Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99344
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林芯伃zh_TW
dc.contributor.advisorShin-Yu Linen
dc.contributor.author張沛緹zh_TW
dc.contributor.authorPei-Ti Changen
dc.date.accessioned2025-09-09T16:06:01Z-
dc.date.available2025-09-10-
dc.date.copyright2025-09-09-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation1. Trask, B.J., Human cytogenetics: 46 chromosomes, 46 years and counting. Nature Reviews Genetics, 2002. 3(10): p. 769-778.
2. Carey, S.B., L. Aközbek, and A. Harkess, The contributions of Nettie Stevens to the field of sex chromosome biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022. 377(1850): p. 20210215.
3. Lahn, B.T. and D.C. Page, Four evolutionary strata on the human X chromosome. Science, 1999. 286(5441): p. 964-7.
4. Cortez, D., et al., Origins and functional evolution of Y chromosomes across mammals. Nature, 2014. 508(7497): p. 488-493.
5. Saunders, P.A., S. Neuenschwander, and N. Perrin, Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity, 2019. 123(3): p. 419-428.
6. Jobling, M.A. and C. Tyler-Smith, Human Y-chromosome variation in the genome-sequencing era. Nature Reviews Genetics, 2017. 18(8): p. 485-497.
7. Bellott, D.W., et al., Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature, 2014. 508(7497): p. 494-9.
8. Bachtrog, D., A dynamic view of sex chromosome evolution. Curr Opin Genet Dev, 2006. 16(6): p. 578-85.
9. Helena Mangs, A. and B.J. Morris, The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr Genomics, 2007. 8(2): p. 129-36.
10. Monteiro, B., et al., Evolutionary dynamics of the human pseudoautosomal regions. PLoS Genet, 2021. 17(4): p. e1009532.
11. Dos Santos, C.S., T. Mendes, and A. Antunes, The genes from the pseudoautosomal region 1 (PAR1) of the mammalian sex chromosomes: Synteny, phylogeny and selection. Genomics, 2022. 114(4): p. 110419.
12. Babcock, M., et al., AT-rich repeats associated with chromosome 22q11.2 rearrangement disorders shape human genome architecture on Yq12. Genome Res, 2007. 17(4): p. 451-60.
13. Jobling, M.A. and C. Tyler-Smith, The human Y chromosome: an evolutionary marker comes of age. Nature Reviews Genetics, 2003. 4(8): p. 598-612.
14. Bachtrog, D., Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet, 2013. 14(2): p. 113-24.
15. Skaletsky, H., et al., The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature, 2003. 423(6942): p. 825-37.
16. Hughes, J.F. and S. Rozen, Genomics and genetics of human and primate y chromosomes. Annu Rev Genomics Hum Genet, 2012. 13: p. 83-108.
17. Skov, L. and M.H. Schierup, Analysis of 62 hybrid assembled human Y chromosomes exposes rapid structural changes and high rates of gene conversion. PLoS Genet, 2017. 13(8): p. e1006834.
18. Rhie, A., et al., The complete sequence of a human Y chromosome. Nature, 2023. 621(7978): p. 344-354.
19. Gellatly, S.A., S. Kalujnaia, and G. Cramb, Cloning, tissue distribution and sub-cellular localisation of phospholipase C X-domain containing protein (PLCXD) isoforms. Biochemical and Biophysical Research Communications, 2012. 424(4): p. 651-656.
20. Lavdovskaia, E., et al., Dual function of GTPBP6 in biogenesis and recycling of human mitochondrial ribosomes. Nucleic Acids Res, 2020. 48(22): p. 12929-12942.
21. Hillen, H.S., et al., Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling. Nat Commun, 2021. 12(1): p. 3672.
22. PPP2R3B Is a Sex-Linked Melanoma Tumor Suppressor Gene. Cancer Discovery, 2017. 7(2): p. 123-123.
23. Blum, W.F., et al., Growth Hormone Is Effective in Treatment of Short Stature Associated with Short Stature Homeobox-Containing Gene Deficiency: Two-Year Results of a Randomized, Controlled, Multicenter Trial. The Journal of Clinical Endocrinology & Metabolism, 2007. 92(1): p. 219-228.
24. Marchini, A., T. Ogata, and G.A. Rappold, A Track Record on SHOX: From Basic Research to Complex Models and Therapy. Endocr Rev, 2016. 37(4): p. 417-48.
25. Genoni, G., et al., Improving clinical diagnosis in SHOX deficiency: the importance of growth velocity. Pediatric Research, 2018. 83(2): p. 438-444.
26. Clement-Jones, M., et al., The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum Mol Genet, 2000. 9(5): p. 695-702.
27. Kosho, T., et al., Skeletal Features and Growth Patterns in 14 Patients with Haploinsufficiency of SHOX: Implications for the Development of Turner Syndrome. The Journal of Clinical Endocrinology & Metabolism, 1999. 84(12): p. 4613-4621.
28. Bergman, J. and M.H. Schierup, Evolutionary dynamics of pseudoautosomal region 1 in humans and great apes. Genome Biol, 2022. 23(1): p. 215.
29. Chen, Y.S., J.D. Racca, and M.A. Weiss, Tenuous Transcriptional Threshold of Human Sex Determination. I. SRY and Swyer Syndrome at the Edge of Ambiguity. Front Endocrinol (Lausanne), 2022. 13: p. 945030.
30. Berkovitz, G.D., et al., Clinical and pathologic spectrum of 46,XY gonadal dysgenesis: its relevance to the understanding of sex differentiation. Medicine (Baltimore), 1991. 70(6): p. 375-83.
31. Holmlund, H., et al., Return of the forgotten hero: the role of Y chromosome-encoded Zfy in male reproduction. Mol Hum Reprod, 2023. 29(8).
32. Repping, S., et al., High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nature Genetics, 2006. 38(4): p. 463-467.
33. Krausz, C. and S. Degl'Innocenti, Y chromosome and male infertility: update, 2006. Front Biosci, 2006. 11: p. 3049-61.
34. Krausz, C., et al., EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology, 2014. 2(1): p. 5-19.
35. Gripenberg, U., Size variation and orientation of the human Y chromosome. Chromosoma, 1964. 15(5): p. 618-629.
36. Unnérus, V., J. Fellman, and A. de la Chapelle, The Length of the Human Y Chromosome. Cytogenetics, 2008. 6(3-4): p. 213-227.
37. Robinson, J.A. and K.E. Buckton, Quinacrine fluorescence of variant and abnormal human Y chromosomes. Chromosoma, 1971. 35(3): p. 342-352.
38. Verma, R.S., et al., Length heteromorphisms of fluorescent (f) and non-fluorescent (nf) segments of human Y chromosome: classification, frequencies, and incidence in normal Caucasians. J Med Genet, 1978. 15(4): p. 277-81.
39. Westlake, J.R., et al., Y chromosome length related to fetal loss. Clin Genet, 1983. 24(6): p. 413-9.
40. ISCN 2020: An International System for Human Cytogenomic Nomenclature (2020), ed. J. McGowan-Jordan, R.J. Hastings, and S. Moore. 2020: S.Karger AG.
41. ISCN 2024: An International System for Human Cytogenomic Nomenclature (2024), ed. R.J. Hastings, S. Moore, and N. Chia. S.Karger AG.
42. Hsu, L.Y., et al., Chromosomal polymorphisms of 1, 9, 16, and Y in 4 major ethnic groups: a large prenatal study. Am J Med Genet, 1987. 26(1): p. 95-101.
43. Knebel, S., et al., Heterogeneity of pericentric inversions of the human y chromosome. Cytogenet Genome Res, 2011. 132(4): p. 219-26.
44. Verma, R.S., A. Huq, and H. Dosik, Racial variation of a non-fluorescent segment of the Y chromosome in East Indians. J Med Genet, 1983. 20(2): p. 102-6.
45. Bhasin, M.K., Human Population Cytogenetics: A Review*. International Journal of Human Genetics, 2005. 5(2): p. 83-152.
46. Nie, H. and G. Lu, Long Y chromosome is not a fetal loss risk. J Assist Reprod Genet, 2011. 28(2): p. 151-6.
47. Suganya, J., et al., Chromosomal Abnormalities in Infertile Men from Southern India. J Clin Diagn Res, 2015. 9(7): p. Gc05-10.
48. Jacobs, P.A. and A. Ross, Structural Abnormalities of the Y Chromosome in Man. Nature, 1966. 210(5034): p. 352-354.
49. Yang, Y. and W. Hao, Clinical, cytogenetic, and molecular findings of isodicentric Y chromosomes. Molecular Cytogenetics, 2019. 12(1).
50. Henegariu, O., et al., PCR and FISH analysis of a ring Y chromosome. Am J Med Genet, 1997. 69(2): p. 171-6.
51. Lin, S.Y., et al., Application of molecular cytogenetic techniques to characterize the aberrant Y chromosome arising de novo in a male fetus with mosaic 45,X and solve the discrepancy between karyotyping, chromosome microarray, and multiplex ligation dependent probe amplification. J Formos Med Assoc, 2018. 117(11): p. 1027-1031.
