 548–549, 33–42. Casas-Martinez, J. C., Samali, A., & McDonagh, B. (2024). Redox regulation of UPR signalling and mitochondrial ER contact sites. Cell Mol Life Sci, 81(1), 250. Casiot, C., Egal, M., Bruneel, O., Verma, N., Parmentier, M., & Elbaz-Poulichet, F. (2011). Predominance of aqueous Tl(I) species in the river system downstream from the abandoned Carnoules mine (Southern France). Environ Sci Technol, 45(6), 2056–2064. Chang, Y., Tsai, J. F., Chen, P. J., Huang, Y. T., & Liu, B. H. (2023). Thallium exposure interfered with heart development in embryonic zebrafish (Danio rerio): From phenotype to genotype. Sci Total Environ, 878, 162901. Chaudhary, V., Ah Kioon, M. D., Hwang, S. M., Mishra, B., Lakin, K., Kirou, K. A., Zhang-Sun, J., Wiseman, R. L., Spiera, R. F., Crow, M. K., Gordon, J. K., Cubillos-Ruiz, J. R., & Barrat, F. J. (2022). Chronic activation of pDCs in autoimmunity is linked to dysregulated ER stress and metabolic responses. J Exp Med, 219(11). Cheam, V., Lechner, J., Desrosiers, R., Azcue, J., Rosa, F., & Mudroch, A. (1996). LEAFS determination and concentration of metals in Great Lakes ecosystem. Fresenius' Journal of Analytical Chemistry, 355(3), 336–339. Cox, J. S., Shamu, C. E., & Walter, P. (1993). Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 73(6), 1197–1206. Cullinan, S. B., Zhang, D., Hannink, M., Arvisais, E., Kaufman, R. J., & Diehl, J. A. (2003). Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol, 23(20), 7198–7209. Cvjetko, P., Cvjetko, I., & Pavlica, M. (2010). Thallium Toxicity in Humans. Archives of Industrial Hygiene and Toxicology, 61(1), 111–119. Dai, J., Wu, X., Bai, Y., Feng, W., Wang, S., Chen, Z., Fu, W., Li, G., Chen, W., Wang, G., Feng, Y., Liu, Y., Meng, H., Zhang, X., He, M., Wu, T., & Guo, H. (2019). Effect of thallium exposure and its interaction with smoking on lung function decline: A prospective cohort study. Environ Int, 127, 181–189. De-Souza, E. A., Cummins, N., & Taylor, R. C. (2022). IRE-1 endoribonuclease activity declines early in C. elegans adulthood and is not rescued by reduced reproduction. Front Aging, 3, 1044556. Dorothea Appenroth, Stepan Gambaryan, Klaus Winnefeld, Matthias Leiterer, christian Fleck, & Bräunlich, H. (1995). Functional and morphological aspects of thallium-induced nephrotoxicity in rats. Toxicology, 96(3), 203–215. Drago, G., Perrino, C., Canepari, S., Ruggieri, S., L'Abbate, L., Longo, V., Colombo, P., Frasca, D., Balzan, M., Cuttitta, G., Scaccianoce, G., Piva, G., Bucchieri, S., Melis, M., Viegi, G., Cibella, F., Group, R. C. P., Indoor, Outdoor Air, Q.,…Scaccianoce, G. (2018). Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM(2.5). Environ Res, 165, 71–80. DUBEY, R. K., & PURI, B. K. (1995). Differential pulse polarographic determination of thallium in various environmental samples after adsorption of its morpholine-4-carbodithioate onto microcrystalline naphthalene. Annali di chimica, 85(1–2), 87–95. Dufey, E., Bravo-San Pedro, J. M., Eggers, C., Gonzalez-Quiroz, M., Urra, H., Sagredo, A. I., Sepulveda, D., Pihan, P., Carreras-Sureda, A., Hazari, Y., Sagredo, E. A., Gutierrez, D., Valls, C., Papaioannou, A., Acosta-Alvear, D., Campos, G., Domingos, P. M., Pedeux, R., Chevet, E.,…Hetz, C. (2020). Genotoxic stress triggers the activation of IRE1alpha-dependent RNA decay to modulate the DNA damage response. Nat Commun, 11(1), 2401. Düsseldorf. (1998). Umweltqualität, F., Maximum Emission Values–Maximum Thallium Emission Values for Livestock (Richtlinie 2310 Blatt 29 (E)). . Eskandari, M. R., Mashayekhi, V., Aslani, M., & Hosseini, M. J. (2015). Toxicity of thallium on isolated rat liver mitochondria: the role of oxidative stress and MPT pore opening. Environ Toxicol, 30(2), 232–241. Eskandari, M. R., Pourahmad, J., & Daraei, B. (2010). Thallium(I) and thallium(III) induce apoptosis in isolated rat hepatocytes by alterations in mitochondrial function and generation of ROS. Toxicological & Environmental Chemistry, 93(1), 145–156. Fan, Y., Zhou, T., Gabriel, V., Hu, Q., Yuan, F., & Zhang, X. (2005). Metallogenic regularities of thallium deposits. Geol. Sci. Technol. Inf, 24, 55–60. Farag, M. R., Attia, Y. A., Al Solami, L. S., Bovera, F., Nizza, A., & Alagawany, M. (2022). Behavioral, physiological, and inflammatory responses of Oreochromis niloticus fish exposed to thallium and/or supplementation with Astragalus membranaceus polysaccharides. Aquaculture, 553. Fatjo-Vilas, M., Prats, C., Pomarol-Clotet, E., Lazaro, L., Moreno, C., Gonzalez-Ortega, I., Lera-Miguel, S., Miret, S., Munoz, M. J., Ibanez, I., Campanera, S., Giralt-Lopez, M., Cuesta, M. J., Peralta, V., Ortet, G., Parellada, M., Gonzalez-Pinto, A., McKenna, P. J., & Fananas, L. (2016). Involvement of NRN1 gene in schizophrenia-spectrum and bipolar disorders and its impact on age at onset and cognitive functioning. World J Biol Psychiatry, 17(2), 129–139. Frau, F. (1993). Selected trace elements in groundwaters from the main hydrothermal areas of Sardinia (Italy) as a tool in reconstructing water-rock interaction. MINERALOGICA ET PETROGRAPHICA ACTA, 36, 281–296. Fujihara, J., & Nishimoto, N. (2024). Thallium - poisoner's poison: An overview and review of current knowledge on the toxicological effects and mechanisms. Curr Res Toxicol, 6, 100157. G. Repetto, P. Sanz, & Repetto, M. (1994). In vitro effects of thallium on mouse neuroblastoma cells. Toxicology in Vitro, 8(4), 609–611. Galvan-Arzate, S., Pedraza-Chaverri, J., Medina-Campos, O. N., Maldonado, P. D., Vazquez-Roman, B., Rios, C., & Santamaria, A. (2005). Delayed effects of thallium in the rat brain: regional changes in lipid peroxidation and behavioral markers, but moderate alterations in antioxidants, after a single administration. Food Chem Toxicol, 43(7), 1037–1045. Genchi, G., Carocci, A., Lauria, G., Sinicropi, M. S., & Catalano, A. (2021). Thallium Use, Toxicity, and Detoxification Therapy: An Overview. Applied Sciences, 11(18), 8322. Ghaderi, A., NasehGhafoori, P., Rasouli-Azad, M., Sehat, M., Mehrzad, F., Nekuei, M., Aaseth, J., Banafshe, H. R., & Mehrpour, O. (2018). Examining of Thallium in Cigarette Smokers. Biol Trace Elem Res, 182(2), 224–230. Ghezzi, L., D'Orazio, M., Doveri, M., Lelli, M., Petrini, R., & Giannecchini, R. (2019). Groundwater and potentially toxic elements in a dismissed mining area: Thallium contamination of drinking spring water in the Apuan Alps (Tuscany, Italy). Journal of Geochemical Exploration, 197, 84–92. Grandjean, J. M. D., Madhavan, A., Cech, L., Seguinot, B. O., Paxman, R. J., Smith, E., Scampavia, L., Powers, E. T., Cooley, C. B., Plate, L., Spicer, T. P., Kelly, J. W., & Wiseman, R. L. (2020). Pharmacologic IRE1/XBP1s activation confers targeted ER proteostasis reprogramming. Nat Chem Biol, 16(10), 1052–1061. Grassini, D. R., Lagendijk, A. K., De Angelis, J. E., Da Silva, J., Jeanes, A., Zettler, N., Bower, N. I., Hogan, B. M., & Smith, K. A. (2018). Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development, 145(12). Hanzel, C. E., & Verstraeten, S. V. (2006). Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol Appl Pharmacol, 216(3), 485–492. Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., & Ron, D. (2000). Perk Is Essential for Translational Regulation and Cell Survival during the Unfolded Protein Response. Molecular Cell, 5(5), 897–904. Haze, K., Yoshida, H., Yanagi, H., Yura, T., & Mori, K. (1999). Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Molecular biology of the cell, 10(11), 3787–3799. Hetz, C., Bernasconi, P., Fisher, J., Lee, A.-H., Bassik, M. C., Antonsson, B., Brandt, G. S., Iwakoshi, N. N., Schinzel, A., & Glimcher, L. H. (2006). RETRACTED: Proapoptotic BAX and BAK Modulate the Unfolded Protein Response by a Direct Interaction with IRE1α. science, 312(5773), 572–576. Hetz, C., & Saxena, S. (2017). ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol, 13(8), 477–491. Hofstra, A. H., & Cline, J. S. (2000). Characteristics and Models for Carlin-Type Gold Deposits. In S. G. Hagemann & P. E. Brown (Eds.), Gold in 2000 (Vol. 13, pp. 0). Society of Economic Geologists. Hollien, J., & Weissman, J. S. (2006). Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. science, 313(5783), 104–107. Hou, L. P., Yang, Y., Shu, H., Ying, G. G., Zhao, J. L., Chen, Y. B., Chen, Y. H., Fang, G. Z., Li, X., & Liu, J. S. (2017). Changes in Histopathology, Enzyme Activities, and the Expression of Relevant Genes in Zebrafish (Danio rerio) Following Long-Term Exposure to Environmental Levels of Thallium. Bull Environ Contam Toxicol, 99(5), 574–581. Hsiao, E. Y., & Patterson, P. H. (2012). Placental regulation of maternal-fetal interactions and brain development. Dev Neurobiol, 72(10), 1317–1326. Hsu, Y. C., Thia, E., & Chen, P. J. (2022). Monitoring of ion release, bioavailability and ecotoxicity of thallium in contaminated paddy soils under rice cultivation conditions. J Hazard Mater, 424(Pt C), 126513. Huang, Y. Y., Paul, G. V., & Hsu, T. (2024). Thallium(I) induces a prolonged inhibition of (6–4)photoproduct binding and UV damage excision repair activities in zebrafish (Danio rerio) embryos via protein inactivation. Chem Biol Interact, 388, 110837. I. Rusznyák, L. György, S. Ormai, & Millner, T. (1968). On some potassium-like qualities of the thallium ion. Experientia, 24, 809–810. Janković, S. (2010). Sb-As-TI MINERAL ASSOCIATIONS IN THE MEDITERRANEAN REGION. International Geology Review, 31(3), 262–273. Jiang, Y., Xia, W., Zhang, B., Pan, X., Liu, W., Jin, S., Huo, W., Liu, H., Peng, Y., Sun, X., Zhang, H., Zhou, A., Xu, S., & Li, Y. (2018). Predictors of thallium exposure and its relation with preterm birth. Environ Pollut, 233, 971–976. Jin, R., Zhu, X., Shrubsole, M. J., Yu, C., Xia, Z., & Dai, Q. (2018). Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003–2012. Environ Int, 121(Pt 2), 1355–1362. Karbowska, B. (2016). Presence of thallium in the environment: sources of contaminations, distribution and monitoring methods. Environmental Monitoring and Assessment, 188(11). Karbowska, B., & Zembrzuski, W. (2016). Determining Thallium in a Commercial Tobacco Brand Available in Poland. Polish Journal of Environmental Studies, 25(5), 2217–2220. Kazancioglu, R. (2013). Risk factors for chronic kidney disease: an update. Kidney Int Suppl (2011), 3(4), 368–371. Kim, I., Xu, W., & Reed, J. C. (2008). Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov, 7(12), 1013–1030. Kutlu, M., & Kılıç, V. (2009). Histopathological alterations and cadmium accumulation in the liver and gills of Aphanius chantrei (Gaillard, 1895)(Cyprinodontiformes: Cyprinodontidae). Li, D., Li, L., Yao, H., Su, Q., & Ye, J. (2023). Thallium exposure induces changes in B and T cell generation in mice. Toxicology, 492, 153532. Li, F., Jing, M., Ma, F., Wang, W., & Li, M. (2023). Comparison and Risk Assessment of Macroelements and Trace Metals in Commercial Teas from Different Regions of China. Biol Trace Elem Res, 201(3), 1503–1519. Li, H. (2007). Environmental Geochemistry of Cadmium in Jinding Lead and Zinc Mine Area in Yunnan, China Doctoral thesis, Chinese Academy of Sciences, 2007, 120 pp. Li, H., Li, H., Li, Y., Liu, Y., & Zhao, Z. (2018). Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder. Biol Trace Elem Res, 181(1), 31–37. Li, X., Li, A., Zhang, W., Liu, X., Liang, Y., Yao, X., & Song, M. (2019). A pilot study of mothers and infants reveals fetal sex differences in the placental transfer efficiency of heavy metals. Ecotoxicol Environ Saf, 186, 109755. Lin, G., Sun, Y., Long, J., Sui, X., Yang, J., Wang, Q., Wang, S., He, H., Luo, Y., Qiu, Z., & Wang, Y. (2020). Involvement of the Nrf2-Keap1 signaling pathway in protection against thallium-induced oxidative stress and mitochondrial dysfunction in primary hippocampal neurons. Toxicol Lett, 319, 66–73. Lin, Y. J., Hsin, I. L., Sun, H. S., Lin, S., Lai, Y. L., Chen, H. Y., Chen, T. Y., Chen, Y. P., Shen, Y. T., & Wu, H. M. (2018). NTF3 Is a Novel Target Gene of the Transcription Factor POU3F2 and Is Required for Neuronal Differentiation. Mol Neurobiol, 55(11), 8403–8413. Liu, J., Huang, Y., Liu, Y., Jiang, S., Zhang, Q., Li, P., Lin, K., Zeng, X., Hu, H., Cao, Y., Xiong, X., & Wang, J. (2024). Increased atmospheric thallium threats to populated areas: A mini review. J Hazard Mater, 480, 135681. Liu, J., Li, N., Zhang, W., Wei, X., Tsang, D. C. W., Sun, Y., Luo, X., Bao, Z., Zheng, W., Wang, J., Xu, G., Hou, L., Chen, Y., & Feng, Y. (2019). Thallium contamination in farmlands and common vegetables in a pyrite mining city and potential health risks. Environ Pollut, 248, 906–915. Liu, J., Luo, X., Sun, Y., Tsang, D. C. W., Qi, J., Zhang, W., Li, N., Yin, M., Wang, J., Lippold, H., Chen, Y., & Sheng, G. (2019). Thallium pollution in China and removal technologies for waters: A review. Environ Int, 126, 771–790. Liu, J., Luo, X., Wang, J., Xiao, T., Chen, D., Sheng, G., Yin, M., Lippold, H., Wang, C., & Chen, Y. (2017). Thallium contamination in arable soils and vegetables around a steel plant-A newly-found significant source of Tl pollution in South China. Environ Pollut, 224, 445–453. Liu, J., Luo, X., Wang, J., Xiao, T., Chen, D., Sheng, G., Yin, M., Lippold, H., Wang, C., & Chen, Y. (2017). Thallium contamination in arable soils and vegetables around a steel plant—A newly-found significant source of Tl pollution in South China. Environmental Pollution, 224, 445–453. Liu, J., Wang, J., Chen, Y., Qi, J., Lippold, H., & Wang, C. (2010). Thallium Distribution in Sediments from the Pearl River Basin, China. CLEAN - Soil, Air, Water, 38(10), 909–915. Liu, J., Wang, J., Chen, Y., Xie, X., Qi, J., Lippold, H., Luo, D., Wang, C., Su, L., He, L., & Wu, Q. (2016). Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environmental Pollution, 212, 77–89. Liu, J., Yan, G., Huo, Z., Mo, Y., Wen, Y., Liu, W., Zhou, H., Yan, B., & Lin, Z. (2024). Thallium's Threat to Aquatic Life: Stage-Specific Toxicity in Zebrafish Embryos and Larvae. Environ Health (Wash), 2(3), 114–125. Liu, W., Wen, Y., Wang, M., Gui, S., Li, X., Fan, Y., Yan, X., Lin, Y., Sun, Y., & Liu, J. (2018). Enhanced resistance of triploid crucian carp to cadmiuminduced oxidative and endoplasmic reticulum stresses. Current Molecular Medicine, 18(6), 400–408. Liu, Y., Zhao, H., Yin, K., Guo, M., Wang, Y., Wang, D., Zong, H., & Xing, M. (2022). The protective effect of Zn2+ on As3+ toxicity in common carp: Resistance to oxidative stress, inhibition of endoplasmic reticulum stress, apoptosis and autophagy. Aquaculture, 546. Madhavan, A., Kok, B. P., Rius, B., Grandjean, J. M. D., Alabi, A., Albert, V., Sukiasyan, A., Powers, E. T., Galmozzi, A., Saez, E., & Wiseman, R. L. (2022). Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity. Nat Commun, 13(1), 608. Maitre, L., Robinson, O., Martinez, D., Toledano, M. B., Ibarluzea, J., Marina, L. S., Sunyer, J., Villanueva, C. M., Keun, H. C., Vrijheid, M., & Coen, M. (2018). Urine Metabolic Signatures of Multiple Environmental Pollutants in Pregnant Women: An Exposome Approach. Environ Sci Technol, 52(22), 13469–13480. Malhotra, S., Gomez, J., & Doukky, R. (2019). Assessment of myocardial viability using single-photon emission computed tomography myocardial perfusion imaging. Curr Opin Cardiol, 34(5), 473–483. Meder, B., Just, S., Vogel, B., Rudloff, J., Gartner, L., Dahme, T., Huttner, I., Zankl, A., Katus, H. A., & Rottbauer, W. (2010). JunB-CBFbeta signaling is essential to maintain sarcomeric Z-disc structure and when defective leads to heart failure. J Cell Sci, 123(Pt 15), 2613–2620. Menoud, M., van der Veen, C., Maazallahi, H., Hensen, A., Velzeboer, I., van den Bulk, P., Delre, A., Korben, P., Schwietzke, S., Ardelean, M., Calcan, A., Etiope, G., Baciu, C., Scheutz, C., Schmidt, M., & Röckmann, T. (2022). CH4 isotopic signatures of emissions from oil and gas extraction sites in Romania. Elementa: Science of the Anthropocene, 10(1). Molavi, N., Ghaderi, A., & Banafshe, H. R. (2020). Determination of thallium in urine, blood, and hair in illicit opioid users in Iran. Hum Exp Toxicol, 39(6), 808–815. Morel Gomez, E., Casali, C. I., Fernandez, M. D. C., & Verstraeten, S. V. (2023). Tl(I) and Tl(III) induce reticulum stress in MDCK cells. Environ Toxicol Pharmacol, 101, 104192. Murao, S., & Itoh, S. (1992). High thallium content in Kuroko-type ore. Journal of Geochemical Exploration, 43(3), 223–231. Nakhaee, S., Amirabadizadeh, A., Ataei, M., Ataei, H., Zardast, M., Shariatmadari, M. R., Mousavi-Mirzaei, S. M., & Mehrpour, O. (2021). Comparison of serum concentrations of essential and toxic elements between cigarette smokers and non-smokers. Environ Sci Pollut Res Int, 28(28), 37672–37678. Omar, N. A., Kumar, J., & Teoh, S. L. (2023). Neuroprotective effects of Neurotrophin-3 in MPTP-induced zebrafish Parkinson's disease model. Front Pharmacol, 14, 1307447. Ozgul Ozalp, F., Kutlu, M., & Iscan, A. (2011). The Effects of Thallium Acetate on Hepatopancreatic Cells of Gammarus pulex (Crustacea: Amphipoda). Ekoloji, 20(81), 15–20. Padilla, M. A., Elobeid, M., Ruden, D. M., & Allison, D. B. (2010). An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99–02. Int J Environ Res Public Health, 7(9), 3332–3347. Paglia, G., Miedico, O., Cristofano, A., Vitale, M., Angiolillo, A., Chiaravalle, A. E., Corso, G., & Di Costanzo, A. (2016). Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease. Sci Rep, 6, 22769. Pappas, R. S., Polzin, G. M., Watson, C. H., & Ashley, D. L. (2007). Cadmium, lead, and thallium in smoke particulate from counterfeit cigarettes compared to authentic US brands. Food Chem Toxicol, 45(2), 202–209. Pappas, R. S., Polzin, G. M., Zhang, L., Watson, C. H., Paschal, D. C., & Ashley, D. L. (2006). Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem Toxicol, 44(5), 714–723. https://doi.org/10.1016/j.fct.2005.10.004 Peter, A. L., & Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environ Int, 31(4), 493–501. Pino, M. T. L., Marotte, C., & Verstraeten, S. V. (2017). Epidermal growth factor prevents thallium(I)- and thallium(III)-mediated rat pheochromocytoma (PC12) cell apoptosis. Arch Toxicol, 91(3), 1157–1174. Pourahmad, J., Eskandari, M. R., & Daraei, B. (2010). A comparison of hepatocyte cytotoxic mechanisms for thallium (I) and thallium (III). Environ Toxicol, 25(5), 456–467. Qi, H., Hu, R., & Zhang, Q. (2007). Concentration and distribution of trace elements in lignite from the Shengli Coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit. International Journal of Coal Geology, 71(2–3), 129–152. Qi, J., Lai, Y., Liang, C., Yan, S., Huang, K., Pan, W., Feng, L., Jiang, L., Zhu, P., Hao, J., Tong, S., & Tao, F. (2019). Prenatal thallium exposure and poor growth in early childhood: A prospective birth cohort study. Environ Int, 123, 224–230. Rinklebe, J., Shaheen, S. M., El-Naggar, A., Wang, H., Du Laing, G., Alessi, D. S., & Sik Ok, Y. (2020). Redox-induced mobilization of Ag, Sb, Sn, and Tl in the dissolved, colloidal and solid phase of a biochar-treated and un-treated mining soil. Environ Int, 140, 105754. Rodriguez-Mercado, J. J., Hernandez-de la Cruz, H., Felipe-Reyes, M., Jaramillo-Cruz, E., & Altamirano-Lozano, M. A. (2015). Evaluation of cytogenetic and DNA damage caused by thallium(I) acetate in human blood cells. Environ Toxicol, 30(5), 572–580. Rodríguez-Mercado, J. J., Mosqueda-Tapia, G., & Altamirano-Lozano, M. A. (2017). Genotoxicity assessment of human peripheral Lymphocytes induced by thallium(I) and thallium(III). Toxicological & Environmental Chemistry, 99(5–6), 987–998. Rojas-Alonzo, R., Núñez-Tapia, F. A., Moreno-Godínez, M. E., Talavera-Mendoza, O., Ortuño-Pineda, C., Quintanilla-Vega, B., Solís-Heredia, M. J., Rodríguez-Mercado, J. J., & Urióstegui-Acosta, M. (2016). Effect of quality sperm and DNA damage by thallium exposure in mice mature sperm. Toxicology Letters, 259, S232-S233. Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 8(7), 519–529. Rossignol, D. A., Genuis, S. J., & Frye, R. E. (2014). Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry, 4(2), e360. Sabra, S., Malmqvist, E., Saborit, A., Gratacos, E., & Gomez Roig, M. D. (2017). Heavy metals exposure levels and their correlation with different clinical forms of fetal growth restriction. PLoS One, 12(10), e0185645. Salvatierra-Frechou, D. M., & Verstraeten, S. V. (2024). Tl(I) and Tl(III)-induce genotoxicity, reticulum stress and autophagy in PC12 Adh cells. Arch Toxicol, 98(7), 2085–2100. Sant, K. E., & Timme-Laragy, A. R. (2018). Zebrafish as a Model for Toxicological Perturbation of Yolk and Nutrition in the Early Embryo. Curr Environ Health Rep, 5(1), 125–133. Shamu, C. E., & Walter, P. (1996). Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. The EMBO journal, 15(12), 3028–3039. Shen, Z., Wang, R., He, P., Zhang, Z., Dai, Y., Li, M., Liu, Z., Yang, H., Guan, S., & Sun, J. (2023). Association between urinary metal concentrations and abnormal estimated glomerular filtration rate in Chinese community-dwelling elderly: Exploring the mediating effect of triglycerides. Ecotoxicol Environ Saf, 259, 114966. Son, J., Mogre, S., Chalmers, F. E., Ibinson, J., Worrell, S., & Glick, A. B. (2022). The Endoplasmic Reticulum Stress Sensor IRE1alpha Regulates the UV DNA Repair Response through the Control of Intracellular Calcium Homeostasis. J Invest Dermatol, 142(6), 1682–1691 e1687. Song, J., Qiao, L., Ji, L., Ren, B., Hu, Y., Zhao, R., & Ren, Z. (2018). Toxic responses of zebrafish (Danio rerio) to thallium and deltamethrin characterized in the electrocardiogram. Chemosphere, 212, 1085–1094. Sonia Galván-Arzate, Argelia Martı́nez, Ethel Medina, Abel Santamarı́a, & Rı́os, C. (2000). Subchronic administration of sublethal doses of thallium to rats: effects on distribution and lipid peroxidation in brain regions. Toxicology Letters, 116(1–2,27), 37–43. Speller, S. C. (2013). Thallium based high temperature superconductors for microwave device applications. Materials Science and Technology, 19(3), 269–282. Spinks, S. C., Pearce, M. A., Liu, W., Kunzmann, M., Ryan, C. G., Moorhead, G. F., Kirkham, R., Blaikie, T., Sheldon, H. A., Schaubs, P. M., & Rickard, W. D. A. (2021). Carbonate Replacement as the Principal Ore Formation Process in the Proterozoic McArthur River (HYC) Sediment-Hosted Zn-Pb Deposit, Australia. Economic Geology, 116(3), 693–718. Strähle, U., Scholz, S., Geisler, R., Greiner, P., Hollert, H., Rastegar, S., Schumacher, A., Selderslaghs, I., Weiss, C., Witters, H., & Braunbeck, T. (2012). Zebrafish embryos as an alternative to animal experiments—A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology, 33(2), 128–132. Sun, F., Tao, Y., Liao, H., Wu, F., Giesy, J. P., & Yang, J. (2022). Pollution levels and risk assessment of thallium in Chinese surface water and sediments. Sci Total Environ, 851(Pt 2), 158363. Sun, J., Hu, G., Liu, K., Yu, R., Lu, Q., & Zhang, Y. (2019). Potential exposure to metals and health risks of metal intake from Tieguanyin tea production in Anxi, China. Environ Geochem Health, 41(3), 1291–1302. Sun, T. W., Xu, Q. Y., Zhang, X. J., Wu, Q., Liu, Z. S., Kan, Q. C., Sun, C. Y., & Wang, L. (2012). Management of thallium poisoning in patients with delayed hospital admission. Clin Toxicol (Phila), 50(1), 65–69. Tatsi, K., Turner, A., Handy, R. D., & Shaw, B. J. (2015). The acute toxicity of thallium to freshwater organisms: Implications for risk assessment. Sci Total Environ, 536, 382–390. Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. In (pp. 312). Blackwell Scientific Publications. Travers, K. J., Patil, C. K., Wodicka, L., Lockhart, D. J., Weissman, J. S., & Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell, 101(3), 249–258. Twidwell, L. G., & Williams-Beam, C. (2002). Potential technologies for removing thallium from mine and process wastewater: an annotation of the literature. European Journal of Mineral Processing and Environmental Protection, 2(1), 1–10. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., & Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. science, 287(5453), 664–666. Vaněk, A., Chrastný, V., Komárek, M., Penížek, V., Teper, L., Cabala, J., & Drábek, O. (2013). Geochemical position of thallium in soils from a smelter-impacted area. Journal of Geochemical Exploration, 124, 176–182. Villeret, V., Huang, S., Fromm, H. J., & Lipscomb, W. N. (1995). Crystallographic evidence for the action of potassium, thallium, and lithium ions on fructose-1,6-bisphosphatase. Proceedings of the National Academy of Sciences, 92(19), 8916–8920. Wang, J., Wang, L., Wang, Y., Tsang, D. C. W., Yang, X., Beiyuan, J., Yin, M., Xiao, T., Jiang, Y., Lin, W., Zhou, Y., Liu, J., Wang, L., & Zhao, M. (2021). Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environ Int, 146, 106207. Wang, J., Zhou, Y., Dong, X., Yin, M., Tsang, D. C. W., Sun, J., Liu, J., Song, G., & Liu, Y. (2020). Temporal sedimentary record of thallium pollution in an urban lake: An emerging thallium pollution source from copper metallurgy. Chemosphere, 242, 125172. Weaver, V. M., Vargas, G. G., Silbergeld, E. K., Rothenberg, S. J., Fadrowski, J. J., Rubio-Andrade, M., Parsons, P. J., Steuerwald, A. J., Navas-Acien, A., & Guallar, E. (2014). Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ Res, 132, 226–232. Wei, X., Li, X., Liu, P., Li, L., Chen, H., Li, D., Liu, J., & Xie, L. (2023). Integrated physiological, biochemical, and transcriptomic analysis of thallium toxicity in zebrafish (Danio rerio) larvae. Sci Total Environ, 859(Pt 1), 160265. WHO. (2021). WHO global report on trends in prevalence of tobacco use 2000–2025. Wojtkowiak, T., Karbowska, B., Zembrzuski, W., Siepak, M., & Lukaszewski, Z. (2016). Miocene colored waters: A new significant source of thallium in the environment. Journal of Geochemical Exploration, 161, 42–48. Wu, L. L., Chiou, C. C., Chang, P. Y., & Wu, J. T. (2004). Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta, 339(1–2), 1–9. Wu, M., Shu, Y., Song, L., Liu, B., Zhang, L., Wang, L., Liu, Y., Bi, J., Xiong, C., Cao, Z., Xu, S., Xia, W., Li, Y., & Wang, Y. (2019). Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: Evidence from a birth cohort study. Environ Int, 129, 470–477. Wu, M., Wang, L., Song, L., Liu, B., Liu, Y., Bi, J., Liu, Q., Chen, K., Li, Y., Xia, W., Xu, S., Cao, Z., Zhou, A., Tian, Y., & Wang, Y. (2021). The association between prenatal exposure to thallium and shortened telomere length of newborns. Chemosphere, 265, 129025. Wu, W., Zhang, K., Jiang, S., Liu, D., Zhou, H., Zhong, R., Zeng, Q., Cheng, L., Miao, X., Tong, Y., & Lu, Q. (2018). Association of co-exposure to heavy metals with renal function in a hypertensive population. Environ Int, 112, 198–206. Xiao, T. (2009). Research report on the water environmental risk of lead–zinc mining in the upper reach catchment of Yelang Lake, Guizhou Province. Institute of Geochemistry, Chinese Academy of Sciences, Guiyang China, 101. Xiao, T., Guha, J., & Boyle, D. (2004). High thallium content in rocks associated with Au–As–Hg–Tl and coal mineralization and its adverse environmental potential in SW Guizhou, China. Geochemistry: Exploration, Environment, Analysis, 4(3), 243–252. Xiao, T., Yang, F., Li, S., Zheng, B., & Ning, Z. (2012). Thallium pollution in China: A geo-environmental perspective. Sci Total Environ, 421–422, 51–58. Yang, C. H., Tan, S. W., Cheng, C. J., & Chen, P. J. (2022). Revealing the toxicity of monovalent and trivalent thallium to medaka fish in controlled exposure conditions. Aquat Toxicol, 250, 106258. Ye, C., & Peng, Q. (2022). Mechanical Stabilities and Properties of Graphene-like 2D III-Nitrides: A Review. Crystals, 13(1). Ye, J., Rawson, R. B., Komuro, R., Chen, X., Davé, U. P., Prywes, R., Brown, M. S., & Goldstein, J. L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6(6), 1355–1364. Yorimitsu, T., & Klionsky, D. J. (2007). Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy, 3(2), 160–162. Yorita Christensen, K. L. (2013). Metals in blood and urine, and thyroid function among adults in the United States 2007–2008. Int J Hyg Environ Health, 216(6), 624–632. Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins: involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749. Yu, Y. J., Li, Z. C., Zhou, Y., Dong, C. Y., Kuang, H. X., Zheng, T., Xiang, M. D., Chen, X. C., Li, H. Y., Zeng, X. W., Xu, S. L., Hu, L. W., & Dong, G. H. (2023). Associations between trace level thallium and multiple health effects in rural areas: Chinese Exposure and Response Mapping Program (CERMP). Sci Total Environ, 862, 160466. Yuan, T. H., Ke, D. Y., Wang, J. E., & Chan, C. C. (2020). Associations between renal functions and exposure of arsenic and polycyclic aromatic hydrocarbon in adults living near a petrochemical complex. Environ Pollut, 256, 113457. Zhao, F., & Gu, S. (2021). Secondary Sulfate Minerals from Thallium Mineralized Areas: Their Formation and Environmental Significance. Minerals, 11(8). Zhao, G., Ding, M., Zhang, B., Lv, W., Yin, H., Zhang, L., Ying, Z., & Zhang, Q. (2008). Clinical manifestations and management of acute thallium poisoning. Eur Neurol, 60(6), 292–297. Zhong, Q., Qi, J., Liu, J., Wang, J., Lin, K., Ouyang, Q., Zhang, X., Wei, X., Xiao, T., El-Naggar, A., & Rinklebe, J. (2022). Thallium isotopic compositions as tracers in environmental studies: A review. Environ Int, 162, 107148. Zhou, Q., Huang, D., Xu, C., Wang, J., & Jin, Y. (2021). Hair levels of heavy metals and essential elements in Chinese children with autism spectrum disorder. J Trace Elem Med Biol, 66, 126748. Zhou, T. T., Hu, B., Meng, X. L., Sun, L., Li, H. B., Xu, P. R., Cheng, B. J., Sheng, J., Tao, F. B., Yang, L. S., & Wu, Q. S. (2021). The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. Ecotoxicol Environ Saf, 226, 112829. Zhu, B., Liang, C., Yan, S., Li, Z., Huang, K., Xia, X., Hao, J., Zhu, P., & Tao, F. (2019). Association between serum thallium in early pregnancy and risk of gestational diabetes mellitus: The Ma'anshan birth cohort study. J Trace Elem Med Biol, 52, 151–156. Zhu, S., Su, L., Zhuang, M., Liu, L., Ji, M., Liu, J., Dai, C., Xiao, J., Guan, Y., Yang, L., & Pu, H. (2024). NEFL Modulates NRN1-Mediated Mitochondrial Pathway to Promote Diacetylmorphine-Induced Neuronal Apoptosis. Mol Neurobiol. Ziskoven, R., Achenbach, C., Schulten, H.-R., & Roll, R. (1983). Thallium determinations in fetal tissues and maternal brain and kidney. Toxicology Letters, 19(3), 225–231. Zito, A., Cartelli, D., Cappelletti, G., Cariboni, A., Andrews, W., Parnavelas, J., Poletti, A., & Galbiati, M. (2014). Neuritin 1 promotes neuronal migration. Brain Struct Funct, 219(1), 105–118. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99360 | - |
| dc.description.abstract | 鉈(Thallium, Tl)廣泛應用於半導體、成像系統、光纖玻璃與高溫超導材料等領域,近年來於全球多處地表水中被檢測,濃度最高可達1520 μg/L。鉈在水體中以穩定的一價形式(Tl⁺)存在,並展現超過10,000的生物濃縮係數。魚類與蔬菜中均可檢測出高濃度鉈殘留,顯示其於食物鏈中高度累積。作為食物鏈頂層的消費者,人類面臨鉈暴露的高度風險。即使在低劑量下,鉈亦與早產與發育異常相關,對兒童及孕婦等脆弱族群尤具威脅。儘管鉈的毒理機制尚未完全釐清,已有研究顯示其可誘發內質網壓力(ER stress),上調未摺疊蛋白反應(UPR)相關標誌如ATF6、IRE1,並促進XBP1剪接進入細胞核,導致細胞毒性。鑒於適應性UPR可能參與調節鉈所致毒性,本研究以斑馬魚為水生脊椎動物模式,探討鉈對胚胎發育之毒性機轉,以及選擇性XBP1活化劑IXA4之保護潛力,並與化學伴護劑TUDCA進行比較。
本研究建立鉈(Tl)誘導之斑馬魚毒性模型,結果顯示,隨鉈濃度上升,仔魚於120 hpf時的死亡率顯著增加,孵化率則明顯下降。形態學分析指出,在100–400 μg/L下魚鰾面積明顯縮小,且於200–400 μg/L濃度間觀察到心包腫脹與腹部異常,導致整體形態評分隨濃度提升而下降。qPCR分析顯示,鉈暴露顯著上調UPR標誌基因表現,反映出明確的內質網壓力反應。進一步以20 μM IXA4或TUDCA處理後,斑馬魚胚胎於6–144 hpf 期間之死亡率與對照組無顯著差異,顯示兩者本身無發育毒性。但在鉈處理下,單獨鉈暴露組的120 hpf存活率僅為53%,聯合IXA4或TUDCA處理則可顯著提升至79%與73%,並有效改善孵化率。組織學分析進一步發現,鉈會導致心包腫脹與腦部發育異常,而IXA4可顯著改善心臟與神經組織結構,展現器官層級的保護作用。轉錄體與生物資訊分析顯示,鉈暴露顯著抑制多條與心臟與神經發育相關之基因表現路徑,IXA4可部分恢復其轉錄活性,並上調DNA修復路徑,特別是核苷酸切除修復(NER)相關基因,其變化亦經qPCR驗證支持。 本研究顯示,選擇性sXBP1活化劑IXA4可透過促進DNA修復機制、調控心臟與神經發育相關基因表現,以及降低內質網壓力,顯著緩解鉈所誘導之發育毒性與器官損傷,為揭示鉈毒性機轉與未來治療策略的發展提供關鍵見解。 | zh_TW |
| dc.description.abstract | Thallium (Tl) is widely used in semiconductors, imaging systems, fiber optic glass, and high-temperature superconducting materials. In recent years, it has been detected in surface water across many regions of the world, with concentrations reaching up to 1520 μg/L. In aquatic environments, thallium exists in a stable monovalent form (Tl⁺) and exhibits a bioconcentration factor exceeding 10,000. High levels of thallium residues have been detected in both fish and vegetables, indicating its high accumulation within the food chain. As apex consumers, humans face a high risk of thallium exposure. Even at low doses, thallium has been associated with preterm birth and developmental abnormalities, posing a particular threat to vulnerable populations such as children and pregnant women. Although the toxicological mechanisms of thallium are not yet fully understood, studies have shown that it can induce endoplasmic reticulum (ER) stress, upregulate unfolded protein response (UPR) markers such as ATF6 and IRE1, and promote XBP1 splicing and nuclear translocation, leading to cytotoxicity. Given that adaptive UPR may be involved in regulating thallium-induced toxicity, this study used zebrafish as an aquatic vertebrate model to investigate the developmental toxicity mechanisms of thallium and the protective potential of the selective XBP1 activator IXA4, in comparison with the chemical chaperone TUDCA.
In this study, a zebrafish toxicity model induced by thallium (Tl) was established. Results showed that with increasing thallium concentration, the mortality rate of larvae at 120 hpf significantly increased, while the hatching rate markedly decreased. Morphological analysis revealed that at concentrations of 100–400 μg/L, the swim bladder area was significantly reduced, and pericardial edema and abdominal abnormalities were observed at 200–400 μg/L, resulting in a concentration-dependent decline in overall morphological scores. qPCR analysis showed that thallium exposure significantly upregulated UPR marker gene expression, indicating a clear ER stress response. Further treatment with 20 μM IXA4 or TUDCA during the 6–144 hpf period showed no significant differences in mortality compared to the control group, indicating no developmental toxicity from either compound alone. However, under thallium exposure, the 120 hpf survival rate in the thallium-only group was only 53%, while co-treatment with IXA4 or TUDCA significantly increased survival to 79% and 73%, respectively, and effectively improved the hatching rate. Histological analysis further revealed that thallium caused pericardial edema and abnormal brain development, while IXA4 significantly improved the structure of cardiac and neural tissues, demonstrating organ-level protective effects. Transcriptomic and bioinformatic analyses showed that thallium exposure significantly suppressed multiple gene expression pathways related to cardiac and neural development. IXA4 partially restored transcriptional activity and upregulated DNA repair pathways, particularly nucleotide excision repair (NER)-related genes, which was also supported by qPCR validation. This study demonstrates that the selective sXBP1 activator IXA4 can significantly alleviate thallium-induced developmental toxicity and organ damage by enhancing DNA repair mechanisms, regulating gene expression related to cardiac and neural development, and reducing ER stress. These findings provide critical insights into the mechanisms of thallium toxicity and the development of future therapeutic strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:09:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:09:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
謝辭 II 摘要 IV Abstract V Contents VII List of Figures XI List of Tables XIII Chapter 1 Introduction 1 1.1 Basic Properties and Minerals of Thallium 1 1.1.1 Thallium Deposits 2 1.1.2 Thallium Minerals and Their Geochemical Occurrence 5 1.2 Applications of Thallium 6 1.3 Thallium in the Environment 7 1.3.1 Thallium Contamination in Aquatic Environments 7 1.4 Thallium Exposure in Daily Life 9 1.4.1 Thallium in Beverages 9 1.4.2 Thallium in Tobacco 10 1.4.3 Thallium in Vegetables 11 1.5 Epidemiological Investigations of Thallium Exposure 14 1.5.1 Impact of Thallium on Human Renal Health 14 1.5.2 Effects of Thallium on the Health of Children and Pregnant Women 17 1.5.3 Effects of Thallium on the Health of Smokers 21 1.5.4 Thallium-Related Neuropsychological, Metabolic, and Other Health Effects 24 1.6 Molecular Toxicity and Adverse Effects of Thallium 27 1.6.1 Mitochondria-Mediated Oxidative Stress Induced by Thallium 27 1.6.2 Thallium-Induced Cytotoxicity via Endoplasmic Reticulum Stress 34 1.6.3 Genotoxicity and Other Adverse Effects of Thallium 36 1.7 Thallium Studies in Animal Models 40 1.7.1 Toxicity and Adverse Effects of Thallium in Mammalian Models 40 1.7.2 Thallium Toxicity and Adverse Effects in the Zebrafish Model 44 1.8 Unfolded Protein Response (UPR) in the Endoplasmic Reticulum 49 1.8.1 IRE1-XBP1 Pathway 51 1.8.2 ATF6 Pathway 51 1.8.3 PERK Pathway 52 1.9 IXA4-IRE1/XBP1s Activator 53 Chapter 2 Aim 55 2.1 Rationale 55 2.2 Hypothesis 55 2.3 Specific Aims 56 Chapter 3 Materials and Methods 57 3.1 Zebrafish Husbandry and Maintenance 57 3.2 Preparation of Chemical Solutions 57 3.3 Thallium (Tl) and Chemicals Exposure to Zebrafish 57 3.4 Survival and Hatching Rates 58 3.5 Blood Flow Measurement 58 3.6 Locomotor Activity Analysis 59 3.7 Analysis of Cardiac Morphology and Sinus Venosus–Bulbus Arteriosus Distance 59 3.8 Morphological Assessment 60 3.9 Histological Analysis 60 3.10 RNA Sequencing (RNA-seq) and Bioinformatic Analysis 60 3.11 Quantitative RT-PCR (qPCR) 61 3.12 Statistical Analysis 62 Chapter 4 Result and Discussion 63 4.1 Result 63 4.1.1 Experimental Design Overview 63 4.1.2 Early Developmental Toxicity of Tl Exposure 63 4.1.3 Morphological Defects and Abdominal Enlargement Following Tl Exposure 64 4.1.4 Thallium Exposure Impairs Blood Flow Activity and Locomotor Behavior 65 4.1.5 Thallium Exposure Disrupts Cardiac Morphology and Chamber Patterning 65 4.1.6 Thallium Exposure Activates Unfolded Protein Response (UPR)–Related Gene Expression 66 4.1.7 IXA4 and TUDCA Attenuate Tl-Induced Developmental Toxicity in Zebrafish 66 4.1.8 TUDCA and IXA4 alleviate thallium-induced morphological abnormalities in zebrafish embryos 67 4.1.9 IXA4 and TUDCA Protect Against Tl-Induced Structural Defects in the Brain and Heart 68 4.1.10 Transcriptomic Analysis Reveals that IXA4 and TUDCA Mitigate Tl-Induced Gene Expression Dysregulation 68 4.1.11 Gene Set Enrichment Reveals Tl Disrupts Mitochondrial and Developmental Pathways 69 4.1.12 Transcriptomic Enrichment Analysis Reveals Tl-induced Suppression of Neural and Cardiovascular Development 70 4.1.13 Co-Treatment with IXA4 and TUDCA Partially Rescues Tl-Induced Gene Expression Changes in Neural and Cardiac Markers 70 4.1.14 IXA4 Modulates NER- and Neurodevelopment-Related Gene Sets Suppressed by Tl Exposure 71 4.1.15 IXA4 Restores DNA Repair Gene Expression Suppressed by Tl Exposure 71 4.2 Discussion 72 Chapter 5 Conclusion and Future Perspective 78 Figures 80 Tables 96 References 98 Appendix: Publications During Doctoral Study 119 | - |
| dc.language.iso | en | - |
| dc.subject | 鉈 | zh_TW |
| dc.subject | 斑馬魚胚胎模型 | zh_TW |
| dc.subject | 適應性未摺疊蛋白反應 | zh_TW |
| dc.subject | IXA4 | zh_TW |
| dc.subject | 轉錄體分析 | zh_TW |
| dc.subject | DNA修復 | zh_TW |
| dc.subject | embryonic zebrafish model | en |
| dc.subject | Thallium | en |
| dc.subject | transcriptomic profiling | en |
| dc.subject | DNA repair | en |
| dc.subject | adaptive unfolded protein response (UPR) | en |
| dc.subject | IXA4 | en |
| dc.title | 鉈誘發斑馬魚神經與心臟毒性:適應性未摺疊蛋白反應與DNA修復機制的保護作用 | zh_TW |
| dc.title | Thallium-Induced Neurocardiotoxicity in Zebrafish: Protective Role of Adaptive UPR and DNA Repair | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 劉興華;趙家德;王一中;孫樵隱 | zh_TW |
| dc.contributor.oralexamcommittee | SHING-HWA LIU;Chia-Ter Chao;I-JONG WANG;Chiao-Yin Sun | en |
| dc.subject.keyword | 鉈,斑馬魚胚胎模型,適應性未摺疊蛋白反應,IXA4,轉錄體分析,DNA修復, | zh_TW |
| dc.subject.keyword | Thallium,embryonic zebrafish model,adaptive unfolded protein response (UPR),IXA4,transcriptomic profiling,DNA repair, | en |
| dc.relation.page | 119 | - |
| dc.identifier.doi | 10.6342/NTU202501211 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-03 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 毒理學研究所 | - |
| dc.date.embargo-lift | 2030-06-18 | - |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
