Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99345
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹智強zh_TW
dc.contributor.advisorChih-Chiang Chanen
dc.contributor.author鄒飛洋zh_TW
dc.contributor.authorFei-Yang Tzouen
dc.date.accessioned2025-09-09T16:06:12Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-07-16-
dc.identifier.citationAguilera-Romero A, Lucena R, Sabido-Bozo S & Muñiz M (2023) Impact of sphingolipids on protein membrane trafficking. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1868: 159334
Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, Postle AD & Gould AP (2015) Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell 163: 340–353
Bandaru VVR, Troncoso J, Wheeler D, Pletnikova O, Wang J, Conant K & Haughey NJ (2009) ApoE4 disrupts sterol and sphingolipid metabolism in Alzheimer’s but not normal brain. Neurobiology of Aging 30: 591–599
Beauchamp E, Goenaga D, Le Bloc’h J, Catheline D, Legrand P & Rioux V (2007) Myristic acid increases the activity of dihydroceramide Δ4-desaturase 1 through its N-terminal myristoylation. Biochimie 89: 1553–1561
Blackburn NB, Michael LF, Meikle PJ, Peralta JM, Mosior M, McAhren S, Bui HH, Bellinger MA, Giles C, Kumar S, et al (2019) Rare DEGS1 variant significantly alters de novo ceramide synthesis pathway[S]. Journal of Lipid Research 60: 1630–1639
Bommiasamy H, Back SH, Fagone P, Lee K, Meshinchi S, Vink E, Sriburi R, Frank M, Jackowski S, Kaufman RJ, et al (2009) ATF6α induces XBP1-independent expansion of the endoplasmic reticulum. Journal of Cell Science 122: 1626–1636
Brown DI & Griendling KK (2009) Nox proteins in signal transduction. Free Radical Biology and Medicine 47: 1239–1253
Buck TM, Quinn PMJ, Pellissier LP, Mulder AA, Jongejan A, Lu X, Boon N, Koot D, Almushattat H, Arendzen CH, et al (2023) CRB1 is required for recycling by RAB11A+ vesicles in human retinal organoids. Stem Cell Reports 18: 1793–1810
Cadena DL, Kurten RC & Gill GN (1997) The Product of the MLD Gene Is a Member of the Membrane Fatty Acid Desaturase Family:  Overexpression of MLD Inhibits EGF Receptor Biosynthesis,. Biochemistry 36: 6960–6967
Calliditas Therapeutics AB (2025) A Double-Blind, Randomized, Placebo-Controlled, Phase 2 Study Evaluating the Safety and Efficacy of Oral GKT137831 in Patients With Type 2 Diabetes and Albuminuria clinicaltrials.gov
Calliditas Therapeutics Suisse SA (2024) TRANSFORM: A 24-week, Randomized, Placebo-controlled, Double-blind, Phase 2b Trial of Setanaxib in Patients With Primary Biliary Cholangitis (PBC) and Elevated Liver Stiffness clinicaltrials.gov
Casasampere M, Ordoñez YF, Pou A & Casas J (2016) Inhibitors of dihydroceramide desaturase 1: Therapeutic agents and pharmacological tools to decipher the role of dihydroceramides in cell biology. Chemistry and Physics of Lipids 197: 33–44
Causeret C, Geeraert L, Van der Hoeven G, Mannaerts GP & Van Veldhoven PP (2000) Further characterization of rat dihydroceramide desaturase: Tissue distribution, subcellular localization, and substrate specificity. Lipids 35: 1117–1125
Chung N, Jenkins G, Hannun YA, Heitman J & Obeid LM (2000) Sphingolipids signal heat stress-induced ubiquitin-dependent proteolysis. J Biol Chem 275: 17229–17232
Daich Varela M, Georgiou M, Alswaiti Y, Kabbani J, Fujinami K, Fujinami-Yokokawa Y, Khoda S, Mahroo OA, Robson AG, Webster AR, et al (2023) CRB1-Associated Retinal Dystrophies: Genetics, Clinical Characteristics, and Natural History. American Journal of Ophthalmology 246: 107–121
Dodson M, Wani ,Willayat Y., Redmann ,Matthew, Benavides ,Gloria A., Johnson ,Michelle S., Ouyang ,Xiaosen, Cofield ,Stacey S., Mitra ,Kasturi, Darley-Usmar ,Victor & and Zhang J (2017) Regulation of autophagy, mitochondrial dynamics, and cellular bioenergetics by 4-hydroxynonenal in primary neurons. Autophagy 13: 1828–1840
Dolgin V, Straussberg R, Xu R, Mileva I, Yogev Y, Khoury R, Konen O, Barhum Y, Zvulunov A, Mao C, et al (2019) DEGS1 variant causes neurological disorder. Eur J Hum Genet 27: 1668–1676
Edvardson S, Hama H, Shaag A, Gomori JM, Berger I, Soffer D, Korman SH, Taustein I, Saada A & Elpeleg O (2008) Mutations in the Fatty Acid 2-Hydroxylase Gene Are Associated with Leukodystrophy with Spastic Paraparesis and Dystonia. Am J Hum Genet 83: 643–648
Filippov V, Song MA, Zhang K, Vinters HV, Tung S, Kirsch WM, Yang J & Duerksen-Hughes PJ (2012) Increased Ceramide in Brains with Alzheimer’s and Other Neurodegenerative Diseases. Journal of Alzheimer’s Disease 29: 537–547
Gagliostro V, Casas J, Caretti A, Abad JL, Tagliavacca L, Ghidoni R, Fabrias G & Signorelli P (2012) Dihydroceramide delays cell cycle G1/S transition via activation of ER stress and induction of autophagy. The International Journal of Biochemistry & Cell Biology 44: 2135–2143
GEERAERT L, MANNAERTS GP & VAN VELDHOVEN PP (1997) Conversion of dihydroceramide into ceramide: involvement of a desaturase. Biochemical Journal 327: 125–132
Gurudev N, Yuan M & Knust E (2014) chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 3: 332–341
Hällqvist J, Toomey CE, Pinto R, Wernick A, Sharhani MA, Heales S, Eaton S, Mills K, Gandhi S & Heywood WE (2024) Multi-Omic Analysis Reveals Lipid Dysregulation Associated with Mitochondrial Dysfunction in Parkinson’s Disease Brain. 2024.07.18.604051 doi:10.1101/2024.07.18.604051 [PREPRINT]
Han X, M Holtzman D, McKeel DW, Kelley J & Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82: 809–818
He X, Huang Y, Li B, Gong C-X & Schuchman EH (2010) Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging 31: 398–408
Hebbar S, Schuhmann K, Shevchenko A & Knust E (2020) Hydroxylated sphingolipid biosynthesis regulates photoreceptor apical domain morphogenesis. J Cell Biol 219: e201911100
Hernández-Tiedra S, Fabriàs G, Dávila D, Salanueva ÍJ, Casas J, Montes LR, Antón Z, García-Taboada E, Salazar-Roa M, Lorente M, et al (2016) Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy 12: 2213–2229
Hordijk PL (2006) Regulation of NADPH oxidases: the role of Rac proteins. Circ Res 98: 453–462
Huang HX, Inglese P, Tang J, Yagoubi R, Correia GDS, Horneffer-van der Sluis VM, Camuzeaux S, Wu V, Kopanitsa MV, Willumsen N, et al (2024) Mass spectrometry imaging highlights dynamic patterns of lipid co-expression with Aβ plaques in mouse and human brains. Journal of Neurochemistry 168: 1193–1214
Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA, Smith AAT, Olshansky G, Drew BG, Chatterjee P, et al (2020) Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun 11: 5698
Hwang J, Peterson BG, Knupp J & Baldridge RD (2023) The ERAD system is restricted by elevated ceramides. Sci Adv 9: eadd8579
Jr MWH, Cox SB, Kang MH & Maurer BJ (2013) C22:0- and C24:0-dihydroceramides Confer Mixed Cytotoxicity in T-Cell Acute Lymphoblastic Leukemia Cell Lines. PLOS ONE 8: e74768
Jung W-H, Liu C-C, Yu Y-L, Chang Y-C, Lien W-Y, Chao H-C, Huang S-Y, Kuo C-H, Ho H-C & Chan C-C (2017) Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo. EMBO Rep 18: 1150–1165
Karsai G, Kraft F, Haag N, Korenke GC, Hänisch B, Othman A, Suriyanarayanan S, Steiner R, Knopp C, Mull M, et al (2019) DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans. J Clin Invest 129: 1229–1239
Karsai G, Lone M, Kutalik Z, Brenna JT, Li H, Pan D, von Eckardstein A & Hornemann T (2020) FADS3 is a Δ14Z sphingoid base desaturase that contributes to gender differences in the human plasma sphingolipidome. Journal of Biological Chemistry 295: 1889–1897
Kinoshita M, Tanaka K & Matsumori N (2020) The influence of ceramide and its dihydro analog on the physico-chemical properties of sphingomyelin bilayers. Chemistry and Physics of Lipids 226: 104835
Klaips CL, Jayaraj GG & Hartl FU (2017) Pathways of cellular proteostasis in aging and disease. Journal of Cell Biology 217: 51–63
Kraut RS & Knust E (2019) Changes in endolysosomal organization define a pre-degenerative state in the crumbs mutant Drosophila retina. PLoS One 14: e0220220
Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM & Bielawska A (2007) Involvement of Dihydroceramide Desaturase in Cell Cycle Progression in Human Neuroblastoma Cells*. Journal of Biological Chemistry 282: 16718–16728
Krohne TU, Kaemmerer E, Holz FG & Kopitz J (2010) Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action. Exp Eye Res 90: 261–266
Lee AY, Lee JW, Kim J-E, Mock HJ, Park S, Kim S, Hong S-H, Kim J-Y, Park E-J, Kang K-S, et al (2017) Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model. Biochemical and Biophysical Research Communications 494: 460–469
Mandik F, Kanana Y, Rody J, Misera S, Wilken B, Laabs von Holt B-H, Klein C & Vos M (2022) A new model for fatty acid hydroxylase-associated neurodegeneration reveals mitochondrial and autophagy abnormalities. Front Cell Dev Biol 10: 1000553
Marei H & and Malliri A (2017) Rac1 in human diseases: The therapeutic potential of targeting Rac1 signaling regulatory mechanisms. Small GTPases 8: 139–163
McNally BD, Ashley DF, Hänschke L, Daou HN, Watt NT, Murfitt SA, MacCannell ADV, Whitehead A, Bowen TS, Sanders FWB, et al (2022) Long-chain ceramides are cell non-autonomous signals linking lipotoxicity to endoplasmic reticulum stress in skeletal muscle. Nat Commun 13: 1748
Michel C & van Echten-Deckert G (1997) Conversion of dihydroceramide to ceramide occurs at the cytosolic face of the endoplasmic reticulum. FEBS Letters 416: 153–155
Michel C, van Echten-Deckert G, Rother J, Sandhoff K, Wang E & Merrill AH (1997) Characterization of Ceramide Synthesis: A DIHYDROCERAMIDE DESATURASE INTRODUCES THE 4,5-TRANS-DOUBLE BOND OF SPHINGOSINE AT THE LEVEL OF DIHYDROCERAMIDE*. Journal of Biological Chemistry 272: 22432–22437
Mizutani Y, Kihara A & Igarashi Y (2004) Identification of the human sphingolipid C4-hydroxylase, hDES2, and its up-regulation during keratinocyte differentiation. FEBS Letters 563: 93–97
Muñoz-Guardiola P, Casas J, Megías-Roda E, Solé S, Perez-Montoyo H, Yeste-Velasco M, Erazo T, Diéguez-Martínez N, Espinosa-Gil S, Muñoz-Pinedo C, et al (2021) The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells. Autophagy 17: 1349–1366
Ohi K, Ursini G, Li M, Shin JH, Ye T, Chen Q, Tao R, Kleinman JE, Hyde TM, Hashimoto R, et al (2015) DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain. Transl Psychiatry 5: e550–e550
Omae F, Miyazaki M, Enomoto A & Suzuki A (2004) Identification of an essential sequence for dihydroceramide C-4 hydroxylase activity of mouse DES2. FEBS Letters 576: 63–67
OMAE F, MIYAZAKI M, ENOMOTO A, SUZUKI M, SUZUKI Y & SUZUKI A (2004) DES2 protein is responsible for phytoceramide biosynthesis in the mouse small intestine. Biochemical Journal 379: 687–695
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, Fineman JR, Wang T & Black SM (2020) Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 36: 101679
Pal R, Bajaj L, Sharma J, Palmieri M, Di Ronza A, Lotfi P, Chaudhury A, Neilson J, Sardiello M & Rodney GG (2016) NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease. Sci Rep 6: 22866
Pant DC, Dorboz I, Schluter A, Fourcade S, Launay N, Joya J, Aguilera-Albesa S, Yoldi ME, Casasnovas C, Willis MJ, et al (2019) Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J Clin Invest 129: 1240–1256
Payapilly A & Malliri A (2018) Compartmentalisation of RAC1 signalling. Current Opinion in Cell Biology 54: 50–56
Planas-Serra L, Launay N, Goicoechea L, Heron B, Jou C, Juliá-Palacios N, Ruiz M, Fourcade S, Casasnovas C, Torre CDL, et al (2023) Sphingolipid desaturase DEGS1 is essential for mitochondria-associated membrane integrity. J Clin Invest 133
Pocha SM, Shevchenko A & Knust E (2011) Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. J Cell Biol 195: 827–838
del Pozo MA, Alderson NB, Kiosses WB, Chiang H-H, Anderson RGW & Schwartz MA (2004) Integrins regulate Rac targeting by internalization of membrane domains. Science 303: 839–842
Rao Y, Perna MG, Hofmann B, Beier V & Wollert T (2016) The Atg1-kinase complex tethers Atg9-vesicles to initiate autophagy. Nat Commun 7: 10338
Schuck S, Prinz WA, Thorn KS, Voss C & Walter P (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187: 525–536
Siddique MM, Li Y, Chaurasia B, Kaddai VA & Summers SA (2015) Dihydroceramides: From Bit Players to Lead Actors. J Biol Chem 290: 15371–15379
Signorelli P, Munoz-Olaya JM, Gagliostro V, Casas J, Ghidoni R & Fabriàs G (2009) Dihydroceramide intracellular increase in response to resveratrol treatment mediates autophagy in gastric cancer cells. Cancer Letters 282: 238–243
Sinclair E, Trivedi DK, Sarkar D, Walton-Doyle C, Milne J, Kunath T, Rijs AM, de Bie RMA, Goodacre R, Silverdale M, et al (2021) Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat Commun 12: 1592
Sulaimon LA, Afolabi LO, Adisa RA, Ayankojo AG, Afolabi MO, Adewolu AM & Wan X (2022) Pharmacological significance of MitoQ in ameliorating mitochondria-related diseases. Advances in Redox Research 5: 100037