52. Hoshi, N., et al., Prenatal identification of mos 45,X/46,X,+mar in a normal male baby by cytogenetic and molecular analysis. Prenat Diagn, 1998. 18(12): p. 1316-22.
53. Chen, C.-P., et al., Perinatal cytogenetic discrepancy in a pregnancy with mosaic 45,X/46, XY at amniocentesis and a favorable outcome. Taiwanese Journal of Obstetrics and Gynecology, 2022. 61(3): p. 525-527.
54. Huang, B., et al., Prenatal diagnosis of 45,X and 45,X mosaicism: the need for thorough cytogenetic and clinical evaluations. Prenat Diagn, 2002. 22(2): p. 105-10.
55. Chen, C.P., et al., High-level mosaicism for 45,X in 45,X/46,X,idic(Y)(q11.2) at amniocentesis in a pregnancy with a favorable outcome and postnatal progressive decrease of the 45,X cell line. Taiwan J Obstet Gynecol, 2022. 61(3): p. 528-531.
56. Chen, C.P., Prenatal diagnosis of SRY(+) 45,X male and the confirmation of high-level mosaicism for 45,X in 45,X/46,X,del(Y) (q11.222) in a fetus with a favorable fetal outcome and perinatal progressive decrease of the 45,X cell line. Taiwan J Obstet Gynecol, 2025. 64(3): p. 544-550.
57. Ketheeswaran, S., et al., 45,X/46,XY Mosaicism and Normozoospermia in a Patient with Male Phenotype. Case Rep Med, 2019. 2019: p. 2529080.
58. Huang, Y.-C., et al., The spectrum of 45,X/46,XY mosaicism in Taiwanese children: The experience of a single center. Journal of the Formosan Medical Association, 2019. 118(1, Part 3): p. 450-456.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99344-
dc.description.abstract背景與動機: Y染色體因其高度重複且非重組的結構特性,在臨床產前遺傳診斷中具高度挑戰性。Small Y(長臂異染色質縮短)與鑲嵌型核型(如mos45,X/46,XY)等變異常引起胎兒表型疑慮與家屬焦慮。本文旨在釐清Y染色體結構變異的臨床意義與遺傳來源,建立整合性分析與諮詢流程,以提升產前診斷之準確性與溝通效率。
材料與方法: 本研究回溯分析2013至2023年間42例具Y染色體變異之胎兒羊膜穿刺檢體。分析工具使用核型分析、部分個案加做染色體微陣列(CMA)、進階追蹤使用FISH、MLPA與多色帶分析(mBAND),並進行父系核型追蹤,判定small Y之mos45,X/46,XY鑲嵌型變異之來源及臨床表現。
結果: small Y型態個案中92.59%為父系遺傳,其臨床表現將與父親相同,支持其屬良性染色體多型性;而mos45,X/46,XY個案則為自發性突變,結構組成複雜且需輔以進階分析工具進行詮釋。CMA未檢出結構異常,乃對Y染色體探針涵蓋不足,突顯技術侷限性。
結論: 本研究建立具系統性之Y染色體變異分析與諮詢架構,整合多項技術以提升診斷準確性。針對small Y型態,建議優先進行父系核型比對及超音波性別確認,以排除表型及影響。此整合流程有助於穩定孕婦情緒、促進臨床風險評估與家屬溝通成效。
zh_TW
dc.description.abstractBackground and Motivation:
Due to its highly repetitive and non-recombining structure, the Y chromosome presents significant challenges in clinical prenatal genetic diagnosis. Variants such as small Y (heterochromatin shortening of the long arm) and mosaic karyotypes (e.g., mos45,X/46,XY) often raise concerns regarding fetal phenotype and contribute to parental anxiety. This study aims to clarify the clinical significance and genetic origin of Y chromosome structural abnormalities, and to establish an integrated diagnostic and counseling workflow to improve the accuracy and efficiency of prenatal diagnosis.
Materials and Methods:
We retrospectively analyzed 42 amniocentesis cases with Y chromosome abnormalities collected between 2013 and 2023. Analytical methods included conventional karyotyping, with selected cases undergoing chromosomal microarray analysis (CMA), followed by advanced techniques such as fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and multicolor banding (mBAND). Paternal karyotyping was also performed to determine the origin and clinical implications of small Y and mosaic mos45,X/46,XY variants.
Results:
Among the small Y cases, 92.59% were inherited from the father, who typically presented with normal phenotype and reproductive function, supporting their classification as benign chromosomal polymorphisms. In contrast, mos45,X/46,XY cases were de novo mutations with complex structural compositions requiring advanced techniques for accurate interpretation. No pathogenic structural abnormalities were detected by CMA; however, limited probe coverage for the Y chromosome highlighted the technical constraints of this platform.
Conclusion:
This study establishes a systematic framework for the analysis and counseling of Y chromosome variants by integrating multiple diagnostic approaches to enhance accuracy. For small Y cases, we recommend prioritizing paternal karyotype comparison and fetal ultrasound sex confirmation to rule out phenotypic effects. The proposed workflow contributes to emotional stabilization in pregnant individuals, facilitates clinical risk assessment, and improves communication with families.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-09T16:06:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-09T16:06:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
臨床試驗研究許可證 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 Y染色體的介紹 2
1.3 Y染色體的結構 3
1.3.1 常染色質區(Euchromatic region) 3
1.3.2 PAR 1與PAR 2區域 3
1.3.3 男性特異區域(MSY) 4
1.3.4 異染色質區(Heterochromatic region) 5
1.3.5 技術突破與研究應用 5
1.4 Y染色體上的基因 6
1.4.1 PLCXD1基因: 6
1.4.2 GTPBP6基因: 6
1.4.3 PPP2R3B基因: 7
1.4.4 SHOX基因: 7
1.4.5 SRY 基因: 8
1.4.6 ZFY基因: 8
1.4.7 AZF基因家族(Azoospermia Factor) 8
1.5 Y染色體的長度指數 9
1.6 Y染色體變異種類 11
1.6.1 良性變異(Benign variants) 11
1.6.2 異常核型(abnormal mutation) 12
第二章 研究方法 13
2.1 研究目的與設計 13
2.2 研究對象來源 14
2.3 羊膜穿刺檢查與染色體分析流程 14
2.3.1 羊膜穿刺操作說明 14
2.3.2 羊水細胞培養與核型分析 14
2.4 Small Y 定義 15
2.5 父系來源確認與追蹤分析 15
2.6 輔助性檢查與臨床資料彙整 15
2.7 羊膜穿刺檢查適用對象 16
2.7.1 高齡孕婦(Advanced Maternal Age, AMA) 16
2.7.2 血清學篩檢結果異常 16
2.7.3 超音波檢查異常 17
2.7.4 父母親帶有染色體異常或變異之家族史 17
2.7.5 自願檢查(主動要求)(Anxiety) 18
第三章 研究對象與個案分析 19
3.1 個案統計概況 19
3.1.1 自發性突變(de novo)個案 21
第四章 研究結果與討論 28
4.1 Small Y 的判定 28
4.2 Small Y 的族群發生比例與良性判定分析 29
4.3 染色體微陣列分析(CMA)在small Y個案中之結果與侷限分析 30
4.4 自發性突變之鑲嵌型核型45,X/46,XY臨床詮釋 31
4.5 各項分析工具在鑑別診斷中的角色 32
4.6 父系遺傳判定與臨床諮詢 33
4.7 產前與產後45,X/46,XY鑲嵌型個案之文獻比較 35
第五章 結論與展望 36
參考文獻 39
-
dc.language.isozh_TW-
dc.subjectsmall Yzh_TW
dc.subject遺傳諮詢zh_TW
dc.subject染色體多型性變異zh_TW
dc.subject鑲嵌型核型zh_TW
dc.subject產前遺傳診斷zh_TW
dc.subjectsmall Yen
dc.subjectgenetic counselingen
dc.subjectchromosomal polymorphic variationen
dc.subjectmosaic karyotypeen
dc.subjectPrenatal genetic diagnosisen
dc.title探討Y染色體變異之臨床表現zh_TW
dc.titleExplore Genetic And Clinical Expression Of Y Chromosomal Variantsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李妮鍾;李建南zh_TW
dc.contributor.oralexamcommitteeNi-Chung Lee;Chien-Nan Leeen
dc.subject.keyword產前遺傳診斷,small Y,染色體多型性變異,鑲嵌型核型,遺傳諮詢,zh_TW
dc.subject.keywordPrenatal genetic diagnosis,small Y,chromosomal polymorphic variation,mosaic karyotype,genetic counseling,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202502915-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2025-09-10-
Appears in Collections:分子醫學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf2 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved