Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99349Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張晉誠 | zh_TW |
| dc.contributor.advisor | Chin-Chen Chang | en |
| dc.contributor.author | 鄭鍇翰 | zh_TW |
| dc.contributor.author | Kai-Han Cheng | en |
| dc.date.accessioned | 2025-09-09T16:07:05Z | - |
| dc.date.available | 2025-09-10 | - |
| dc.date.copyright | 2025-09-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-06-23 | - |
| dc.identifier.citation | 1. Rutty, G.N., What has post-mortem computed tomography even done for forensic pathology? Diagnostic Histopathology, 2020. 26(8): p. 368-374.
2. Lee, H., S. Lee, J. Cha, et al., Postmortem Computed Tomography and Computed Tomography Angiography. Journal of Thoracic Imaging, 2019. 34: p. 286-298. 3. Ebert, L.C., S. Franckenberg, T. Sieberth, et al., A review of visualization techniques of post-mortem computed tomography data for forensic death investigations. Int J Legal Med, 2021. 135(5): p. 1855-1867. 4. Heinemann, A., H. Vogel, M. Heller, et al., Investigation of medical intervention with fatal outcome: the impact of post-mortem CT and CT angiography. Radiol Med, 2015. 120(9): p. 835-45. 5. Wan, L., Y. Shao, D. Zou, et al., Diagnosis of coronary artery disease using targeted post-mortem computed tomography coronary angiography: a case report. Forensic Sci Res, 2017. 2(2): p. 107-111. 6. Magnin, V., S. Grabherr, and K. Michaud, The Lausanne forensic pathology approach to post-mortem imaging for natural and non-natural deaths. Diagnostic Histopathology, 2020. 26(8): p. 350-357. 7. Flach, P.M., D. Gascho, W. Schweitzer, et al., Imaging in forensic radiology: an illustrated guide for postmortem computed tomography technique and protocols. Forensic Sci Med Pathol, 2014. 10(4): p. 583-606. 8. Wu, B., Y. Li, Y. Li, et al., A Pilot Study on Forensic Imaging of Mechanical Injuries. Journal of Forensic Science and Medicine, 2024. 9. Ampanozi, G., D. Halbheer, L.C. Ebert, et al., Postmortem imaging findings and cause of death determination compared with autopsy: a systematic review of diagnostic test accuracy and meta-analysis. Int J Legal Med, 2020. 134(1): p. 321-337. 10. Stassi, C., C. Mondello, G. Baldino, et al., State of the Art on the Role of Postmortem Computed Tomography Angiography and Magnetic Resonance Imaging in the Diagnosis of Cardiac Causes of Death: A Narrative Review. Tomography, 2022. 8(2): p. 961-973. 11. Chatzaraki, V., J. Heimer, M. Thali, et al., Role of PMCT as a triage tool between external inspection and full autopsy – Case series and review. Journal of Forensic Radiology and Imaging, 2018. 15: p. 26-38. 12. Busardò, F.P., P. Frati, G. Guglielmi, et al., Postmortem-computed tomography and postmortem-computed tomography-angiography: a focused update. Radiol Med, 2015. 120(9): p. 810-23. 13. Scholing, M., T.P. Saltzherr, P.H. Fung Kon Jin, et al., The value of postmortem computed tomography as an alternative for autopsy in trauma victims: a systematic review. Eur Radiol, 2009. 19(10): p. 2333-41. 14. Zerbo, S., C. Bilotta, G. Perrone, et al., Preventable fatal injury during rally race: a multidisciplinary approach. Int J Legal Med, 2021. 135(3): p. 893-901. 15. Oliva, A., S. Grassi, M. Zedda, et al., Forensic significance and inferential value of PMCT features in charred bodies: A bicentric study. Forensic Imaging, 2024. 37. 16. Di Paolo, M., A. Maiese, M. dell'Aquila, et al., Role of post mortem CT (PMCT) in high energy traumatic deaths. Clin Ter, 2020. 171(6): p. e490-e500. 17. Vester, M.E.M., K.B. Nolte, G.M. Hatch, et al., Postmortem Computed Tomography in Firearm Homicides: A Retrospective Case Series. J Forensic Sci, 2020. 65(5): p. 1568-1573. 18. Sano, R., Y. Takahashi, A. Hayakawa, et al., Use of postmortem computed tomography to retrieve small metal fragments derived from a weapon in the bodies of victims in two homicide cases. Leg Med (Tokyo), 2018. 32: p. 87-89. 19. Prokopowicz, V. and A. Borowska-Solonynko, The current state of using post-mortem computed tomography for personal identification beyond odontology - A systematic literature review. Forensic Sci Int, 2025. 367: p. 112377. 20. Brough, A.L., B. Morgan, and G.N. Rutty, Postmortem computed tomography (PMCT) and disaster victim identification. Radiol Med, 2015. 120(9): p. 866-73. 21. Edwards, H., S.C. Shelmerdine, and O.J. Arthurs, Forensic post-mortem CT in children. Clin Radiol, 2023. 78(11): p. 839-847. 22. Kranioti, E.F., D. Nathena, K. Spanakis, et al., Postmortem CT in the investigation of decomposed human remains: advantages and limitations. La Revue de Médecine Légale, 2017. 8(4): p. 184-185. 23. Cartocci, G., A. Santurro, M. Neri, et al., Post-mortem computed tomography (PMCT) radiological findings and assessment in advanced decomposed bodies. Radiol Med, 2019. 124(10): p. 1018-1027. 24. Morgan, B., N. Sakamoto, S. Shiotani, et al., Postmortem Computed Tomography (PMCT) Scanning with Angiography (PMCTA): A Description of Three Distinct Methods. 2014: p. 1-21. 25. Grabherr, S., Computed Tomography: The Revolution in Postmortem Angiography. 2016: p. 83-88. 26. Vogel, B., A. Heinemann, A. Gehl, et al., Post-mortem computed tomography (PMCT) and PMCT-angiography after transvascular cardiac interventions. Arch Med Sadowej Kryminol, 2013. 63(4): p. 255-66. 27. Ukpo, O. and D. Boger, The Role of Virtual Autopsy and Use of a CT Scanner in Medico-Legal Death Investigations. 2018: p. 69-73. 28. Ezawa, H., S. Shiotani, and S. Uchigasaki, Autopsy imaging in Japan. Rechtsmedizin, 2007. 17: p. 19-20. 29. Modzelewski, W. and J. Janica, The role of computed tomography in post-mortem examinations. Archiwum medycyny sadowej i kryminologii, 2024. 74 2: p. 124-133. 30. Chandy, P.E., N. Murray, E. Khasanova, et al., Postmortem CT in Trauma: An Overview. Can Assoc Radiol J, 2020. 71(3): p. 403-414. 31. Sanderson, S. and H. Lawler, Comparing the diagnostic accuracy of post-mortem CT with invasive autopsy in fire-related deaths: a systematic review. Forensic Imaging, 2023. 32. Kasahara, S., Y. Makino, M. Hayakawa, et al., Diagnosable and non-diagnosable causes of death by postmortem computed tomography: a review of 339 forensic cases. Leg Med (Tokyo), 2012. 14(5): p. 239-45. 33. Verstraete, K., J. Dutoit, J. Drapé, et al., Magnetic Resonance Imaging: Advanced Imaging Techniques. 2017: p. 85-113. 34. Li, S., W. Jin, J. He, et al., Imaging Characteristics of Frozen Corpses: An Analysis Based on Postmortem Computed Tomography. Journal of Forensic Science and Medicine, 2024. 35. Klop, A.C., M.E.M. Vester, K.L. Colman, et al., The effect of repeated freeze-thaw cycles on human muscle tissue visualized by postmortem computed tomography (PMCT). Clin Anat, 2017. 30(6): p. 799-804. 36. 法醫所推虛擬解剖助查死因 北中南建置電腦斷層設備. Available from: https://www.cna.com.tw/news/asoc/202204060363.aspx. 37. 「國立臺灣大學醫學院法醫中心之法醫影像中心」正式開幕 臺灣法醫學界邁向新時代. Available from: https://www.mc.ntu.edu.tw/News.action?q_type=-1&q_itemCode=7852. 38. Sugimoto, M., H. Hyodoh, M. Rokukawa, et al., Freezing effect on brain density in postmortem CT. Leg Med (Tokyo), 2016. 18: p. 62-5. 39. Hyodoh, H., K. Ogura, M. Sugimoto, et al., Frozen (iced) effect on postmortem CT – Experimental evaluation. Journal of Forensic Radiology and Imaging, 2015. 3(4): p. 210-213. 40. Chumakova, Y.V., S.E. Dubrova, V.A. Klevno, et al., [Postmortem computed tomography of the frozen corpse]. Sud Med Ekspert, 2022. 65(6): p. 51-55. 41. Kawasumi, Y., A. Usui, T. Ikeda, et al., Post-mortem computed tomography findings of the frozen brain. Journal of Forensic Radiology and Imaging, 2017. 10: p. 37-40. 42. Zhao, Y., M. Zheng, Y. Li, et al., Suppressing multi-material and streak artifacts with an accelerated 3D iterative image reconstruction algorithm for in-line X-ray phase-contrast computed tomography. Opt Express, 2022. 30(11): p. 19684-19704. 43. Bolliger, S.A., D. Tomasin, J. Heimer, et al., Rapid and reliable detection of previous freezing of cerebral tissue by computed tomography and magnetic resonance imaging. Forensic Sci Med Pathol, 2018. 14(1): p. 85-94. 44. Zhang, Y., P. Mostaghimi, and R.T. Armstrong, On the challenges of greyscale-based quantifications using X-ray computed microtomography. J Microsc, 2019. 275(2): p. 82-96. 45. Huang, H.-L. and S. Geng, An algorithm of grayscale Value compensation based on X-ray. 2017. 46. Nair, G., R. Sun, H. Merkle, et al., Postmortem MRI of Tissue Frozen at Autopsy. bioRxiv, 2024. 47. Algor mortis. Available from: https://taylorandfrancis.com/knowledge/Medicine_and_healthcare/Pathology/Algor_mortis/. 48. Al-Alousi, L.M., A study of the shape of the post-mortem cooling curve in 117 forensic cases. Forensic Sci Int, 2002. 125(2-3): p. 237-44. 49. Diller, K., Origins, Growth, and Challenges in Bioheat Transfer. 2012: p. 307-308. 50. Diller, K., Fundamentals of Bioheat Transfer. 2016: p. 20-39. 51. Xue, D., Y. Liu, and L. Li, Heat transfer performance of wet porous solar collectors under periodic conditions. Heat Transfer, 2021. 50: p. 7440-7453. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99349 | - |
| dc.description.abstract | 本研究的動機來自影像中心在實務中觀察到的現象:許多冷凍大體在退冰後未能完全解凍,這情況經常讓影像判讀變得困難,有時甚至影響最終診斷結果。目前對於如何處理這類問題,尚缺乏一致標準,導致大體退冰操作與結冰影像判讀缺少清晰的指引。為深入了解這方面的問題,本研究整理並分析影像中心累積的相關案例資料,同時設計動物實驗,探討冷凍時間、退冰時間、體表溫度與實際退冰狀態之間的關聯,期望能為實務工作提供參考。
研究內容分為兩部分,第一階段回顧分析影像中心的冷凍案例,記錄體表溫度,並與相應器官的影像密度進行比對,觀察體表溫度變化與內部解凍狀態的關係;第二階段使用不同冷凍時間的豬隻樣本,在退冰過程中監測體表溫度,並進行死後電腦斷層掃描(PMCT),比較冷凍前後的組織密度、是否出現分層現象及冰晶的變化。實驗結果顯示,退冰不完全的影像中可見異常的密度分層與冰晶,這些現象可能模糊器官邊界、影響密度判讀的準確性。體表溫度主要反映表層情況,在評估深層組織的解凍程度上,參考價值有限。雖然研究結果指出,冷凍時間與退冰時間呈現正相關,即冷凍時間越長,退冰所需時間也越長,但動物實驗的結果尚難直接推論至人體案例,解釋時需要格外謹慎。 綜合上述發現,為了避免冷凍保存對影像品質造成的不利影響,本研究的結論是,在實務操作中處理需影像分析的大體時,應以冷藏保存取代冷凍保存以最大程度確保判讀的準確性。 | zh_TW |
| dc.description.abstract | This study stemmed from an observation in practice at the imaging center: many frozen cadavers don't fully thaw after defrosting. This condition often complicates image interpretation and can even affect diagnostic outcomes. Standardized protocols for these issues are currently lacking, which leads to unclear guidelines for cadaver defrosting procedures and for interpreting images from subjects that are frozen or incompletely thawed. To address this, this study analyzed accumulated case data from the imaging center and conducted animal experiments to explore the connections between freezing duration, thawing duration, body surface temperature, and actual thawing status, aiming to offer practical guidance.
The study had two parts. Part one retrospectively analyzed frozen cadaver cases from the imaging center, correlating recorded body surface temperatures with the imaging densities of their corresponding organs to examine the relationship between surface temperature changes and internal thawing progress. Part two used porcine samples with varying freezing times. During thawing, their surface temperatures were monitored, and Postmortem Computed Tomography (PMCT) was performed to compare tissue densities before and after freezing, the presence of stratification, and changes in ice crystals. The results indicated that incompletely thawed images showed abnormal density stratification and ice crystals, which could obscure organ boundaries and affect the accuracy of density interpretation. Body surface temperature mainly reflected surface conditions and had limited value in assessing the thawing state of deep tissues. While the results suggested a positive correlation between freezing and thawing times (longer freezing meaning longer thawing), the extrapolation of animal experiment findings to human cases requires great caution. In conclusion, to reduce the negative effects of frozen storage on image quality and ensure the best possible interpretive accuracy, this study recommends choosing refrigerated storage over frozen storage for cadavers that require imaging analysis in practice. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:07:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-09T16:07:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II 英文摘要 III 目 次 V 圖次 VIII 表次 XI 第一章 緒論 1 第一節 研究背景 1 第一項 死後電腦斷層背景與技術發展 1 第二節 研究動機 3 第三節 研究目的 4 第二章 材料及方法 5 第一節 退冰不完全大體之案例分析 5 第一項 實驗設計與方法概述 5 第二項 實驗對象 6 第三項 案例分組與影像分析 6 第四項 資料分析 6 第二節 體表溫度與結冰程度之相關性研究 7 第一項 實驗設計與方法概述 7 第二項 實驗對象 7 第三項 溫度測量 7 第四項 影像分析 8 第五項 關聯性分析 8 第三節 冷凍時間與退冰時間的相關性研究 9 第一項 實驗設計與方法概述 9 第二項 實驗對象 9 第三項 冷凍前準備 10 第四項 冷凍條件 10 第五項 樣本退冰過程 10 第六項 電腦斷層影像分析 11 第三章 研究結果 12 第一節 退冰不完全大體之案例分析 12 第一項 研究目的 12 第二項 資料取得與分析方法 12 第四項 退冰前後影像變化與解剖對照分析 19 第五項 結果概述 25 第二節 體表溫度與結冰程度之相關性研究 27 第一項 研究目的與分析原則 27 第二項 資料取得與分析方法 27 第三項 圖表觀察結果 34 第四項 數據觀察與說明 37 第五項 結果概述 38 第三節 冷凍時間與退冰時間的相關性研究 39 第一項 研究目的與分析原則 39 第二項 資料取得與分析方法 39 第三項 器官溫度變化分析 42 第四項 器官影像密度變化分析 47 第五項 體表與器官溫度對照觀察 53 第六項 結果概述 60 第四章 問題與討論 62 第一節 季節差異對於退冰效率的潛在影響 62 第二節 退冰不完全年齡分布特徵 62 第三節 冷凍時程長短對退冰狀態掌握難度的影響 62 第四節 器官退冰影像表現的差異性 63 第五節 退冰進程與擺位影響 63 第六節 體表溫度10–15°C作為退冰判斷指標 64 第七節 肺部影像判讀之困難 64 第八節 冷凍所致之不可逆影像變化 64 第九節 死亡至影像掃描時間間隔之潛在限制 65 第十節 肝臟回溫特性與大體中心溫度測量之關聯 65 第五章 研究限制與未來展望 67 第一節 動物模型與人體生理差異 67 第二節 實驗控制環境與現場情境差異 67 第三節 ROI圈選範圍的侷限性 67 第四節 影像密度量化與退冰定義的限制 68 第五節 影像掃描與大體解剖之間的時間差異 68 第六節 體表溫度測量工具之限制 68 第六章 結論 70 參考文獻 71 附錄 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 退冰不完全 | zh_TW |
| dc.subject | 冷凍大體 | zh_TW |
| dc.subject | 法醫影像 | zh_TW |
| dc.subject | 退冰狀況預測 | zh_TW |
| dc.subject | 體表溫度 | zh_TW |
| dc.subject | Body Surface Temperature | en |
| dc.subject | Thawing Status Prediction | en |
| dc.subject | Forensic Imaging | en |
| dc.subject | Incomplete Thawing | en |
| dc.subject | Frozen Cadavers | en |
| dc.title | 臺灣冷凍大體PMCT影像異常與退冰因素之實驗分析 | zh_TW |
| dc.title | Analysis of Postmortem Computed Tomography Imaging Artifacts in Taiwanese Frozen Cadavers and an Experimental Analysis of Associated Thawing Factors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許倬憲;蔡崇弘 | zh_TW |
| dc.contributor.oralexamcommittee | Cho-Hsien Hsu;Chung-Hung Tsai | en |
| dc.subject.keyword | 冷凍大體,退冰不完全,體表溫度,退冰狀況預測,法醫影像, | zh_TW |
| dc.subject.keyword | Frozen Cadavers,Incomplete Thawing,Body Surface Temperature,Thawing Status Prediction,Forensic Imaging, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202501238 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-06-23 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 法醫學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 法醫學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 2.81 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