Tam AB, Roberts LS, Chandra V, Rivera IG, Nomura DK, Forbes DJ & Niwa M (2018) The UPR Activator ATF6 Responds to Proteotoxic and Lipotoxic Stress by Distinct Mechanisms. Developmental Cell 46: 327-343.e7
Ternes P, Franke S, Zähringer U, Sperling P & Heinz E (2002) Identification and characterization of a sphingolipid delta 4-desaturase family. J Biol Chem 277: 25512–25518
Tzou F-Y, Hornemann T, Yeh J-Y & Huang S-Y (2023) The pathophysiological role of dihydroceramide desaturase in the nervous system. Prog Lipid Res 91: 101236
Wu C-Y, Jhang J-G, Lin W-S, Chuang P-H, Lin C-W, Chu L-A, Chiang A-S, Ho H-C, Chan C-C & Huang S-Y (2021) Dihydroceramide desaturase promotes the formation of intraluminal vesicles and inhibits autophagy to increase exosome production. iScience 24: 103437
Xiao X, Bu H, Li Z, Li Z, Bai Q, Wang Z, Yan L, Liu D, Peng X, Jia X, et al (2021) NADPH-Oxidase 2 Promotes Autophagy in Spinal Neurons During the Development of Morphine Tolerance. Neurochem Res 46: 2089–2096
Yi H, Xue L, Guo M-X, Ma J, Zeng Y, Wang W, Cai J-Y, Hu H-M, Shu H-B, Shi Y-B, et al (2010) Gene expression atlas for human embryogenesis. The FASEB Journal 24: 3341–3350
Yingze Y, Zhihong J, Tong J, Yina L, Zhi Z, Xu Z, Xiaoxing X & Lijuan G (2022) NOX2-mediated reactive oxygen species are double-edged swords in focal cerebral ischemia in mice. Journal of Neuroinflammation 19: 184
Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, et al (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: Lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1758: 1864–1884
Zhu X, Shen K, Bai Y, Zhang A, Xia Z, Chao J & Yao H (2016) NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radical Biology and Medicine 94: 230–242
Zhu Y, Cho K, Lacin H, Zhu Y, DiPaola JT, Wilson BA, Patti GJ & Skeath JB (2024) Loss of dihydroceramide desaturase drives neurodegeneration by disrupting endoplasmic reticulum and lipid droplet homeostasis in glial cells. bioRxiv: 2024.01.01.573836
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99345-
dc.description.abstract神經鞘脂 (Sphingolipids)在神經系統中含量豐富,對大腦的發育和功能至關重要。它們的特性會根據其結構變異而發生顯著的變化,包括極性官能基(polar head groups)、脂肪酸鏈 (Fatty acyl chain)和神經鞘氨醇基 (sphingoid base)。二氫神經醯胺去飽和酶 (Dihydroceramide desaturase)將 C4-5 雙鍵加到神經鞘氨醇基上,調節二氫神經鞘脂和神經鞘脂的濃度,而這兩者之間的平衡是決定膜特性的關鍵因素。值得注意的是,二氫神經鞘脂的增加與神經退化性疾病有關,而編碼二氫神經醯胺去飽和酶的 DEGS1 基因的功能喪失變異與神經系統疾病有關。我們之前建立了infertile crescent(ifc)-剔除的果蠅模型,它是與DEGS1功能保守的同源基因。ifc的缺失誘發了眼睛的光依賴性神經退化,引起過多的氧化壓力和細胞自噬活性。我的博士研究進一步闡述了喪失ifc所引起的這兩個細胞機制。結果顯示ifc會透過 Rac1 訊號調節神經元氧化壓力和自噬功能。具體而言,ifc調節活性 Rac1在細胞中的位置,而其缺失會導致 Rac1 錯位和 NADPH 氧化酶的活化,造成氧化壓力。此外,ifc的基因過表達會增強 Rac1-Atg8 的結合,抑制自溶體的成熟,在眼球退化過程中提供對自噬細胞死亡的保護。這些發現為二氫神經醯胺去飽和酶在神經保護中的角色提供了重要的啟示,並為與神經鞘脂失調相關的神經退化性疾病提出了潛在的治療目標。最後,本論文研究的成果呈現在兩篇研究文章發表於國際期刊。zh_TW
dc.description.abstractSphingolipids are abundant in the nervous system and crucial for brain development and function. Their properties change significantly based on their structure variability, including the polar headgroup, the acyl chain, and the sphingoid base. Dihydroceramide desaturase adds the C4-5 double bond to the sphingoid base, modulating the balance between dihydrosphingolipids and sphingolipids, which are crucial determinants of membrane properties. Notably, increases in dihydrosphingolipids have been associated with neurodegenerative diseases, and loss-of-function variants in the DEGS1 gene encoding dihydroceramide desaturase have been linked to neurological disorders. We previously established the fly model of infertile crescent (ifc)-knockout, which is the functional ortholog of DEGS1. Loss of ifc induced light-dependent neurodegeneration in the eye, showing increased oxidative stress and autophagy activities. My doctoral research further elucidated the mechanisms underlying these two cellular hallmarks of ifc-knockout eyes. The results indicated that ifc modulates neuronal oxidative stress and autolysosome function through Rac1-signaling. Specifically, ifc regulates subcellular localization of active Rac1, while its absence led to Rac1 mislocalization and the activation of NADPH oxidase, causing oxidative stress. In addition, the overexpression of ifc enhances Rac1-Atg8 association, which inhibits the maturation of autolysosome, offering protection against autophagic cell death during eye degeneration. These findings provide critical insights into the role of dihydroceramide desaturase in neuroprotection and suggest potential therapeutic targets for neurodegenerative diseases associated with sphingolipid dysregulation. Finally, the results of this thesis research are presented in two research articles published in international journals.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:06:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:06:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
第一章 緒論 1
第一節 二氫神經醯胺去飽和酶相關的神經系統疾病 1
1.1.1 二氫神經醯胺去飽和酶的生化機制 1
1.1.2 二氫神經醯胺去飽和酶的細胞機制 2
1.1.3 二氫神經醯胺去飽和酶基因變異相關的腦白質退化症 3
第二節 二氫神經醯胺去飽和酶及其在神經退化中的作用 3
1.2.1 二氫神經神經鞘脂和神經退化性疾病的相關性研究 3
1.2.2 失去二氫神經醯胺去飽和酶造成視神經退化 4
第三節 研究目的及重要性 4
第二章 國際期刊研究論文 5
第一節Dihydroceramide desaturase regulates the compartmentalization of Rac1 for neuronal oxidative stress 5
2.1.1 緒論 5
2.1.2 問題與實驗結果 6
第二節 Dihydroceramide desaturase modulates autolysosome maturation and ameliorates CRB1 retinopathy 10
2.2.1 緒論 10
2.2.2 問題與實驗結果 10
第三章 綜合討論 14
第一節 二氫神經醯胺去飽和酶控制Rac1訊息路徑 14
第二節 二氫神經醯胺去飽和酶缺失下蛋白質錯位與堆積 15
第三節 二氫神經醯胺去飽和酶缺失下神經細胞自噬與氧化壓力的互動 17
第四節 二氫神經醯胺去飽和酶缺失的選擇性脆弱 18
第四章 總結 19
參考文獻 20
附錄 28
-
dc.language.isozh_TW-
dc.subject神經退化zh_TW
dc.subject細胞自噬zh_TW
dc.subject脂質代謝zh_TW
dc.subject氧化壓力zh_TW
dc.subjectLipid Metabolismen
dc.subjectNeurodegenerationen
dc.subjectAutophagyen
dc.subjectOxidative Stressen
dc.title二氫神經醯胺去飽和酶在神經退化之分子機制研究zh_TW
dc.titleInvestigations on Molecular Mechanisms of Dihydroceramide Desaturase in Neurodegenerationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee湯志永;郭錦樺;劉雅雯;黃舒宜zh_TW
dc.contributor.oralexamcommitteeChih-Yung Tang;Ching-Hua Kuo;Ya-Wen Liu;Shu-Yi Huangen
dc.subject.keyword脂質代謝,神經退化,氧化壓力,細胞自噬,zh_TW
dc.subject.keywordLipid Metabolism,Neurodegeneration,Oxidative Stress,Autophagy,en
dc.relation.page64-
dc.identifier.doi10.6342/NTU202500972-
dc.rights.note未授權-
dc.date.accepted2025-07-16-
dc.contributor.author-college醫學院-
dc.contributor.author-dept生理學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
22.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved